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Abstract: In order to improve weapon assignment (WA) accuracy in real scenario, an artificial neural network
(ANN) model is built to calculate real-time weapon kill probabilities. Considering the WA characteristic, each in-
put representing one assessment index should be normalized properly. Therefore, the modified WA model is orien-
ted from constant value to dynamic computation. Then an improved invasive weed optimization algorithm is applied
to solve the WA problem. During search process, local search is used to improve the initial population, and seed
reproduction is redefined to guarantee the mutation from multipoint to single point. In addition. the idea of vacci-
nation and immune selection in biology is added into optimization process. Finally., simulation results verify the
model’s rationality and effectiveness of the proposed algorithm.
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1 Introduction

Weapon assignment (WA) is a key compo-
nent of decision support system (DSS). It is usu-
ally assumed that all weapons are allocated in a
single stage. Then it can be considered as a static
problem, which includes target-based and asset-
based WA problems'? .
mization all depends on predefined kill probability

In both cases, the opti-

(constant value). However, kill probability is a
mean value representing the weapon lethality on a
specific target in weapon killing zone. Different

different kill

Therefore, theoretically approaching to actual le-

killing zone has probabilities.
thality at the encounter point can achieve higher
control accuracy. For this, an artificial neural
network ( ANN) model is trained to build the

mapping relationship between theoretical and real
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kill probabilities.

In addition, WA is known as NP-complete
problem. The computation time uiu increase rap-
idly with the number of threats and weapors™’.
Therefore, it is difficult to solve optimally in a
time-pressed scenario. The vigorous development
of intelligent algorithm provides a powerful tool
to solve it. Many methods such as genetic algo-
rithms, improved particle swarm algorithm, tabu
search and particle swarm optimization algo-
rithm, and ant colony optimization, are applied to
solve the WA problem™™. However, raost of no-
table results cost too much time in search
process. It is a fatal defect for the WA optimiza-
tion. Therefore, a novel numerical stochastic op-

timization algorithm called invasive weed optimi-

zation (IWQ) is introduced. Local search is used
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to improve initial population and accelerate the
whole search process. Then the redefined seeds
reproduction mechanism with variable standard
deviation is proposed, which can ensure the
process with robust adaptive characteristic and a-

chieve a global optimal solution quickly™.

2  Weapon Assignment
2.1 Description

It is assumed that m group anti-aircraft
weapons protect ¢ defended assets (DAs). And v,
is protection value, which represents the DA’s
important degree, where ¢g=1,2,+:*,e. In certain
time, there are n targets detected by remote ra-
dar. Target value w; is the target’s important de-
gree, where j=1,2,,n.

Firstly, the kill matrix P=[p, ],.«, is given,
where p; is the kill probability for the ith weapon
on the jth target. Then the fire decision matrix
X=[x; Jux, is defined, where x; is a binary vari-
able denoting whether the ith weapon is assigned
to attack the jth target.

Based on the above, the static target-based
WA problem can be formalized as a non-linear op-
timization problem as follows

F = minij H(l — Pyt
) j=1 i=1 (1)
Zx,j =1l,x; € {0,1},i=1,.m

i=1
where F is the total targets escape probability.
Similarly, the static asset-based WA prob-

lem can be defined as follows

D. :maxi]v(,n |:1 *n]ﬁ(l 7]),']')1U]
i=1

g=1 JjeG,

(2
Day=l.z, € {0.1}i=1,,m

j=1

where D. is the total defensive efficiency, x; the
lethality value of the jth target, and G, the target
set attacked the eth DA.

When there is more than one weapon availa-
ble, kill probability p; is the only criterion to
choose which weapon is to attack targets. How-
ever, p, obtained from statistics is just an empiri-
cal value, which represents average kill ability of

the weapon in the killing zone. It may be not suit-

able as the only criterion in real scenario. In order
to solve the issue, an ANN model with seven in-
puts is designed to compute the kill probability
dynamically.

2.2 ANN model

It is hard to find the internal relationship be-
tween the weapon kill probability and the real
time battlefield information. But five aspects can
be used to identify influencing factors upon the
kill probability for single missile®™, such as
launch condition, missile properties, target char-
acteristic, missile target encounter conditions
(MTEC) and course shortcut.

Aims to analyze the relationship between the
battlefield environments and the kill probability
in the paper. Therefore, seven factors are chosen
to establish the assessment index set U, where
U= {velocity, overload, altitude, MTEC, short-
cut, weapon property, target characteristic ).
With the assessment indexes as the inputs of the
ANN model, the kill probability can be computed
in real time. Fig. 1 illustrates the structure of the

ANN model of kill probability.

O\ Fuzzy rule layer

Fig.1 ANN model structure

Next, each assessment index is expanded, as
well as its normalization method.

Experimental result shows that subsonic ve-
locity has little impact on the kill probability. But
when the velocity keep increasing, the kill proba-
bility will gradually drop down. In addition, dif-
ferent airborne weapons have different speed,
such as the speed of armed helicopter is about 0. 3
Mach, the speed of guided bomb is nearly 1. 3
Mach, and the speed of the fastest fighter can



No. 6 Wang Yuhui, et al. Modeling and Algorithm Application of Weapon:--+ 695

reach 2.5 Mach. Therefore, the higher the target
velocity is, the greater the threat is. Based on the
above analysis, descending half normal function is
applied to deal with the speed normalization, the

mathematical expression is given as follows

_jl v<_a

p(v) = s (3
167(7) v>a,b >0

where v is the target velocity. a, b are design pa-
rameters, which a takes the subsonic value 0. 8,
and b is determined by the weapon type.

Target overload only exists during aerial ma-
neuver. Advanced air vehicles are with high sus-
tained-G, which makes it able to avoid being hit
before missile locked on. Therefore, overload has
a deep influence on the kill probability. Thus,
overload apparently acts a similar manner as ve-
locity that affect the kill probability. Eq. (3) can
also be used as the overload normalization func-
tion #(0), and a takes the value of 2. And the
course shortcut 4 (cs) has the same treatment.
The larger the shortcut, the lower the kill proba-
bility. Eq. (3) can be also applied, and a, b de-
pend on the specific weapon type.

Target altitude is predicted height at the en-
counter point in the killing zone. With the in-
crease of altitude, air resistance becomes weaker.
It causes higher missile tracking velocity, lower
guidance precision and larger miss distance. E-
ventually, it leads to a smaller kill probability.
The kill probability in the horizontal and vertical
direction follows normal distribution which is eas-
y to be verified”"™. Then Gaussian function is
used to normalize the altitude, expressed as the
following formula

1
h—c¢
d

pCh) = (€9)]

8

1+ |

where h is the value of target altitude. ¢, d, g are
design parameters, their values are highly related
with the best attack height of the specific weap-
on.

MTEC can be represented by the missile/tar-
get encounter angle. It is an independent variable
with common influence on the kill probability. It

can cause a big damage when the angle is 20°—60°

or 95°—160°. When the angle is less than 10° or
bigger than 165° or between 60°— 80°, the dam-
age is not big enough. Simulation results that re-
lationship of MTEC and the kill probability is
shown in Fig. 2.
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Fig. 2 Relationship of MTEC and kill probability"*”

To describe MTEC effect on the kill proba-

bility, the following equation is designed as

1 o o
————> 0& (0°,70)

. 3.5
1+ 0—35

38

1(0) = ) (5)

7ﬁ 6 e (70091800)
1+ 0—120

52

where 0 refers to the value of encounter angle.

Target characteristic mainly refers to radar
cross section (RCS), radar signal features and in-
frared characteristic. They are important features
that show the target ability of survivability. Con-
sidering target characteristic x(¢r) is not comput-
able, it is classified into three grades: strong
(0.7), medium (0.5), weak (0.3). The charac-
teristic value is lower, the target has better
chance to survival.

The last index is weapon property. In fact,
weapon property is the most important index that
determines the kill probability. However, we do
not aim to study the weapon intrinsic internal fac-
tors. Therefore, it is an indicator to monitor the
weapon state. While the weapon is in good condi-
tion, it is natural to achieve the best perform-
ance. Because it is not computable, the weapon
property is divided into four classes, as shown

below
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1 Normal
0.7 Damage

p(w) = ) (6)
0.3 Ruin

0 Destroy

These classifications indicate four different
weapon states:

Normal—the weapon is able to launch and
guide missiles to destroy target.

Damage—the weapon is able to launch, and
with possibility to guide missiles to hit target.

Ruin—the weapon can not launch missiles,
but it is repairable.

Destroy—the damage is beyond repairable.

After all indexes normalized, the ANN mod-
el is ready to train. Algorithms such as error back
propagation (BP), radial basis function (RBF)
are all neural network training methods. As soon
as training is done, the kill probability can be ob-
tained from the output of the ANN model. The
specific algorithm here is no longer discussed,
please refer to Refs. [11—12] for details.

3 Invasive Weed Optimization
3.1 IWO algorithm

Invasive weed optimization (IWO) inspired
from weed colonization was first introduced to ap-
ply to linear problem by Mehrabian and Lucas in
2006%, The algorithm includes four stages.

(1) Initialization

A population of M plants is dispread over the
N dimensional problem space with random posi-
tions. Meanwhile other parameters such as colo-
ny maximum capacity Q, max iteration Iter. s
nonlinear modulation index n, min possible seeds
production S.;, and its opposite S,... initial (fi-
nal) standard deviations oy (o) should be as-
signed, respectively.

(2) Reproduction

Each plant is able to produce seeds. The
yield is determined by its fitness value, the colo-
ny's the lowest fitness fit,, and the highest fit-
ness fit,... This step adds a significant property
to the search algorithm by allowing all plants to
participate in the reproduction contest which lead

convergence to the global optimal solution theo-

retically. Seeds reproduction can be expressed as
the following formula

Smax ™ S
Mﬁt;m ividua 7
fltmax 7 fltmin fidu

Sindividual = |:
where [ ¢ ] is rounding operation, fit;gaa the fit-
ness of the weed, and S;iaw the weed seeds pro-
duction.

(3) Spatial dispersal

The produced seeds in this stage are being
randomly distributed over the search space near
their parents. The way to produce seeds is add or
subtract a random distance D which follows nor-
mal distribution. The current standard deviation

(SD) 6. can be obtained by the following formula

_(iter., —iter)”
Ocur

(G;nn " Ofinal ) +Gfinal (€

1teria.

This alteration ensures that the probability of
dropping a seed in a distant area decreases nonlin-
early at every iteration. It leads to the results that
grouping fitter plants and elimination of inappro-
priate plants.

(4) Competitive exclusion

After all offspring are mature, they will be
ranked together with their parents. The colony
maximum capacity Q will be reached when the
process keeps iterating. Then the plants with
poor fitness will be eliminated. The survived
plants can produce new seeds based on their rank-
ing in the colony. The process will repeat until

termination condition is met.
3.2 Improvement and application

The standard ITWO algorithm is proposed
based on continuous numerical optimization.
However WA is a typical combinatorial optimiza-
tion problem. The discrete characteristic makes it
hard to involve IWO directly. Here an improve-
ment method is introduced on the topic.

First, in order to have a faster calculate
speed, fire decision matrix X detailed in Section
2.1 as individual weed is coded in its correspond-
ing decimal form.

Then the algorithm search process can be ex-
pressed as follows: Firstly, the seed reproduction
process is redefined that a seed (new weed) is

born through crossover and mutation by parent it-



No. 6 Wang Yuhui, et al. Modeling and Algorithm Application of Weapon:--+ 697

self. Therefore, we can take advantage of the ide-

[ But there are some

a of genetic algorithm
differences in our algorithm. Crossover will only
work in the early stages to maintain the diversity
of the population. Secondly, mutation takes
charge of the control. Distance D in stage three is
redefined as the number of mutation element in
parent weed. The distance value follows normal
distribution and standard deviation ¢, is calculat-
ed by Eq. (8). And all elements in seeds have
equal chance to mutate. As the iteration pro-
ceeds, the number of variation elements will non-
linearly drop down. It makes the solution matrix
execute from multi-variation to single point muta-
tion which makes the whole process more robust.
Fig. 3 illustrates the process of the algorithm.

In order to accelerate the search process,
local search is employed to improve the search ef-
ficiency. In fact, local search can explore the
neighborhood in an attempt to enhance the fitness
value of the solution in a local manner'™. Inspired
from immune genetic algorithm (IGA)M), an im-

mune operator including vaccination and immune

selection is applied to the IWO search process.

To evaluate

— Weeds all plants

Start In1ttl_a11- > repro- > fitness
Zallon | | duction and rank
population

0 determin€
whether reach
colony's capaci

To eliminate N
weeds with
lower fitness

To calculate
SD to get D
Output of the best
individual

Fig. 3 Flow chart of IWO

4 Cases and Result Discussion

First, the ANN model is trained. A certain
type weapon system has the following capability:
detection range 21 km, effective height 0. 01—

6 km, effective hit range 1—12 km, maximum

course shortcut 10 km. Therefore, the design pa-
rameters mentioned in section 2. 2 can be initial-
ized with the specific value which are shown in
Table 1.

Table 1 Normalization parameters

Parameter n(v) 7o) ples)
a 0. 8Ma 2g 5 km
b 0.6 5 2.5

And the altitude normalization formula is ex-
pressed as follows

1
h — 3 500
3 000

n(h) =

2X3.5

1+

Then an ANN model with four layers is es-
tablished. Table 2 is the training data used for
the network. The last two groups are used to test
the results (see Table 3).

Table 2 Training data

T o/Ma o/g h/km 0/C) cs/km pu(tr) pu(w) proiﬂhw
1 0.8 4 3.0 35 4 0.5 1.0 0.95
2 1.5 6 5.0 50 6 0.7 0.8 0. 80
3 0.3 2 2.5 120 3.5 0.3 0.8 0.98
4 0.9 7 3.5 45 1 0.7 0.8 0.90
5 1.3 12 2.0 32 3 0.5 1.0 0.82
6 0.8 10 0.5 15 2 0.7 0.5 0. 65
7 2.2 8 5.0 20 12 0.5 0.8 0. 50
8 0.6 3 3.5 80 3 0.5 0.8 0. 95
9 0.8 4 2.5 150 2 0.7 1.0 0. 88
10 0.75 14 0. 10 1 0.7 0.8 0.72

Table 3 Comparison of kill probability

Target Theoretical Trained
9 0. 88 0.910 5
10 0.72 0.763 9

To test the performance of the network mod-
el, the trained kill probability and the theoretical
kill probability are contrasted as follows.

The theoretical kill probability is a statistical
average value and it is difficult to comply with the
real situation. The kill probability trained by the
ANN model can avoid this. When the difference
between the trained one and the theoretical one is
within the permitted value, the training work is
complete. In addition, the outputs from different

experiments are not consistent all the time, be-
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cause the training samples are not enough. With
the increase of sample data, the network per-
formance will be improved.

When the training is completed, it can be
used to calculate the probability directly. In a sce-

nario with m weapon vs n targets, the kill proba-

bility is required to be calculated m X n times. It
is very important for the real-time control appli-
cation,

Now considering a scenario with 10 weapon
vs 10 targets, the kill probability, the target val-
ue, and the target lethality are listed in Table 4.

Table 4 Scenario parameters

Weapon Target
1 2 3 4 5 6 7 8 9 10
1 0.789 0.742 0.712 0. 682 0.682 0.651 0.603 0. 646 0.746 0. 884
2 0. 842 0. 806 0.751 0. 706 0.682 0.655 0.674 0. 659 0.771 0. 745
3 0. 654 0. 689 0.675 0.661 0. 687 0.620 0.635 0. 645 0.812 0. 842
4 0. 318 0.423 0. 864 0. 857 0. 863 0. 894 0.941 0.771 0. 818 0.756
5 0. 157 0.120 0. 885 0. 876 0.746 0.901 0.798 0. 804 0. 652 0.521
6 0.254 0. 331 0. 954 0.934 0.852 0.799 0.798 0. 756 0. 649 0.786
7 0. 245 0.115 0.725 0.779 0. 836 0.972 0.952 0. 857 0.775 0.756
8 0.961 0.974 0.632 0. 354 0. 387 0.453 0.528 0. 654 0.525 0.741
9 0.963 0.972 0. 582 0.642 0. 365 0. 240 0.102 0. 645 0. 332 0.741
10 0. 254 0. 852 0. 333 0. 560 0. 287 0.426 0.539 0. 352 0. 255 0. 489
TarVal 80 75 80 85 85 70 80 90 70 75
TarlLty 0.76 0.73 0. 85 0.78 0. 84 0. 89 0.76 0.92 0.74 0. 82

Note: TarVal denotes target value, TarLty denotes target lethality.

Assuming that six DAs are under protection, the
protection values are 80, 76, 85, 75, 90, 60, re-
spectively, Then the WA problem is solved by
using IWO, the needed parameters are listed in
Table 5.

Table 5 IWO parameters
Para- M Q Tternu Swx  Swin n Oinit  Ofinal
meter
Value 20 100 50 5 0 3 20 3

Note: the parameter descriptor is provided in Section 3. 1.

In order to illustrate the advantages of IWO,
genetic algorithm (GA) and IGA are also simula-
ted. Parameters of GA and IGA, such as popula-
tion size, crossover rate and mutation rate, are
set with 100, 0.6 and 0. 01, respectively.

Based on the asset-based model, experiments
are conducted on the same condition, and Fig. 4
illustrates the comparison results. The average
values of three algorithm results are 334. 641 8,
370. 281 3 and 373. 820 2. It can be seen that GA
has a huge fluctuation with different initial popu-
lations, IGA shows a better performance than
GA, and IWO is the best methods with higher
Although IGA re-

convergence and robustness.

sult is sometimes better than IWO, IWO achieves

a better performance on the average level.
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Fig. 4 Experiment results

Next, a more specific convergence process is
simulated. As shown in Fig. 5, IWO achieves a
higher convergence value than GA and IGA. Due
to local search in initial stage, IWO and IGA have
higher initialization values than GA. With the it-
eration increasing, the convergence value of IWO
gets better.

In order to analysis the IWO performance,
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Fig.5 Convergence process of WA

the experiments with a longer time (5 s, 10 s) are
simulated. The best and the worst solutions in
different run-time are chosen. Table 6 lists the
solutions involved.

It is certain that the optimal solution and the

average are better when the run-time is longer.
But the worst solutions are closer to the average.
For a specific weapon, there are only a few differ-
ent targets to atlack, for instance weapons 1, 3
are always be assigned to attack targets 10, 9.
However, some weapons are assigned to more
different targets for the best solutions. For exam-
ple, weapon 2 is assigned to attack targets 3, 5
and 8 separately in different experiments. In Ta-
ble 4, we can see that weapon 2 has an average
performance. The kill probabilities are 0. 842,
0.806, 0. 751, 0. 706, 0. 682, 0. 655, 0. 674,
0.659, 0. 771, 0. 745, respectively, with differ-
ent targets. It is enough to attack any targets.
Other weapons have similar explanation. There-
fore, as long as the solution achieve a certain lev-
el, it is thought good enough to accomplish cer-
tain mission. This is just suitable for the applica-
tion of IWO.

Table 6 Solutions in different run-time
Weapon
t/s Solution D. Average
2 3 4 5 6 7 8 9 10
Best 10 3 9 5 8 4 6 1 2 7 383.319
2 Worst 9 3 10 5 8 4 6 1 2 7 368312 o818
Best 10 5 9 7 8 3 6 2 1 4 384. 686
g Worst 10 3 9 5 8 4 7 1 2 6 370.792 378. 683
Best 10 8 9 5 4 3 6 1 2 7 387.778
10 Worst 10 3 9 5 8 4 6 2 1 7 370.876 Sox03

Finally, the model sensitivity is studied.
Taken the best solutions in the 10 s for the test
objects, the solution variance with the change of a
weapon kill probability is observed. Here, we
consider that the kill probability of weapon 2 vs
target 3 is a variable, and the interval is [0,1].
When the step size is set 0. 05, 0. 01, 0. 005 and
0. 001, respectively, the simulation results are
shown in Table 7.

Table 7 Simulation variance

Step size
Scale
0.05 0.01 0.005 0.001
10 vs 10 2.28 0. 456 0.228 0.046
20 vs 20 1.25 0. 25 0.125 0.025
40 vs 40 0. 56 0.112 0.056 0.011

In Tables 6,
six default significant figures, then very small

change (0. 001) on the kill probability can be de-

7. we can see that. if there is

tected by the WA model, therefore, the sensitivi-
ty is 107 at least. In extreme conditions, take
three significant figures for example, the sensitiv-
ity is bigger than 0. 05 when the battle scale is 40
vs 40, While the normally weapon kill probability
varies from 0.6 to 0.9, it is very necessary to ad-
just the kill probability online.

In addition, as battle scale grows, the sensi-
tivity drops down. Therefore, set proper default
significant figures is a key factor to balance high
accuracy and sensitivity. In summary, the expec-
tation that the weapon will be adaptively chosen

under the current situation is reached.

5 Conclusions

WA has always been one of the key technolo-

gies in air defense operations. The paper discus-
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ses several questions of WA about its modeling
and algorithm application. Taking the advantages
of seven factors, a novel model trained by ANN is
proposed, which can compute the kill probability
under the real-time mode. In further step, an im-
proved IWO algorithm is introduced to achieve
the optimal WA result. Simulation results verify
the rationality of the model and the effectiveness
of the algorithm, which provide a new effective
solution for anti-aircraft fire distribution optimi-

zation.
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