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Abstract: Aiming at assembly line balancing problem, a double chromosome genetic algorithm (DCGA) is pro-
posed to avoid trapping in local optimum, which is a disadvantage of standard genetic algorithm (SGA). In this al-
gorithm, there are two chromosomes of each individual, and the better one, regarded as dominant chromosome,
determines the fitness. Dominant chromosome keeps excellent gene segments to speed up the convergence, and re-
cessive chromosome maintains population diversity to get better global search ability to avoid local optimal solu-
tion. When the amounts of chromosomes are equal, the population size of DCGA is half that of SGA, which signif-
icantly reduces evolutionary time. Finally, the effectiveness is verified by experiments.
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1 Introduction

Assembly line balancing ( ALB) distributes
jobs into different stations with some specific con-
straints, which can rationalize station number and
production cycle to balance workload of sta-
tions". In 1954, Bryton presented ALB problem
and illustrated some solutions'!. Since then ALB
has drawn great attention in the academia. Salve-
son firstly studied ALB in a way of mathematical
analytic and then proposed a linear programming
models to solve ALBM!., Under the condition of
fixed cycle time, Jackson minimized the number
of stations with enumeration method™!.

In recent years, genetic algorithm (GA) has
significantly developed theoretically and practical-
ly, and it has been successfully applied to solving
ALB. A hybrid GA for ALB was put forward in
Ref. [5] and ranked positional weight method was
introduced into initialization process. In Ref. [6],
the crossover operator, mutation operator and in-

itial population are constructed based on the con-

strains of assembly jobs, which can ensure the
feasibility of all individuals, therefore improve ef-
ficiency of the algorithm. According to the fea-
a modified GA
was proposed to solve ALB, by adopting a combi-

tures of two-sided assembly™™,

national encoding scheme based on sequence and
task. For a specific problem, GA was combined
with heuristic strategy to speed up the algorithm
convergence®. In Ref. [9] an iterative GA was
developed to solve the assembly line worker as-
signment and balancing problem of type-II. Ref.
[10] addressed the operator assignment in prede-
fined workstations of an assembly line, and
adopted GA to get sustainable result of fitness
function of cycle time, total idle time and output.
Ref. [11] proposed a hybrid GA to solve the setup
assembly line balancing and scheduling problem.
Aiming at the existing mixed-model assembly line
balancing problem, Ref. [12] proposed an im-
proved GA to minimize cycle time and workload

variance.

The problem of ALB is NP-hard, which will
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result in a combinatorial explosion when the num-
ber of jobs increases. Therefore, mathematical
analytic methods or usual heuristic methods are
not ideal. A double chromosome genetic algo-
rithm (DCGA) is proposed to model the coexis-
tence of dominant gene and recessive gene, which
can maintain population diversity during evolution

to avoid trapping in local optimum.

2 ALB Problem Description

ALB problems fall into three typesH®,
ALBP-1, minimize the station number m when
cycle time C is fixed; ALBP-2, minimize cycle
time C when station number m is fixed; ALBP-3,

minimize smoothness index (SI) when m and C

are fixed. The expression of SI as

SI= [ D>7(C—T)* (D
r=1

where T, is the total job time of station r. We
take ALBP-2 as the object of our study, and use
SI as one of the evaluation items. While C is
same, the solution getting smaller SI is better.

The mathematical model of ALBP-2 is shown as

min(C. SI) (2)
S. t.
Dan=1 ¥YreR &)
k=1
Dy < Dja <1
r=1 r=1
Va, =1, Vm € [1,m] 4)
0<< D) (xy Xt,) VYr€R (5
k=1
Dy Xt)<C VYr€R (6)
k=1
where

n:the number of assembly jobs,

K :the set of jobs, K= {k=1, 2, *, n},

R: the set of stations, R= {r=1, 2, -,
my,

t; : the time of job k&,

x4 : decision variable (x, =1 when job £ is
allotted in station r),

A, :precedence matrix A,x, = (a;); (a; =1

when job j is the successor of job 7).

The function min(a. ) of Eq. (2) means that
the variable a has the priority, such as

min(a,. by ) <min (a;. b,), when a; <a,,
Vb, Y.

minCa,. b;) <min (a,. b,), when a, =a,,
b, <b,.

Eq. (3) means that each job £ has to be allot-
ted in one of the stations once and only once.
Eq. (4) satisfies the constraint of A,.,. Eq. (5)
means that each station » has to be used. Eq. (6)
means that the job time of each station has to sat-

isfy the constraint of C.

3 DCGA

During the evolution of standard genetic al-
gorithm (SGA), one parent individual with high-
er fitness will have a better chance to reproduce,
while one parent individual with lower fitness will
be gradually replaced. In the single-chromosome
population, some individuals with lower fitness
may contain global optimum gene segments which
will be disappear because of the lower fitness,
while some individuals with higher fitness may
merely contain local optimum gene segments, yet
these individuals can gradually dominate the evo-
lution which will lead GA to trap in local opti-
mum. Therefore, there is always a defect of GA,
which may cause prematurity of evolution''!, For
this characteristic, we propose a kind of genetic

algorithm with double chromosome: DCGA.
3.1 Basic flow of DCGA

There are two chromosomes in each individu-
al of DCGA, [ and Il , and each of which is one
of the values in solution space. And then the bet-
ter one with higher fitness, as dominant chromo-
some, determines the fitness of this individual.
The basic strategy of DCGA is as follows.

Step 1 Population Initialization: Population
P with size N is randomly generated, so the size
of chromosomes is 2N. Then after computing the
fitness of chromosome [ and chromosome ]I of

2, *=+, N), the fitness

of p, equals to that of dominant chromosome.

every individual p,(i=1,
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Further, the best individual is singled out as p,,

Step 2 Selection: Individual p; is randomly
selected on the basis of fitness, and then is copied
into population SP. During selection, one indi-
vidual with higher fitness has a greater chance to
be copied multiple times, whereas one individual
with lower fitness may be eliminated. In this
way, SP with size N is obtained by N selections.,
and then P is replaced by SP. Now P is the new
parent population.

Step 3 Crossover: By traversing through P,
p: is chosen into population CP with probability
r.. The last choice will be aborted if the size of
CP is odd number. By randomly offering one of
their two chromosomes, cp; and c¢p,+, (i=1, 3,
-++) are crossed, as shown in Fig. 1. After traver-
sing through CP, all ¢p, is transferred into P.
Now P is the new offspring population.
<p; <p; @%}E P
1[0 1 ViU [T ]\ 1 [

CPin CPin cp; CPin

1] V) 1 1] ]I

Fig.1 Crossover of double chromosomes

Step 4 Mutation: By traversing through P,
p: is chosen into population MP with probability
7. » and both chromosomes of mp, (i=1, 2, )
are mutated. After traversing through MP, all
mp, are transferred into P. Now P is the new
offspring population.

Step 5 Evaluation: After computing fitness
of all p;, p, will be replaced by the best one if its
fitness is higher than that of p,. At this moment,
if the terminal condition (such as iterations, rate
of evolution, etc.) occurs, end the algorithm,

otherwise go to Step 2.
3.2 Performance comparison

To solve multi-objective flexible job-shop
scheduling, Ref. [157] introduced an encoding of
GA, in which real encoding of process unites with
real encoding of process station to generate more
outstanding individuals. A new GA, comprised of
a rectangle chromosome and a junction chromo-

some, was proposed by Ref. [16] for solving two-

dimensional rectangle packing problem. Unlike
the above algorithms with double chromosome
structures, DCGA has two identical chromosomes
to model the dominant gene and recessive gene.
In nature, both of them have the same access to
take part in reproduction while produce different
effects. In DCGA, dominant chromosome retains
good genes to fasten the algorithm convergence,
while recessive chromosome maintains population
diversity to avoid trapping in local optimum. In
the cases of equal chromosomes size, the popula-
tion size of DCGA is half of SGA's, and so the
decrease of population size can reduce the time re-
quirement of algorithm to speed up the evolution
process.

Traveling salesman problem (TSP) is a typi-
cal NP-hard combination optimization problem,
and the combination scale of n-city TSP is (n—
1)1 /2. In Ref. [17], a 20-city TSP was given,
and there were (20— 1)1 /2=6.082 255X 10"
solutions in its solution space. The coordinates of
this 20-city TSP are shown as Table 1 7/,

The optimal solution of 20-city TSP is shown
as Fig. 2, and its value is 24. 523 8. The density
of point distribution in the lower right corner is
big, that can lead algorithm trapping in local opti-
mum. This 20-city TSP will be solved by DCGA
and SGA respectively with encoding scheme,
crossover operator and mutation operator from
Ref. [17]. The population size of DCGA is set to
100, while that of SGA is set to 200 to ensure
chromosome size equal. The crossover probability
is 0. 3, and the crossover probability is 0. 1. The
maximum number of iterations (300 times) is
used as the termination condition. The 20-city
TSP is repeatedly solved 50 times, and the result
is shown in Table 2.

Table 1 Coordinates of TSP (20 cities)

No. x y No. x y No. x y
1 5.294 1.558)| 8  3.447 2.111| 15 2.710 3.140
2 4.286 3.622| 9  3.718 3.665| 16 1.072 3.454
3 4,719 2,774\ 10 2.649 2.556| 17  5.855 6.203
4 4,185 2.230( 11 4.399 1.194| 18 0.194 1.862
5 0.915 3.821| 12 4.660 2.949| 19 1.762 2.693
6 4.771 6.041| 13 1.232 6.440| 20 2.682 6.097
7 1.524 2.871|| 14 5.036 0.244
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Fig. 2 Optimal solution of 20-citiy TSP

Table 2 Comparison of SGA and DCGA

Testing case Rate of optimal  Average run-time/s
SGA 10/50 3.7

DCGA 49/50 2.1

Based on TSP, the optimal rate of SGA is
20% , whereas that of DCGA is 98%. Therefore,
DCGA has a significant advantage in searching

global optimum, and the evolution speed of DC-
GA is faster than SGA.

4 Solution of ALBP-2 by DCGA

We look into ALBP-2, which minimizes C
when m is fixed, and consider SI as one evalua-
tion item. The mathematical model is shown in
Eqgs. (2—6). Aiming at ALBP-2, DCGA is de-

signed as follows.
4.1 Encoding and decoding

Adopting job-sequence encoding format, all
jobs are encoded in the order of distribution, and
each gene-bit of chromosome represents a job. As
Fig. 3 shows, job 1 is the first, job 2 is the sec-
ond, -+, job 4 is the ninth and job 3 is the last.

Assembly
order 1 2 3 4 5 6 7 8 9 10

Jobindex | 1 [ 2 [ 5]10]7[9o]6][8]4]3]

Fig. 3 Chromosome encoding of 10 jobs

The goal of decoding is to get distribution
scheme according to minimum C, which is un-
known in ALBP-2. For this matter, an estimated
cycle time C* is given, which will be increased

progressively to search a suitable C in decoding

process. In the actual search process, incremental
step length is not continuous but discrete based
on single job time. The decoding process is
shown as:
Step 1  Compute the theoretical minimum
cycle time C'= (3t,)/m » where 3¢, is the sum of
all jobs time, and m the number of stations. Set
Cc=C'.
Step 2 On the basic of C" as cycle time, n
jobs are distributed in m stations according to the
coding sequence, and then station time are T,
Tyo woey T, o

r=1, 2, -

«, T,,. If each station time T,<<C"
, m), the C* will be the practical
minimum cycle time in this case of coding se-
quence (C=C"), then end it or else go to Step 3.

Step 3

d.(r=1, 2, *=+, m) of all stations, d,(r=1, 2,

Compute every potential increment

-, m—1) is equal to the first job time of station
r+1Gr=1, 2, -
as shown in Fig. 4.

Step4 Set C=max{T,}, C* =min{T, +
d.} (r=1, 2, *==, m), as shown in Fig. 4. If C<

C*, C will be the practical minimum cycle time in

s, m—1), and setd,,= —d,—1

this case of coding sequence, and then end it or

else go to Step 2.

T, ! 23
P 6
n di=—d;=1,
5 9 3
M M\ Station
d=t, =t

Fig.4 Potential increment d,

4.2 Fitness evaluation

As a standard to evaluate individuals, the e-
valuation function of fitness is the only basis of
survival of the fittest. The minimum C is taken
as the optimization objective, and the SI is con-
sidered as secondary evaluation item, as shown in
Eq. (2).

F, =min(C) ,C=max(T,) 7

F, =min(SD ,SI= [ >7(C—T)H* (8
r=1
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The primary evaluation item C, which is set
C=max{T,} (=1, 2,

bution scheme, is shown in Eq. (7). If C values

<+, m), based on distri-

of the solutions are equal, the values of SI will be

evaluated, as shown in Eq. (8).
4.3 Crossover operator

One of the two chromosomes, [ and I, is
randomly selected to participate in crossover
process, as shown in Fig. 1. Paired-point cross-
over operator is adopted to find two random
points, as shown in Fig. 5 ( [ of parent-1 and |
of parent-2 are selected), and the gene segments
between these two points of parent-1 are replaced
by new arrangement which appears evolving from
parent-2 to offspring-1. Likewise, offspring-2
evolves from parent-2. The offsprings are shown
in Fig. 6. This kind of crossover operator keeps
the chromosomes of offspring feasible, which can

reduce calculation amount while increase efficien-

cy.
I|2|5]67[1]|10[{4]3|9]38
Parent-1
I
Parent-2
1({2(5|10{7[9|6|8(|4]|3
1 1
1 1
21516 7| 1|10]4]3]9]38
Parent-1
Parent-2 P T2 (5[0l 79638 4]3

Fig. 5 Paired-point cross operator

ence matrix. The parent and its offspring are

shown in Fig. 7.

Il3]1|8|24|5]|7]6]|10]09
Parent
21| 8|6|7]|9]|10]5]|4]|3
I3 1|8|2|4[5])6|9]| 7|10
Offspring
ma2f(1|1816|(10|7(9|5|4]3

Fig. 7 Mutation operator of chromosome

5 Case Study

The Buxey problem is a testing case of ALB
(6.18]

problem . The directed graph of Buxey's jobs
priority is shown as Fig. 8, and the job time is lis-

ted in Table 3.

Fig. 8 Precedence relation of Buxey-problem

Table 3 Job time of Buxey-problem

No. I No. I No. I No. I No. ts

2516|1107 |4|3]|9]38

I
Offspring-1
I

7 7 8 13 9 19 10 || 25 14
19 8 16 14 4 20 16 | 26 2
9 2 15 14 | 21 1 27 10
5 10 6 16 7 22 9 28 7
11 21 17 14 | 23 25 || 29 20
6 10 || 12 10 || 18 17 || 24 14

=~ W Do
—
l

(2]
—_
[S%)

I
Offspring-2
mi1|12|5(6|7|10]|9)|8]| 4|3

Fig. 6 Encoding of offspring

4.4 Mutation operator

Through randomly finding 2 points, both of
the two chromosomes, | and ]I , mutate inde-
pendently. The mutation operator takes approach
that rearranging one of these three gene seg-
ments. The rearrangement is a allocation process

from that random point according to the preced-

The population size of DCGA is set to 100.
The crossover probability is 0. 6, and the cross-
over probability is 0. 4. Taking iterative 100 0
times as the terminal condition, the solution on
Buxey problem is shown in Table 4.

DCGA and FTSGA! can find the minimums
of C of all different m, and GGA™ fails to get
minimum C when m = 13. Although the mini-
mums of C of DCGA and FTSGA are equal, SI of
DCGA is a smaller SI (or SI/m). As shown in
Table 4, DCGA solution is much better than that
of GGA and slightly better than that of FTSGA



No. 6 Liu Yanhou, et al. Assembly Line Balancing Based on Double Chromosome Genetic::* 627

in the solution of Eq. (2).

On other different scaled problems, Scholl
problem set from http://alb. mansci. de/ is used,
and Jackson, Kilbrid, Wee-Mag, Mukherje, Bar-
thol2 and Scholl are solved by DCGA. Solutions
on Scholl problem set are shown in Table 5.

On Jackson, Kilbrid, Wee-Mag, Mukherje

(m=10,18), Barthol2 and Scholl (m =30, 50)
problems, as shown in Table 5, DCGA can get all
optimal solutions (minimum C) and get a smaller
SI. On Mukherje (m=25) and Scholl (m=40),
DCGA gets satisfying quasi optimum values.
Tests indicate that DCGA is competent to solve

different scaled problems.

Table 4 Solution on Buxey problem

GA based on

DCGA feasible task Gr,ouﬁi?g
m T./s sequence® GA

C SI/m C SI/m C SI/m
A7,47,47,47,44,46,46 47 0.474 47 0.474 47 0.474
40,41,41,40,40,40,41,41 41 0. 250 41 0. 250 41 0. 500
9 37,37,37,37,37,36,36,33,34 37 0.577 37 0.657 37 0. 657
10 31.32,32,32,33,32.33.33,34,32 34 0. 566 34 0. 600 34 0. 849
11 29,29,30.,29,28,30.30,28.32,29,30 32 0.833 32 0.833 32 1.233
12 27.,28,27,28,28,27,27,26,26,25,28,27 28 0. 391 28 0.408 28 0.456

13 26,25,23,26,25,23,24,24,25,27,25,24,27 27 0.675 27 0.675 30 —
14 22,24,22,23,22,24,24,23,25,24,24,23,24,20 25 0.598 25 0.631 25 0.833

Table 5 Solutions on Scholl problem set

Problem  n Sum of ” Min  Solution  Solution
I C C SI/m
3 16 16 0.141
JACKSON 11 46 4 12 12 0.141
5 10 10 0. 245
8 69 69 0. 370
KILBRID 45 552 9 62 62 0.483
10 56 56 0. 346
10 150 150 0.522
WEE-MAG 75 1499 20 77 77 0. 681
30 56 56 1.257
10 424 424 0.903
MUKHERJE 94 4208 18 239 239 1. 145
25 172 175 1.973
30 142 142 0.327
BARTHOL2 148 4 234 40 106 106 0.520
50 85 85 0. 810
30 2322 2322 1.016
SCHOLL 297 69655 40 1742 1747 2.147
50 1394 1394 1. 243

6 Conclusions

As a typical combination optimization prob-
lem, ALB problem is extremely complex. Ai-
ming at ALBP-2, GCDA with two identical chro-
mosomes in each individual is proposed. In DC-
GA, the dominant chromosome reserves excellent

gene segments to fasten convergence but the re-

cessive chromosome maintains population diversi-
ty to avoid trapping in local optimum. In equal
chromosomes size environment, the population
size of DCGA is hall of that of SGA which can
speed up evolution by saving costs of algorithm
running time. By Scholl problem set, the effec-
tiveness of DCGA is verified to provide a new so-

lution for ALB problem.
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