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Chaotic Characteristic Analysis of Air Traffic System
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Abstract: Chaotic characteristics of traffic flow time series is analyzed to further investigate nonlinear characteris-
tics of air traffic system. Phase space is reconstructed both by time delay which is built through mutual informa-
tion, and by embedding dimension which is based on false nearest neighbors method. In order to analyze chaotic
characteristics of time series, correlation dimensions and the largest Lyapunov exponents are calculated through
Grassberger-Procaccia (G-P) algorithm and small-data method. Five-day radar data from the control center in
Guangzhou area are analyzed and the results show that saturated correlation dimensions with self-similar structures
exist in time series, and the largest LLyapunov exponents are all equal to zero and not sensitive to initial conditions.
Air traffic system is affected by multiple factors, containing inherent randomness, which lead to chaos. Only
grasping chaotic characteristics can air traffic be predicted and controlled accurately.
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1 Introduction

Air traffic system is a nonlinear dynamic sys-
tem involving aircraft, airspace structure, pilots
and controllers. Traffic situations involving dif-
ferent traffic flows are full of nonlinear character-
istics such as certainty and randomness, order
and disorder, contingency and inevitability, quan-
titative change and qualitative change. Recently,
considerable progresses have been made in air
traffic system complexity. Many concrete con-
cepts and evaluation methods have been put for-
ward such as air traffic complexity, airspace com-
plexity, dynamic density, air traffic control com-
plexity and cognitive complexity. Although chaos
is an important theme in nonlinear science, re-
searches on air traffic chaos have not been seen
obviously.

Generally, chaos is a seemingly irregular and
stochastic phenomenon in a deterministic system.
Chaos is not a simple disorder, but an ordered
structure with rich interior arrangements and no
obvious period and symmetry, which is a new ex-

istence in nonlinear system" . In the field of air

traffic system, Li Shanmei and Xu Xiaohao used
the largest Lyapunov exponent to prove that
flight conflict time series were chaotic™. In the
field of ground transportation, many scholars
have made significant progress in chaos research.
There are massive in-depth studies about chaos
identification

concepts, basic characteristics,

methods, predictions and other aspects™ 278,
For example, the ground traffic flow is chaotic,
and a short term prediction for the flow based on
chaotic characteristics can be achieved™™*. In or-
der to improve and perfect the analyses of air traf-
fic system nonlinear characteristics and manage
air traffic more effectively, it is necessary to dis-
tinguish and analyze air traffic system chaos.

In this paper, time delay and embedding di-
mension are determined using mutual information
method and false nearest neighbors method re-
spectively. Then a phase space is reconstructed
for a traffic flow time series based on Takens em-
bedding theorem. The correlation dimension is
calculated through Grassberger-Procaccia (G-P)
method and the largest Lyapunov exponent is cal-

culated through the small-data method. The cha-
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otic characteristics of air traffic flows are analyzed

on the basis of these two kinds of characteristics.

2 Chaos Identification Method

The commonly used quantitative analysis
methods for chaos include: surrogate data meth-
od, the largest Lyapunov exponent method, cor-
relation dimension method, Kolmogorov entropy
method, Poincare section method, power spec-

B3], Attractor is a point set or

trum exponent, etc
subspace in a phase space, whose tracks tend to
approach attractor as time passes by. Chaotic at-
tractors exist in chaos system, known as strange
attractors. The dimension of chaos system is
fraction, and their tracks are regular. The exist-
ence of chaos in the system can be determined by
two basic characteristics: One is whether an at-
tractor in phase space is of a self-similar fractal
structure, the other is whether the system is sen-
sitive to the initial condition. Based on the recon-
structed phase space, correlation dimension and
the largest Lyapunov exponent are calculated and
used to analyze chaotic characteristics of attract-
ors.

Air Traffic has nonlinear characteristics, in-
cluding uncertainty, universality, invisiblity and
unexpectedness, due to different controllers’ ac-
tions, unpredictable weather conditions, complex
airspace structure and many other factors. The
uncertainty reflects the randomness of chaotic
phenomenon. The conductivity shows that the re-
sults sensitively rely on initial conditions. There-
fore, air traffic evolution cannot be described by
determined mathematical equations. However, it
is a good choice to study on data of observable
variables or metrics. There are many kinds of
meaningful metrics in the field of air traffic and
the number of aircraft is the most common and
important one. Therefore, air traffic flow time
series consist of a set of metric values (number of

aircraft) which are sorted according to the time.
2.1 Phase space reconstruction

Takens theorem proves that a one-dimension
time series can be reconstructed into a phase
space which is equivalent to the original dynamic

system in topological sense, so properties and

regularities of time series can be analyzed through
reconstruction phase space. For this reason,
phase space reconstruction is very important for

L) Since time

the research on chaotic time series
series of actual problems do have a limited length
and contain noisy data, confirmation of embed-
ding dimension m and time delay ¢ is crucial for
phase space reconstruction.
2.1.1
If time delay ¢ gets smaller value, the values
(t+jr) and
2@+ G+ of X ) ={x @, x ¢+,
x(t+27) s x(t+ (m—1)1)} are too close to be

Time delay

of each two components x

distinguished. If time delay ¢ gets bigger value, x
(t+j7r) and x (t+ (G+1) 1) are likely to be com-
pletely independent from each other. That is to
say, there is no relevance between projections of
two chaotic attractors’ tracks. Mutual informa-
tion function can measure linear or nonlinear rele-
vance of random variables and it is used to con-
firm time delay™,

Assume that § = {s;.5,.***,s,) and Q =
{q1+qs+***»q,} are discrete information series.
Based on Shannon's theory of communication, in-
formation entropy of § and Q can be expressed as

H(S)=— > P.(s) log, P, (s, (D

i=1

m

H@Q)=—>P,(g) log.P,(g) (2)
ji=1

where P, (s;) is the probability of s; in §, and
P,(g;) the probability of ¢; in Q.
H(S.Q) is the joint entropy of (S,Q)

H(S,0)=— > P, (s,»q,) log. P, (s:5q,) (3)

where P, (s;,q;) is the joint distribution probabil-
ity of 5; and g;.
The mutual information of § and Q is
IS, 0)=HS)+HW@) — HGS,0Q) €]
Define [s,q]= [x(t) ,x(t+7) ], s represents
the time series x (), g the time series x (t+7)
Then I (S,.Q) =1 (x (¢),
x(t+7)) can represent the certainty of x (¢++7)
when x(¢) is known. When I(S,Q) =0, x(t+7)
is completely unpredictable, which means x (1)
and x (t+7) are fully unrelated. When I (S,Q)

reaches the minimum, x (¢) and x (¢+7) are un-

with time delay =z.
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related in the biggest possibility. The ¢, which
makes I (§,0) get the first minimum, can be

]

taken as optimal time delay™'. A key step in mu-

tual information method is how to determine P,
(si»q;) » and in Refs. [10-11] space cells method
divided by equal distance are used to calculate dis-
tribution probability.

Assume that § and Q represent one-dimen-
sional coordinate axis respectively, then (S.Q)
forms a two-dimensional space. Each coordinate
axis is divided into 2" intervals by equal distance.
Intervals can be indicated with 1,2,++,7,++,2" or
122, ceeyjaeeey 20,
divided into 2*" regions and every region can be in-
dicated with (1,1), (1,2), =+, (2,1), =+, (is7),

<o+, (2",2"). Calculate the number N (i,j) of two-

This two-dimensional space is

dimensional variables within the (i,j) region
which are composed of § and Q time series, so
P, (s;»q;) can approximate to be

P,Givg))=NC(G.5) /N (5)
P,Gs)=>NG.j)/N=NG /N (6

P,(g)=>,NG.j))/N=NG)/N (D
where N=2IN (i,;) is the total number of varia-

bles within the whole region. This is a simple ex-
planation of distribution probability calculation
method and detailed descriptions are illustrated in
Refs. [10-11].
2.1.2 Embedding dimension

The geometrical significance of restructured
phase space is to recover its motion track in high
dimensional phase space according to the original
time series. As the track of original time series is
distorted when projected to a one-dimensional
space, the previously non-adjacent points may
turn adjacent after being projected. As a result,
only the embedding of dimension reconstruction
time series can reestablish the track of high-di-
mensional chaotic motion and the track of expan-
sion, in order to judge the authenticity of the ad-
jacent points, which can be taken as the method
of embedding dimensions m™*1%7,
In the m-dimensional phase space, phase
() =
{2 () ya(tt+7)sx(tt+27) s sx(tt+m—1)7) }.

points can be expressed as X

There exists Xp which is the nearest neighbor
point. Their distance is R,, (t) = HX(I) —Xr () || .
The distance between two points will change
when the dimension of phase space increase from
m to m+1. The new distance is described as fol-
lows
Ri (t)=R. )+ ||X(l‘—|— mt) — Xr (t + mz) HZ
(8
If R, (t) changes largely compared to
R, (t),Xr (t) can be considered as a false neigh-
bor point. Set

_ X+ mo)— X ¢+ mo) |
R, )

If S, >Sr. Xr (1) is a [alse nearest neighbor
point of X (z). The range of threshold S; is
[10,50].

Calculate the proportion of false nearest

S/H ( 9 )

neighbors repeatedly with the increase of m.
When the proportion does not vary with the in-
crease of m, optimal embedding dimension can be

confirmed.
2.2 Chaotic characteristic calculation

Reconstruct phase space based on time delay
and embedding dimension. Correlation dimension
and the largest Lyapunov exponent are used to
analyze whether time series is chaotic or not.
2.2.1

The movement track of chaotic attractors in

Correlation dimension

phase space forms a special curve which is of a
self-similar structure. Fractal dimension can de-
scribe such a self-similar structure. Grassberger
and Procaccia put forward correlation dimension
method, i. e. G-P method. Saturated correlation
dimension is approximate to fractal dimension and
commonly used to represent fractal dimension, so
it can well reflect geometrical features of chaotic

[14-15]

attractors . G-P method is particularly appli-
cable to observed data and easy for implementa-
tion, so it has been widely used in this field.
Assume x (1) ,x(2) s 2 (3) 4oy x (1) s et =
1,2,+, N is the given time series. Reconstruct
the phase space and get the new vector. That is
X()={x W,  Uto. x +2r), -,
@+t m—Do) )}, t=1,2,+, M, M=N—(m—

Dr.
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The distance of M vectors can be calculated
by the means of Euclidean norm. Based on the
given positive number r, correlation vectors are
those with a less vector distance than . The pro-
portion of total pairs of correlation vectors in M?*
is correlation integral

M M
Co) =g 2 D00 — [ XD —=XG) |y

i=1 j=1
M M

e DI (10)

i=1 j=1

where §( » ) is Heaviside function

oor={" *=° (1D
1 >0

Correlation integral C, () is closely related
to the positive number r. If  gets the larger val-
ue, all r; will be less than » which makes
C,(r)=1. I r gets the less value, all r; will be
larger than » which makes C, (+) =0. According
to actual conditions, choose appropriate r to avoid
extremes. When r—0, the relationship between

C, (r) and r is shown as follows

limC, (r) oc P (12)

r—>0

where D is correlation dimension. D can be ex-
pressed as

D =1limInC, (r) /Inr (13)

r—>0

To estimate the correlation dimension D of
the actual time series, plot InC, (r)-Inr curves for
every embedding dimension based on the selected
r values and their corresponding C, () values.
The correlation exponent is the slope of the linear
portions on the curves except for portions whose
slopes are 0 or oo, Least square method is usually
used to calculate the correlation exponent. Corre-
lation exponents of random time series will never
become saturated as embedding dimension increa-
ses. However, correlation exponents increase
monotonically with increasing embedding dimen-
sions. When correlation exponent become satu-
rated, the saturated correlation exponent is corre-
lation dimension™!.

2.2.2 The largest Lyapunov exponent

Chaotic systems have a sensibility for initial
conditions, i.e. tracks which are initially adjacent
will diverge with exponential rate in phase

[2-3]

space The Lyapunov exponent is used to

measure the exponential rate of convergence or di-
vergence between adjacent tracks which are in dif-
ferent initial conditions. The existence of chaos in
the system can be determined by whether the lar-
gest Lyapunov exponent A,.. is bigger than zero.

Wolf method, Jocobian method, small-data
method and P-norm method™ ™ are usually used
to identify the largest Lyapunov exponent.
Among them, small-data method exhibits a good
robustness to the noisy data of time series and is
easy to calculate, especially for small amount of
data. Consequently, small-data method is used to
calculate the largest Lyapunov exponent.

Transform the time series by fast Fourier
transformation (FFT) and the average period is
PY . Reconstruct the phase space, and then the
new vector is X t)y =
{x () satt),xt+20) o sxtn—1o)},
t=1,2,,M,M=N—(n—1)z. Find the nearest
neighbors of each point in the phase space and
limit short-term separation. X (z) is the nearest
neighbor point. The minimum distance is de-
scribed as follows

d, (0)= mzinHX(t) —X@) |
lt—t|>P (14)

where t=1,2,++,M and r%¢. d,(0) is the initial

distance between the tth point of phase space and

the nearest neighbor. | « | is the Euclidean
norm.
Calculate the distance between X (¢) and
X (2) after the ith discrete time step
d(=|Xt+i—Xa+) |
i=1,2,,min(M —¢,M—1) (15)

For each i, calculate the average value of

Ind; (i), that is

1Y :
I(l)—thjZ;lnd_,(z) (16)

where ¢ is the number of non-zero d, (i).
Select a linear portion of the curve to calcu-

t12%0and make

late the largest Lyapunov exponen
the least squares regression line of the linear por-
tion of the curve, the slope of the line is the lar-
gest Lyapunov exponent Ap.. I Anx > 0, time

series are chaotic.
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3 Result Analysis

Select flight radar data from the 16th sector
of control center in Guangzhou area and confirm
7 %30 to 24 : 00 as a valid period of one day.
Matlab is used to process data and calculate cha-
otic characteristic values. The sampling interval
is taken to be 1 min. A time series of 990 actual data

about air traffic flow is obtained, as shown in Fig. 1.

14

121
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Air traffic flow / piece

0 100 200 300 400 500 600 700 800 900 1000
Time series / min

Fig. 1 Time series of air traffic flow

According to Figs. 2, 3, mutual information
gets the first minimum when time delay 7 is 11
and the rate of false nearest neighbors drops to 0
when embedding dimension is 8. Therefore, time
delay and embedding dimension are confirmed.

Increase embedding dimension from m=2 to
m=15 one by one. As embedding dimension in-
creases, the linear portions of curves are dense
and tend to be parallel to each other. The slope of
linear portions tends to be a stable value which
means correlation dimension reaches saturated, as

shown in Fig. 4.
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Fig. 2 Relationship curve between mutual information

and time delay

0.9

0.8
0.7
0.6r
0.5r
0.4
0.3f
0.2

Rate of false nearest neighbors

0.1F

00— 4 6 8§ 10 12 14 16

Embedding dimension

1820

Fig.3 Relationship curve between rate of false nearest

neighbors and embedding dimension

InC,(r)

Fig.4 Results of the G-P method

When embedding dimension increases, these
correlation dimensions become more stable as
shown in Table 1. The non-integer correlation di-
mension proves that the attractor of air traffic
flow time series in phase space is of a self-similar
fractal structure.

Table 1 Correlation dimensions for different embedding di-

mensions

Embedding
10 11 12 13 14 15
dimension

Correlation
4.26 4.73 4.94 5.25 6.06 6.14 6.18
dimension

Analyze air traffic flow time series with
small-data method. The relationship curve of dis-
crete time steps and average values is shown in
Fig. 5. There exists no obvious linear portion in
this curve, so the largest Lyapunov exponent is
unable to be calculated through least square

method. According to the theory in Ref. [20],
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assume the largest Lyapunov exponent equals to 0
in this case. The system is not sensitive to the in-
itial condition. In order to verify the result of the
largest Lyapunov exponent, select Wolf method
is seleted to recalculate the largest Lyapunov ex-
ponent. The result still equals to 0.

2.0

1.81

Average value
o i
SRR -
T -

o
0
T

g
e
S

100 200 300 400 500 600 700 800 900 1000
Discrete time step

Fig.5 Analytical curve for the largest Lyapunov expo-

nent

Select radar data of November 14 to Novem-
ber 18. The air traffic flow sampling interval is
taken to be 1 min. Results of five days are shown
in Table 2. Based on the observation of five days'
radar data, there are always no obvious linear
portions in the analytical curves for the largest
Lyapunov exponent. The largest Lyapunov expo-
nent equals to 0 which means this kind of flow
time series is not sensitive to initial conditions.
However, air traffic flow time series always pro-
duce saturated correlation dimension as embed-
ding dimension increases, which are of self-simi-
lar fractal structures. In order to demonstrate the
universality of this phenomenon, select another
ten sectors to test whether they are in accordance
with the 16th sector results on the same day. An-
alytical results of ten sectors are shown in Table 3
and they turn out to be in accordance with the
same regularity. Generally speaking, air traffic
system is chaotic. Air traffic is affected by a
number of factors. Operations of air traffic flow
are orderly in general with the command of con-
trollers, but strong random characteristics still
exist in the system. Uncertain disturbances that

air traffic system suffers from are caused by air-

craft performance, pilots’ abilities, severe weath-
er, controllers and so on. If air traffic flow is
completely random, it is difficult to analyze the
operation regulation. If air traffic flow is clearly
chaotic or periodic, the operation of traffic is reg-
ular. Only when nonlinear characteristics of air
traffic are fully and correctly analyzed, can air
traffic be predicted and managed accurately.

Table 2 Analytical results of five day data

Time Embedding Correlation The largest

Date
delay dimension  dimension Lyapunov exponent
14 11 8 6. 14 0
15 14 9 6.35 0
16 12 11 5. 67 0
17 8 14 7.98 0
18 11 9 6. 26 0

Table 3 Analytical results of ten sectors on the same day

Time Embedding Correlation The largest

Sector
delay dimension  dimension Lyapunov exponent

ARO1 12 15 5.22 0
ARO2 9 11 1. 85 0
ARO03 13 12 5. 64 0
AR04 13 10 6. 26 0
ARO5 10 15 5.18 0
ARO6 14 10 4.98 0
ARO7 11 11 5.87 0
AR08 14 8 5.98 0
AR09 16 12 4.62 0
ARI10 15 15 6. 38 0

4 Conclusions

Air traffic system is complex and nonlinear.
The operation of air traffic system is influenced
by many uncertain factors. Based on the five-day
radar data from the control center of Guangzhou
area, air traffic flow time series are calculated.
After reconstruction of phase space, correlation
dimensions and the largest Lyapunov exponents
are deduced. Although the largest Lyapunov ex-
ponents are all equal to 0 which means they are
not sensitive to initial conditions, the saturated
correlation dimensions show that the time series
are of self-similar structures. As a result, the
system is chaotic in terms of flow time series.
For a long time, air traffic managers have

thought flow distribution was disorder and irregu-
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lar, However, research results of this paper pro-
vide a new idea of analyzing air traffic operation
data. With the development of air transportation,
air traffic distribution is becoming more and more
intensive and the chaotic characteristics will be
more obvious.

Analyzing chaotic characteristics of air traffic
system is significant to improve and perfect non-
linear characteristics analyses of traffic flow, pre-
dict the traffic accurately and manage air traffic
effectively. Flow is just one of the metrics descri-
bing multiple dimensional air traffic. Future re-
search is to select other useful and meaningful
metrics and analyze whether these metrics’ time
series are chaotic. Moreover, chaos characteris-
tics auto-extracting technique is also an immedi-

ate focus of further research.
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