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Abstract: Acquisition of real-time and accurate vehicle state and parameter information is critical to the research of
vehicle dynamic control system. By studying the defects of the former Kalman filter based estimation method, a
new estimating method is proposed. First the nonlinear vehicle dynamics system, containing inaccurate model pa-
rameters and constant noise, is established. Then a dual unscented particle filter (DUPF) algorithm is proposed.
In the algorithm two unscented particle filters run in parallel, states estimation and parameters estimation update
each other. The results of simulation and vehicle ground testing indicate that the DUPF algorithm has higher state

estimation accuracy than unscented Kalman filter (UKF) and dual extended Kalman filter (DEKF), and it also has

Vol. 31 No. 5

good capability to revise model parameters.
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1 Introduction

A lack of information of vehicle states and
parameters presents a major obstacle for the de-
velopment of vehicle control systems. The effec-
tiveness of vehicle stability control mainly de-
pends on the accuracy of vehicle states and pa-
rameters, especially the side slip angle and yaw
rate. Currently yaw rate can already be measured
by gyro. However, information of side slip angle
has to be acquired through complicated method
such as state estimation and GPS positioning.
Among the above two methods, state estimation
is easier and more economical than the GPS meth-
od™. Though some states can be measured by
sensors directly, state estimation method is also
interference

able to dramatically reduce the

brought by the measurement noise and process
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noise contained in the signal.

Currently vehicle state estimation methods
are general Kalman filter (KF)!, extended Kal-
( EKF )™
rithms™®', unscented Kalman filter (UKF)',

particle filter (PF)t™, neural network method™/,

man filter and its improved algo-

state observer method” and fuzzy logic meth-
od"™, ete. These methods all estimate the criti-
cal control variables of vehicle control system, in-
cluding side-slip angle, lateral velocity and yaw
rate. They are all "model based estimator’. In
these estimators, vehicle parameters such as
mass, moment of inertia, and center of mass po-
sition, are all assumed invariant and measured
approximately. However, these parameters may
vary with different working condition when driv-
ing. For instance, difference between an empty

and a full load heavy truck’s influence to the cen-
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ter of mass position and moment of inertia is ob-
vious. Therefore, it is essential to consider the
uncertainty of parameters when estimating the
vehicle states. During the vehicle state estimation
process, updating the uncertain vehicle parame-
ters simultaneously is the only way to obtain
more accurate driving information.

With regarding to various control logic re-
quirements of vehicle dynamic control system, a
multi-states estimation method of running vehicle
is proposed by applying the newly developed dual
unscented particle filter (DUPF) algorithm in ve-

hicle dynamics estimation.

2 Non-linear Vehicle Dynamic Model

2.1 Full vehicle model

As shown in Fig. 1, the proposed estimation
method is a 7-DOF non-linear vehicle dynamic
model which represents lateral, longitudinal, yaw
motion of a vehicle and the rotating motion of the

four tires.

Fig. 1 7-DOF non-linear vehicle dynamic model

The equations of vehicle motion are written

as:
Longitudinal
w=a, +or (1)
a, =(F,cosd+ F,cos60+ F.,, +F.,, —
F;sind — F . sind) /m (2
Lateral
v=a, —ur (€D)
a,= (Fsind + F,;sind + F,; cosd +
Fcos6+F,, +F,)/m 4
Yaw
P=TF = GF 4 $F,—%F., +
aF', +aF’, —0F, —0bF,, +
M, +M, +M,, +M,, (5

where F’l,-j =F,jcosd—F,;sing
F',;=F,;cosd+F,;sind

where u represents the longitudinal velocity, v

the lateral velocity, a, the longitudinal accelera-

tion, a, the lateral acceleration, r the yaw rate. 8

the vehicle sideslip angle, I" the yaw moment on 2

axis, ¢ the steering angle of front tire, F,; the

longitudinal force of each tire, F,; the lateral

yij

force of each tire, M,; the self-aligning torque of

i
each tire. m the vehicle mass, I. the vehicle mo-
ment of inertia on z axis, a,b are the distances
between the center of gravity to the front and the
rear axle, respectively.

Solving vertical load, slip angle and slip of
each tire involvomg with the rotational motion
can be found in Ref. [11]. Here we will not go in-

to details of them.
2.2 Tire model

Pacejka non-linear tire model™® is applied.
The input variables of this model are vertical
load, slip angle, tire slip.

Lateral force, longitudinal force and self-
aligning torque of each tire can be calculated from
unified Eqgs. (7—9).

y(x) = Dsin(Carctan(Bx — E(Bx — arctanBx)))

(7)
Y(XD) =y(x) +s, (8
f:X_FS/A (9)

where the output variable Y in Eq. (8) represents
tire side force F,, tire longitudinal force F, and
tire self-aligning torque M, in different cases. The
input variable X in Eq. (9) represents the tire slip
S (when calculating longitudinal force) and tire
sideslip angle @ (when calculating lateral and self-
aligning torque). Detailed expressions of parame-
ters B, C, D, E, s,, s, in Eq. (7) see Ref. [12].
In the paper, under vertical load of 3. 16 kN, the
related parameters of tire model are valued as B=
0.237,C=1.65,1.=3 610. 5, E=0. 707, s, =
40. 379,s5,=0. 047 3.

2.3 Noise contained non-linear vehicle system

State vector of non-linear vehicle system is
written as

xS:[uyv’a,l s('l}‘sr’BvF]T (10)
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Parameter vector of non-linear vehicle system

1s written as

x*=[m,I.,a]" (11D
Input of system is
w="[Ovwy rwp o s " (12)
Observation vector is
y=Llr.a, ul]" (13

In the state estimation, process noise is set
as a zero-mean white Gaussian noise sequence,
and the covariance matrix is given by

0=0.01-

max(state(i)) — min(state(:)) |

1=1,,7;0< <10 (14)
where max(state(7)) are min(state(i)) are the
maximum and the minimum values of the ith
state parameter during the whole period, respec-
tively.

Covariance matrix of measurement noise is
set as a zero-mean white Gaussian noise sequence,
and the covariance matrix is given by

R=0.05+ | max(y(i)) — min(y()) |

i=1,,3;0 << 10 (15)

where max(y (7)) and min(y(i)) are the maxi-
mum and the minimum valus of the ith measure-
ment parameter through the whole period, re-

spectively.

3 Estimation Method Based on
DUPF Algorithm

Based on the
(UPK)'!, DUPF is proposed.

unscented particle filter

3.1 PF algorithm

PF is another type of non-linear estimation
method compared with various Kalman filter
based algorithm. PF demonstrates distinct advan-

(131 " The core

tages towards non-linear estimation
concept of PF is using the weighted sum of a se-
ries of random samples to represent posterior
probability density. PF algorithm is given as
followst™ ;

(1) Initialization

Extract N particles from the prior distribu-
tion p(xy).

x, (1) i=1,2,--,N

(2)Importance sampling

Extract lk(l>7q<l‘;. ‘1’():/17] <l> sy]:k)yl.::l,Z’
- N
Calculate weights of the new samples

Py | 2 GO Py | 2y (1))

D =W, G
W, (1) w1 (D) q(x (D) | 201 (D) sy1)

i=1,2,,N (16)
Normalize the weights
W, () :M an

DI D

-1
(3) Resample
Randomly extract a sample u—U[0,1] in ev-
ery step. Particles x, (i) which meet the follow-
ing equation will be selected and duplicated to the
new set of particles. Meanwhile, weights of all
particles are set as 1/N .

i—1 i
DIWL ) < u<< DWW () (18)
ji=1

j=1

(4) Filter output
The MMSE estimation of x, is given by
- N
= 2 WD (D) (19)
i—1

3.2 DUPF algorithm
Two UPF run parallel in DUPF. State esti-

mation is followed with parameter estimation.
State estimation is integrated between parameter
prediction process and correction process. System
states and parameters are able to be estimated in
real-time. In order to resolve two major draw-
backs, namely sampling blindness and particle
degeneration, lies in PF, DUPF adopts certain
sampling strategy. Through Unscented Transfor-
mation (UT), an importance function ¢ (z, |
Zo—1Ci)sy1.) better than the generic PF is ac-
quired to eliminate particle degeneration. Mean-
while, the latest observation values of the system
are utilized in this algorithm; hence the estima-
tion precision is improved.

Generally, state and observation equations
of non-linear discrete system are described as
Eq. (20,21), respectively

X = [ (X ue s x}) + w, 20
ye =h(xpx0) + v, 2D
where x° is the state vector, x” the parameter vec-

tor, u the system input, y the is observation vec-
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tor, w and v are process noise and measurement

noise, respectively.
First, calculate the sigma points
Xy LT

;L 1 —«/(n+/‘t)P’L 1]
Parameter estimation

Time update

Ti +/(n+ 1) Pi,

xi’;f LT X e (22
P}’k\k 1 /’ﬁ 1)k—1 +R"’ 1 (23)
Dk\k 1 :h(Ik 1k 1»)(::",:7] N 24)
CA{ZMA - EW?D},k\kfl (25)
ji=0
Measurement update
ba, = 2 Wi (Digr —dD (D) ey —diD" +R
j=0
(26)
P?B’ d EWI (X k1 712.1)(D}~k\k*1 7d’l)T
XD
K];'i == P‘iri:dkpilbdk ! (28)
b =xbi F Ky dy —die) (29)
P, =Pj,, — K; Py]ykK (30)

All remaining steps in UPF remain the same

with those in the PF Eqgs. (16—19).
State estimation

Time update

X:\;—l :f(X;—Il s Ui ’12771)
2n
Cosai _ m_ s.i
Lhjm1 — EWj ka\k—l
ji=0
2n
Sei
va 1 ZW]XJW 1

gbA k=1 *h(XMk 1aIM |)

2n

ylk\hfl = E Wy,glf_l,.k\kfl

j=0
Measurement update

2n

P, EW (Ghais — Yire ) (Phai
2n
Pl’ Vi EW< :;\k—l 71/\ —1 )((/);k k=1
Ki=P,, (P,,)"

xy :~Tk\k—1 TL Kk(yk — Vi)

3D

(32)

(33)

34

(35

- &Z\kﬂ )T

(36)

- 3/2 h—1 )T

37
(38)
39

—K,P,, K{

P, :Pi-\k 1 Vg
All remaining steps in the UPF remain the

same with the PF Eqs. (16—19).

(40)

4 Experimental Verification Based
on ADAMS

A virtual experiment is conducted on AD-
AMS to verify the proposed algorithm. Parame-
ters of the vehicle is;m=1 528 kg,a=1. 48 m,
b=1.08 m,the height of center of gravity (CoG)
h=0.432 m,I.=2 440 kg * m*,the width of front
track t; = 1. 52 m, the width of rear track ¢, =
1.594 m, the effective rolling radius of wheel
r.=0.33 m.

ADAMS full vehicle model is composed of
front and rear suspension subsystem, body sub-
system, steering subsystem, braking subsystem,
front and rear tire subsystems. Establish input
and output "Communicator” between subsystems.
Tire model is the Pac89 tire model contained in

the ADAMS software. The assembled ADAMS

vehicle model is shown in Fig. 2.
Fig. 2 ADAMS vehicle model

Requested vehicle driving route is generated
to simulate the vehicle control response under ex-
treme condition in ADAMS. Vehicle is driven
along the route shown in Fig. 3. The whole oper-
ation period is 10 s, sampling time is 0. 01 s.

To inspect the estimation performance of
1.5
1.0
0.5
0.0

-0.5
-1.0

Lateral displacement / m

.5 1 1 1 1 1 1 )
0 50 100 150 200 250 300 350
Longitudinal displacement / m

Fig. 3 Serpentine route
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DUPF algorithm on the non-linear vehicle sys-
tem, this work compares the DUPF algorithm
with other two estimation algorithms, namely
UKF and dual extend Kalman filter (DEKF)™,
The initial vehicle parameters of all the three al-
gorithms are inaccurate, set m, =1 250 kg, I.,, =
2 100 kg * m*,a,=1.25 m. As DUPF and DEKF
algorithms have the capability of parameter adap-
tation, the vehicle parameters in these two algo-
rithms are adjusting online.

Fig. 4 is a comparison between the estimated
and experimental value of six key state parame-

LTS UsVsd, Ay sT 53,

(d) Lateral acceleration

(e) Yaw rate

(f) Side slip angle

Fig. 4 Comparison between estimated and virtual ex-

periment value

As shown in Fig. 4, the estimation accuracy
of DUPF algorithm is higher than that of UKF
and DEKF. Because UKF algorithm does not
contain parameter estimator, the accuracy of
UKEF is apparently lower than that of DEKF and
DUPF, even the values become seriously distort-

ed in the estimation of yaw rate. The estimation

error of each state in the wave crest and trough

are higher than that in other places. It shows that

the tires enter the nonlinear region at this
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ment. An improved tire model may improve the
real-time performance of state estimation.

To have a quantitative comparison between
the three algorithms, Table 1 gives the root mean
square error (RMSE) and mean absolute error
(MAE) of each algorithm.

Table 1 MAE and RMSE of each algorithm
Parameter UKF DEKF DUPF
u 0.438 0. 207 0. 005 07
v 0.196 0.089 7 0.070 5
a, 0.226 0.168 0.162
MAE
a, 0.768 0.343 0.154
r 0.218 0.016 8 0.013 4
B 0.008 64 0.003 64 0.001 97
u 0.598 0.224 0.006 41
v 0.283 0.106 0.094 3
a, 0. 25 0.193 0.188
RMSE
a, 1.12 0.617 0.215
r 0.379 0.021 4 0.018 5
B 0.010 9  0.006 39 0.002 62

As shown in Table 1, under the same cir-
cumstance, the estimation accuracy of DUPF is
higher than that of the other two algorithms. In
addition, the superiority of DUPF also lies in the
algorithm itself: DEKF algorithm must solve
complicated Jacobian matrix during estimation,
which brings down the real-time property and in-
crease the tendency of failure, while DUPF algo-
rithm has not this defect.

In the DUPF algorithm, state estimation and
parameter estimation run in parallel. To verify
the parameter correction ability of this algorithm,
Figs. 5—7 give the value of vehicle mass m, mo-
ment of inertia I. and distance from center of
mass to front akle a in the whole estimation

process.

1550 r
1500 |
1450 | ;"'l
1400 | s

1350 | o

1300 | SNE e Estimated
v ——Actual

—

m/kg

1250 -

1 200 L 1 L 1 )
0 2 4 6 8 10

t/s

Fig.5 Estimated and actual values of m

2500

2400 | e
2300 |

2200 - P L Estimated
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2100 17

2 000 1 1 1 1 )
0

t/s

Fig. 6 Estimated and actual values of I.

195 Etimated
e stimate
L85 7, — Actual

175F7
1.65 .
155 | L
145 EXI
135 f
1.25 : . : ' -

a/m

t/s

Fig. 7 Estimated and actual values of a

As shown in Figs. 5—7, the three estimated
vehicle parameters tend to approach the true value
alone with the time. This proves that DUPF has
the ability to eliminate the influence from inaccu-
rate parameters of the vehicle model, thus ena-
bles a state estimation based on relatively accurate

vehicle model.

5 Proving Ground Test

For further testing the performance of
DUPF, a full vehicle test is conducted on a light
off-road vehicle in Serpentine Route. The test ve-
hicle is equipped with gyroscopes to collect data
of vehicle yaw rate and lateral acceleration in real-
time. Non-contact speed sensors are also applied
for gathering longitudinal and lateral velocity in
real-time. In addition, ABS wheel speed sensors
is used to gather angular velocity data of each tire
and steering wheel angle sensor is used to gather
steering wheel angle data. Vehicle test velocity is
65 km/h (+3 km/h). Figs. 8—10 give the com-
parison between the DUPF estimated and experi-
mental value toward three key state parameters

Uy Ay T

As in the comparison above, though the esti-
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--------- Experiment value
Estimated value
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Fig.8 Estimated and experimental values of v
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Fig.9 Estimated and experimental values of a,
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Fig. 10 Estimated and experimental values of r

mated value remains certain little errors, it gener-
ally accords with the experimental value. Histori-
cal values are used in the next step in discrete
process, which causes the accumulation of error.

In addition, PAC 89 tire model still has error
in simulating the vehicle tire mechanical proper-
ty, moreover, sensor measurement error and sen-
sor displacement are also main causes of error be-

tween the estimated and experimental value.

6 Conclusions

(1) This work proposed DUPF and applied it

into the vehicle states and parameters estimation.
The algorithm had two unscented particle filters
run in parallel. States and parameters updated al-
ternately. This algorithm is able to conduct states
and parameters parallel estimation of a non-linear
system containing inaccurate model parameters
and constant noise.

(2) The DUPF algorithm adopted in this
study demonstrates a well precision in state esti-
mation towards non-linear vehicle system contai-
Under the ADAMS high

speed extreme driving condition, the mean abso-

ning additive noise.

lute error of all the states are controlled fewer
than 10% of the amplitude of each state, indica-
ting that DUPF had satisfactory states estimation
accuracy and parameter correction ability. Addi-
tionally, DUPF is completely competent for vehi-
cle state estimator.

(3) The idea to integrate DUPF algorithm
with vehicle key state parameter estimation can
provide theoretical guide to the software design of
the estimator in the vehicle automatic control sys-

tem.
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