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Abstract: A detailed theoretical construction of general coupled 3D FEM analyses of anisotropic dielectrics is first
presented by considering the electric body force and body couple moment. A 3D electrostrictive element is subse-
quently defined in ABAQUS user subroutine UEL and the post-processing of finite element method (FEM) re-
sults is realized by UVARM and dummy element method. Then the developed technique is used to solve the elec-
tro-elastic field of an isotropic electrostrictive plate with an elliptical hole subjected to electrical load. By compa-
ring the coupled and uncoupled numerical results. the traditional uncoupled analytical method can cause a large

error when the applied electric field or the electrostrictive performance of the dielectric is high, and thus the pres-
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ent coupled analysis is especially necessary.
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1 Introduction

Due to smaller hysteresis and lower aging
effect than piezoelectric materials, electrostrictive
dielectrics have attracted much research inter-
estt™ . Currently, most of the work studying the
electro-mechanical behavior of an electrostrictive
plate with an elliptical hole, such as Knops'®,
Smith and Warren', Jiang and Kuang"™, and
Gao, et al. ', focuses on the two-dimensional in-
finite isotropic problem without considering the
electric body couple moment, which is called as
the uncoupled analytical method, i. e. , neglecting
the effect of strain-stress field on the electric
filed.

Although much of the FEM work has been

[10-12]

done on smart materials , such as piezoelec-

tric and ferroelectric materials, little work has

been done on the case of finite electrostrictive

[13]

plates. Recently, Gil and Ledger provided a

Article ID:1005-1120(2014)06-0589-10

coupled hp-finite element scheme for the solution
of 2D electrostrictive materials, and then Jin, et

14 extended this method to solve the 2D prob-

al.
lem of electrostrictive and magnetostrictive mate-
rials. In the traditional purely elastic 2D general-
ized plane stress problem, it is assumed that the
average value of stress o35 along the thickness x;
is zero (Lekhnitskii"™ ). However, when the
electric body fore fy. electric body couple mo-
ment my, and Maxwell stress oy are taken into
consideration, whether can we still take this as-
sumption or suppose the average value of total
Stress gess (o33 Toms ) to be zero?

This paper mainly contributes three aspects.
First, a quite different 3D finite element method
(FEM) analysis based on ABAQUS user subrou-
tines UEL, UVARM and dummy element meth-
od is developed. Second, the problem is extended

to a 3D anisotropic case, and the electric body
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force, electric body couple moment, the asymme-
try of Cauchy stress tensor and Maxwell stress
tensor are also considered, providing a more gen-
eral coupled and uncoupled FEM construction.
Third, the uncoupled and coupled FEM results
are compared, verifying the traditional uncoupled

method.

2 Basic Equations

As shown in Fig. 1, a finite anisotropic elec-
trostrictive plate with an elliptical hole is subjec-
ted to electrical potential ¢,,s ¢iown and mechanical

load p, at its boundaries.

o S o

-

Fig. 1  Finite anisotropic electrostrictive plate with an
elliptical hole subjected to electrical and me-

chanical loads

The basic differential equations describing
the anisotropic electrostrictive dielectric, where
the body force and body couple moment are both
taken into consideration, are given by

(1) Maxwell Equations™*

VD=0, YXE=02E=-v ®¢ (1)
where E, D, ¢ are the electric field, electric dis-
placement and electric potential, respectively.

(2) Equilibrium equations

Veo  tfu=Veo  +Veou=0 (2

T
G:O'T_FmM:ﬂ:)%:%hM (3)

where ¢, fu. 6y and my are the Cauchy stress
tensor, electric body force, Maxwell stress tensor

and electric body couple moment.
GM=E®D—%<E-D)I )

mM:PXEa hw:E®P*P®E (5)
It is obvious from Egs. (3,4) that the Cauchy

stress tensor ¢ and Maxwell stress tensor ey are

Vol. 31
not symmetric in general.
(3) Deformation equation
E— W@V Y@ 6

where g is the strain tensor and u the displace-
ment vector.

(4) Constitutive equations
1
% (65 T 0i) = Puass (C,_,W,s o ?n,,,JmEmEn ) )

Pm 7 Pmass kaEk T Omass 771jum€ijEu (8
where puasss §5s Ciun s and Yijun ATEC the mass den-
sity, polarization coefficients, linear elastic coef-
ficients, and electrostrictive coefficients, respec-
tively, which satisfy

§i = 8is Cimn
Nijmn = Wignm = Wjimn 9

The constitutive equations are obtained by

=Cipm =Cjipy =C
iinm jimn mn ij

D710 where we con-

extending the work of Kuang
sider the electric body couple moment and asym-

metry of Cauchy stress tensor; and relation is de-

rived by taking the method of Ting™? when he
deals with purely anisotropic elasticity.
(5) FEM conditions
cn=p,— () *n.Den=c¢,, u=u,, $ =¢,
(10)

where p, is the mechanical force, and g, the net
free surface charge density. Eq. (10) means that
the electric field is applied on the electrostrictive
dielectric directly, rather than on the environment
(vacuum or air), therefore the Maxwell stress
contributed by the environment is then equal to

Zero.

3 Virtual Displacement Principle

Under small deformation assumption, ac-
cording to the principle of virtual work, one has

the following equation

JH[(V . G’I‘Jff;w) «du+ (& :O'TJFmM> . 0w +
Io}
(v «D)§¢ ]1da ZH(G en—p,toy-n):
S/)

quds+[[Dn—a)0pd5 an

where Q is a three dimensional volume bounded

by surface S,; dS=mn ¢« dS, and n the outward
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normal vector at area element dS. And
wzfé € :w, w=%(u® Vv @u (12)
Using the following equations

aw%w—aﬁz(e:f)-aw (13)

m1w°8w:<*%6:hiw)’5a)*1

*?&V:hm (14)

Eq. (11) can be simplified as

JHO'CW :0ed — Jﬂﬂcqan owd — J;[JD . GE) d0 =

0

S

J (p/,* (0';\/1)T en)- &ldS‘FS@g@u . (O'M)T i
) S

ds + ja,,f?sé ds =ﬂp )+ oudS + jm,f?sb ds (15)
S/J S/J S/J

where

T
O cqsy :%[(GT_’_GM)_’_ (O'T‘Q—O'M)T]:%‘F
%EE@DJ“ (E®D>“]*%<E DI (16)

G = % [(6"+ou)— (6" +eu) " ]=

EXP—PXE=hy an

In fact there is another way to obtain

Eq. (15). By introducing Eqgs. (16, 17), one may

obtain the equivalent expressions of Eqs. (2, 3,
7,8, 10), that is,

YV ¢ Oy TV ¢ Oegun =0 18

D,, = (€00t — Omass Cor ) Et = Ormass ijmn€ 5 E 19

1
Oeqsyij — (Omass Cij,,me mn + ?(Omass 7]1]1/171 EmEn +

% (ED, - D.E,) — %Ekaa,, (20)

sy *N=D, T Cun * N, Den=g,, u=u,, §=4¢,

2D
Then the principle of virtual displacement

gives

JH [(V ¢ Oy TV * Cegun) * U+ (7 »
Q
D)8¢:| dQ :Jf(aetlsy' *n— Py, Ocqan * n) -
Sy

8udS+H(D- n—c,)04dS (22)
S/l

Since

m [((V * Oy TV * Gegun) * OUT (V * D)oY Jd2=
o

J [V Gy * M) — Gy s (7 @ ou) ] A2+
[V« (D3g) D+ (v @ op) ]da+

[+ (Beqn * M) — Gegn: (V D Su) 1d0D =

DE—— "—=3 ©

T e

|

Sy

4+ @y + o) — |0 s+ [[dS + Do) +

[[p - @®>da+ [Jds - o a0+

o)

[ zowda=[lou + (@02 7+ ds+ [3gp « ds +
é/h J

S

2

b

Jj‘gu ° (o-eqan ) T dS - JH‘O- eqsy :&dﬂ +
Sbv

2

J;UD - OF) dnﬂ{[jam owd 23)

Inserting Eq. (23) into Eq. (22), one may obtain
the same equation as Eq. (15), where

L L

0 0

Hp/, . oudS + ja,,&sbds (24)
SI) SI)

4 Matrix Representation

In Sections 2 — 3, we use bold symbols for
vectors (first-order tensors) and second-order
tensors. This convention holds for the whole pa-

per. As to matrix, we add a "=" to distinguish

them from tensors.
Define
€11

€22

=
I
<
3

I
I

9
(5]
I

2€23

2513

L2€12,
[E\E, ]
E,E,
E,E,
2E, E;
2E,E;
2E\ E, |

Zng

(25)

Zwl's ’

=
I
=
I

2w,
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and _erll C[«IIZ CaﬂS C«m C«,li C«ﬂe—
_‘7-\.»* | Cuiz Cuo Cuzs Cun Cuzs Cops
G2 c — (j<«113 er?.’w Cm[.’%S C«,a« C«, 35 C«I'se;
. q
Guss Oanz Cos Cuzs Cuzs Cuuw Cuis Cuus
sy
Cus = | |+ Boun = |G Corv Car Cuse Cui Conn Cusg
23
Oanl2 7Ce<,'16 erZG qu36 er 16 Cmsa Cms@
Osy13
’ (33)
[Osy12 | r -
Neg11 Neq12 Neq13 Neq14 Neq15 Neq16
D )
! P Neq21 Neg22 Neq23 Neg24 Neq25 Neg26
2 = |D: |, Py = |DPn (26) N3l Neg3z N33 TNeg3t Neg3s  Neq36 (34)
N, =
D 3 D3 Tegi1 Neg 2 Neqa3 Neg 4 Neqds Neqi6
then one has from Eqgs. (6,19,20) that Negs1  Negs2 Negss Neg 54 Pegs5 Y56
Eths , Z:&E, g=Ly,, u, w=L,.u 27) | eg61  Negbz Neg63  Negbs Negbs  Negbs6_|
and where the following index transformation in
D—g E (28) Table 1 is used for Egs. (33, 34).
Z T Yy =
- - Table 1 Index transformation for fourth-order tensors
Gwn =Ay Y =Aq B E 29 —
—— = === ijCor mn) 11 22 33 23 o0or32 3lorl3 12 or 2l
6y =Coe+p,vy=C,L, u+p,B:E (30) atorpp 1 2 3 4 5 6
where e. g s Coyr :pma»cllzz 5 Meg54 — Omass 3123 = Omass Y3132 —
a B Omass 1223 = Pmass 1232
E, 0 0
dx, 0 E; 0 The other quantities in Eqs. (28 — 30) are
9 0 0 K given by
L,=|— . B = (31
== dr. | = o E, E _ _1
ﬁiam\e +a1wo ’ &7 Eﬂ_‘_ﬁnne +p1wo
) E, 0 E
L a]‘g i E 0 la, :A«onc +a1wo (35)
) 1 -
- - where
g _
(,); 0 0 [3N) 0 0
1
Oone — 0 €0 0 +Cﬁ
O (7.1"9 O 0 0 €o
0 0 P §m[11 §<«,12 Cm[lS
L dxs, Cﬂ, - lez C«,zz Cn,zs
= 0 J J §a,13 §L«,23 §a, 33
dx, da, gﬂw :7Pmass§ij (36)
d 0 d [a 11 i _‘Om;\ss Nij11 € 1
das dx,
Az Omass 1ij22 €j
J J Aass T Omass 1ij33 €ij
7(71’2 31'1 N :7M£:7
(2 F] - [Omass 7]1]23 €
[ d d |
0 a7, - 92 ais Pmass 7ij13€ij
Py 5 La12¥ _pmass 7]1]12 € |
e, e,
L,.= P 0 - Jx (32) an ap d
) P Oiyo— |12 A2 Az | Q5 —aj; 37
RED da, ] a3 dz;  Ass
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r 1 1 1 ]
0 quz:a - ngs ? (qus:a - quzz ) - ?Cﬁﬂz ?gmx
1 1 1
Aone = | Curs 0 s _?g«,lz ?(C.«,ag  Cor1) ?szx (38)
1 1 1
C@qlz _Cpqu 0 _?g«,ls ?C«;zx ?(C«;zz _Ceqll )
[ 1 1 ]
0 Az3  ~dz3 ? (ass —asz) _?Cllz ?al.%
1 1
Aiwo = |a1s 0 T _?alz ?(ass_an) ?azs 39
1 1 1
Lalz Y 0 _?a].% ?azs ?(azz_an )
1 1 1 1 1 1 1 ]
?So +?§uﬂl _?&) _?;«,22 - ?Eo _?g«,gg _?g«lzs 0 0
1 1 1 1 1 1 1
_?Eo _?CL{,H ?80 +?§«,22 - 2 €o _?C«I‘ss 0 - ?E«;ls 0
1 1 1 1 1 1 1
_?Eo _?C({,H _?So _?;«,22 ?So + ?C«,as 0 0 _?EWIZ
1 1
1 1 ?&) +T§«,33 1 1
0 ?@,23 ?ngzs 1 IC«,M Z§m13
Bo..= +I§«,22
1 1
| 1 1 2 €o + 4 Emm 1
?§w13 0 ?ngls Zg«,lz 1 Z§m23
+Z§(«133
1 1
1 1 1 1 2 €o + 4 @,n
?Cwlz ?@,12 0 ZC&,IS IC«,ZS 1
| +I§«,22 |
(40)
M1 1 1 1 )
?all ?azz 2 Aass 2 Aaz3 0 0
1 1 1 1
?an ?azz 2 Aass 0 ?am 0
1 1 1 1
B ?all *?azz 2 ass 0 0 7?“12 "t
B, 1 1 1 1 1
0 ?azs ?azs Z(axs +a22) zaw Z(llx
1 1 1 1 1
?als 0 ?als Ialz Z (an +a33 ) Z(lzx
1 1 1 1 1
?alz ?alz 0 Iam Iam z (an +azz )

Inserting Eqgs. (25—41) into Eq. (24) yields

the equivalent matrix representation of Eq. (24)

@ o& @5 W' O d — [ﬂa E' Ddo=

ﬂa u p,dS—+ Jo‘,,é\gé ds
S B T S/)

Sy

6.y d) —

42)

Another equivalent expression of Eq. (42)

can be acquired by introducing the generalized dis-
placement vector, generalized stress tensor, gen-
eralized strain tensor and generalized surface force
vector, where

O gy

O cqan
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L,, 0
- o " 7
(43)
Then Eqgs. (28—30, 42) become
C, 0 —p.B.
o= |0 0 —AyBsls,—
26 0 0 a cC
C, 0 —B,B:][L. 0
0 0 Bl Lo 0w
0 0 —og, 0 —Iﬁ_
[[[o 22 suda=ls ul puds (15)
2 Sp

The above work can degenerate to the un-
coupled anisotropic case directly. One only needs
to change Eq. (8) into

P, = (600t — Pmass G ) E. (46)

When degenerating to the coupled and un-

coupled isotropic cases, one only has to set the

coefficients in Eqgs. (33, 34, 36) to be

— Pmass 0 0
i: O 7pma»§ll O (47)
0 0 T Pmass gn

Coi Curr Cuin O 0
Co Cyn Con 0 0
Cyr Cyz Con 0 0

0 0 0 Cu O

0 0 0 0 Cus

0 0 0 0 0 Cuss

|2
u

1
Cﬁ[ﬁﬁ :?(Cmu - sz) 48)
rﬁ«,n Neq12 Neq12 0 0 0 ]
Neq12 Neq11 Neq12 0 0 0
ez aiz it 0 0 0
ﬁ O O O 77%/66 O O
0 0 0 0 Ney66 0
L0 0 0 0 R~
1
Neq66 :?(77”,11 - 77(«112) 49
where

Cutn :*pmanCu &0 ) (50)
sz = ALame » C«,n :2#1‘5\\“6 +Al.ame 5D
=— (atme T Puc) (52)

Neglz = = Qe 5 Tegll

where ¢, is the permittivity in vacuum, xe 18 the
susceptibility of dielectrics Apumeand pp.me are Lame
constants which can be expressed by Young' s
modulus Evy, and Poisson ratio vp, as

EYoVPo _ EYQ
A+ vpe) (1T — 2up) " 2™ 7 201 4 upy)

(53)

and a,, and B, are the two independent electros-

/\Lamc -

trictive coefficients representing the electro-me-

chanical coupling property.

S Numerical Example Comparisons
and Discussions

As shown in Fig. 2, a 3D hexahedral eight-
node isoparametric element is introduced and de-
fined in ABAQUS user subroutine UEL, where
each node has degrees of freedom 1 (x,-displace-
ment), 2 (a,-displacement), 3 (x;-displace-
ment), and 9 (electric potential). The dummy
element method and ABAQUS user subroutine
UVARM are used for post-processing.

Due to the lack of experiment data on aniso-

tropic electrostrictive dielectric, we use one elec-

trostrictive dielectric 0. 9PMN. 0. 1PT (PMNT)
for numerical examples™*). The material con-
stants are listed in Table 2.

In the following discussions, a finite isotrop-
ic electrostrictive plate containing an elliptical
hole, where /, =100 mm, /, = 100 mm, [, =
1 mm, a=10 mm, and =4 mm, is used for il-
lustration. A voltage of ¢, — ¢aown =5 X 10" V is
applied which produces a E,,=0.5 MV/m electric
field along x,-direction. And a voltage of ¢, —
$aown =8 X 10" V would produce a 0. 8 MV/m elec-
tric filed.

Figs. 3—6 plot coupled results of E,, D,,
€2 and ¢,; around the elliptical on the un-deformed
shape when E,,=0.8 MV/m.

Figs. 7—10 and Table 3 compare the coupled
and uncoupled FEM results of E;, D, , &5 and o,
along the elliptical hole where two different elec-
tric fields are applied. Besides, in order to vali-
date our FEM programing, the uncoupled analyti-
cal results of generalized plane stress problem of

an infinite isotropic electrostrictive plate
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4 3 4, 3
xZ 52 i
1
8 |
8 i 7
2 i
P aaats REt 2
X 51 /,’/
X3 5 6 &, 3 6
(a) Actual element (b) Transformed element
Fig. 2 Isoparametric transformation between two 3D hexahedral eight-node elements
Table 2 Material constants for PMNT
Material Ey,/GPa Vpo e Xe aw/(Fem™ ") Bue/(Fem )

0. 9PMN.0. 1PT 112 0. 26 7 500e, 7 499 —4.899 59X 10 ° 2.717 85X10°°

where e, =8. 854X 10 '* F/m.

Fig. 3 Distribution of E, around elliptical hole
in PMNT when E,,=0.8 MV/m

Fig. 6 Distribution of gs, around elliptical hole

in PMNT when E,,=0.8 MV/m

E,/MV *m")

Fig. 4 Distribution of D, around elliptical hole
in PMNT when E,,=0.8 MV/m

Fig. 7 Distribution of E, around elliptical

hole in PMNT

with an elliptical hole is presented in Table 3 (see
Ref. [ 9] for a detailed derivation).
According to Table 3, it is found that the un-

coupled analytical results and uncoupled FEM re-

sults agree well, which supports our FEM pro-

Fig.5 Distribution of e, around elliptical hole
in PMNT when E,, =0.8 MV/m graming to some extent,
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Table 3 Comparisons of uncoupled analytical results, uncoupled FEM results and coupled FEM results

Parameter E,,=0.5 MV/m E,,=0.8 MV/m
0. 9PMN:0. 1PT I 11 11 (/1D / % I 11 11 (/1D / %
E; | mae/(MV «+ m™ ') 1,750 1.713 1. 656 96. 67 2. 800 2. 741 2.543 92.78
ID; | (107 C e m™?) 1.16 1.138 1.212 106. 5 1.859 1. 820 2. 100 115. 4
[€22 | max /107" 2.843 2.667 2.604 97. 64 7.279 7.086 6.197 87.45
[ 022 | max /MPa 6.096 6.270 5.594 90. 12 15.61 16.05 12.59 78. 44

where 1 is the uncoupled analytical generalized plane stress solution of an infinite electrostrictive plate with an elliptical hole
(a/b=2.5); 1I the uncoupled FEM solution of a finite electrostrictive plate with an elliptical hole (¢=10 mm, b=4 mm,
L,=L,=100 mm,L;=1 mm); IIl the coupled FEM solution of a finite electrostrictive plate with an elliptical hole (a=
10 mm, b=4 mm, L,=L,=100 mm,L;=1 mm)

<
&
=

b

/ 7
Fig. 10  Distribution of ¢y, around elliptical
hole in PMNT

Fig. 8 Distribution of D, around elliptical
hole in PMINT

and Table 3 show the maximum value of D, based
on the coupled method takes about 106. 5% (for
0.5 MV/m) and 115. 4% (for 0. 8 MV/m) of
those based on the uncoupled method, which dis-

plays an increasing trend in D,. This is because

&g,/ X107

the coupled method considers the effect of strain-

stress field on polarization, and this kind of influ-

ence is strengthened by a higher applied electric
field.

Fig. 9 and Table 3 show the maximum value

of e,; based on the coupled method takes about
97. 64% (for 0. 5 MV/m) and 87. 45% (for
0.8 MV/m) of those based on the uncoupled
method. While Fig. 10 and Table 3 show the

Fig.9 Distribution of e, around elliptical
hole in PMNT

From Fig. 7 and Table 3, it is found that (1)

when E,,=0.5 MV/m, the maximum value of E,
based on the coupled method takes about 96. 67 %
of that based on the uncoupled method; and (2)
for E,,=0. 8 MV/m, the corresponding percent-
age is 92. 78%. A decrease in E, does not mean

the same deduction in D,. To the contrary, Fig. 8

maximum value of 4,, based on the coupled meth-
od takes about 90. 12% (for 0. 5 MV/m) and
78.44% (for 0. 8 MV/m) of those based on the
uncoupled method. This means the traditional
uncoupled treatment may cause a large error, and

a coupled analysis is especially needed in general.
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It should be pointed out that when the elec-
tric potential or electric field is applied on the
electrostrictive dielectric directly, the electric
filed in the environment (vacuum or air) is con-
sidered to be zero, then the Maxwell stress con-
tributed by the environment is zero. In this case,
Fig. 10 shows that g, is negative at the end of the
elliptical hole. If the electric is applied on the en-
vironment (vacuum or air), however, the Max-
well stress contributed by the environment will
not be zero, and o,; is positive at the end of the el-
liptical hole (see Ref. [9]). However, by taking
our boundary condition, the work of Gao et al. ™’
also results in a negative g5, » which is consistent
with our uncoupled FEM results.

Furthermore, numerical examples tell that
when taking the contribution of strain-stress field
to polarization into consideration, the strain-
stress energy decreases, but the electric field en-

ergy increases.

6 Conclusions

This paper presents a different and detailed
construction of coupled and uncoupled FEM ana-
lyses of anisotropic electrostrictive dielectric
based on ABAQUS user subroutines UEL and
UVARM. The developed technique is successful-
ly applied to solve the electro-mechanical problem
of an isotropic electrostrictive plate with an ellip-
tical hole.

Although numerical examples use the iso-
tropic materials, yet one only has to change the
material constants in the FEM program when
dealing with anisotropic materials.

Based on the numerical examples, it is found
that (a) when the applied field becomes larger,
the error between the coupled and uncoupled re-
sults increases; (b) the polarization induced by
the strain-stress field may not be neglected at
high electric fields. Furthermore, one may guess
that a higher electrostrictive performance of the
dielectric may lead to a higher error when apply-
ing the same electric field.

Generally speaking, it is necessary to evalu-

ate polarization induced by the strain-stress field

by using the third part of Eq. (8), that is, pmas
Nijmn€ ij En .

It shall be seen that, this method cannot be
used to solve problems concerning thermal, pie-

zoelectricity, etc.
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