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Abstract: The linear complexity and minimal polynomial of new generalized cyclotomic sequences of order two are

investigated. A new generalized cyclotomic sequence S of length 2pq is defined with an imbalance p+1. The re-

sults show that this sequence has high linear complexity.
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1 Introduction

Pseudo-random sequences used for stream ci-
phers are required to be unpredictable. The linear
span or linear complexity of a sequence is the
main component that indicates this feature. The
linear complexity L (S™) of sequence {S™} over
F, (F,is a finite field of order p") is defined as
the length of the shortest linear feedback shift
register that can generate the sequence, which is
the smallest value of L to satisfy the feedback
function s; +¢;s5;-y - +cps;-p. =0, =L, with
*vc. € Fo. The Berlekamp-
Massey algorithm™ states that if L (S™) > N/2
(N is the least period of {S”}), {S™} will be
considered good with respect to its linear com-
plexity. Let S(x) =5, T 512+ s,2% 4+ +s sy *
2N If N is the period of {S™}, then

m(x) =1 —2N)/ged(S(x),1—2™)

is called the minimal polynomial of {S~

coefficients ¢y ¢y

}[2.3]

Thus the linear complexity of {S™} with the peri-
od N can be calculated by

L(S7) =N —deg(ged(x™ —1,S(2)))

The generalized cyclotomic numbers were

first introduced in 1962 by Whiteman’ in order
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to investigate the existence of cyclic difference
sets in ring Z,, and the integer ring modulo pq,
here, p, ¢ are two odd primes. A difference set
in a group G is a combinatorial structure which
admits a regular automorphism group. The de-
velopment of a difference set is a symmetric de-
sign. At first, people use these structures to
present some experiments designs. In 1970's, it
was found that these objects could be used to con-
struct some new sequences with some crypto-
graphic properties, for example, to defense the
differential and correlation attack. Following this
approach, Ding and Helleseth™' presented gener-
alized cyclotomy with respect to a positive integer
n and gave some applications of these cyclotomic
sequences. Since then, a large number of cy-
clotomic sequences have been constructed and the
linear complexity and the autocorrelation values
of these generalized cyclotomic sequences have
been obtained. For example, Ding, Helleseth,
and Shan' determined the linear complexity of
LLegendre sequences were actually based on cy-
clotomic classes of order two. The linear com-
plexity of some generalized cyclotomic sequences

of length pg were obtained by Ding" and Bai****,
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[1°7 calculated the linear

respectively. Yan, et a
complexity of generalized cyclotomic sequence
with period p”. Yan''" also determined the linear
complexity of a new prime-square sequence and a
two-prime sequence. The linear complexity of
generalized cyclotomic sequence with period p"™!
was determined recently by Edemskiy''*’, Zhang,
et al. "™ also calculated the linear complexity of
generalized cyclotomic sequence with period 2p”.

In this paper, we introduce a generalized cy-
clotomic binary sequence S of order two with the
length of 2pq. Then, we calculate its linear com-
plexity and minimal polynomial. The results
show that the linear complexity of the sequences
S is high.

The main difference between the presented
work and the previous researches is that we deal
with the even factor 2 of the length of the se-
quences. As we all know that, in most cases,
how to deal with the even factor 2 is a hard work.
The high light of our work is to show that there
exists a common primitive element g of Z,,Z,,
Z,, and Z,,, where g is an odd number. Using
this fact, we can find the decomposition of the u-
nits group in the rings Z,.Z,,Z,, and Z,,, respec-
tively, and then, we can construct our sequences
explicitly. By a detailed analysis on the represents
of the elements in the sequences, the linear com-

plexity of these sequences can be obtained.

2  New Generalized Cyclotomy and

Sequence

We use Zy to denote the ring Zy=1{0,1,2,
««,n—1} with integer addition modulo N and in-
teger multiplication modulo N as the ring opera-
tions. By Z§ we denote the set of all invertible el-
ements of the residue class ring Zy. It is well-
known that Zy is a cyclic group if and only if N=
2,4,p",2p" for a prime number p and a positive
integer m. Further,if Z{ =(g) is generated by an
element g, then g is called a primitive element of
Zy. Let p and g be two distinct odd primes with
ged(p—1.,9g—1)=2. Define N=2pq and e=(p—
D(g—1)/2.

The following so called generalized chinese
remainder theorem will be used frequently in our
discussion.

Lemma 1 Generalized chinese remainder
theorem: Let m;,+*,m, be positive integers. For
a set of integers a,,***,a,, the system of congru-
encies:x=a; mod m,;,i=1,+-,¢, has solutions if
and only if

a; = a; mod ged(m; sm;) i £ j,1 < i,j <t
If Lemma 1 is satisfied, the solution is
unique modulo lem(m, -+, m,).

The proof of Lemma 1 is detailed in Ref.
[14].

By Lemmal, there exists a common primi-
tive element g of Z,, Z, and Z,, and Z,,, and g is
an odd Therefore,

lem(ord, (g),ordy, (g)) = lem(p — 1, ¢ — 1) =

number. ordy(g)
(p—1)(g—1)/2=e, where ordy(g) denotes the
order of g modulo N. Let x be an integer satisfy-
ing r=g mod 2p and x=1 mod 2q. The exist-
ence and uniqueness of x mod 2pq is guaranteed
by the generalized chinese remainder theorem. It
is easy to prove that x=g mod p and xr=1 mod
q» then x=1 mod 2.

Whiteman proved that"!

Zy ={g'x":s=0,1,,e—1;1=0,1)

Ding and Helleseth's generalized cyclotomic
classes D™ and D{™ of order two are defined by
DY ={g”:s=0,1,,(e—2)/2} U
{g¥x:s=0,1,,(e—2)/2}

DY ={g"":5=0,1,,(e—2)/2} U
(g8 xis=0,1,,(e—2)/2)
where the multiplication is that of Zy. It is easy
to prove that
Zy=Di” U DV, Di¥ N DY =¢
where ¢ denotes the empty set. Similarly
Z: ={g'x 5 =0,1,,e—15i=0,1}
D = {g".s=0,1,,(e—2)/2} U
{g¥x:s=0,1,,(e—2)/2}
D# = {g"".s=0,1,,(e—2)/2} U
(g8 x:s=0,1,,(e—2)/2)
where the operation is that of Z,. It is easy to
prove that
Zi, =D U DI D (1 DI =g

The above decompositions are detailed in
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Ref. [5].
Let F be a subset of Zy and let a be an ele-

ment of Zy. Define
at+F={at+ f.f € F}
asF={a+f.f€F}

and
D" ={g":s=0,1,,(p—3)/2}
D§? = {g”:s=0,1,,(¢—3)/2}
Dy ={g”:s=0,1,,(p—3)/2}
D§? = {g”:s=0,1,,(¢q—3)/2}
D? =gD{", DI = gDi¥
D = gD, D = gD
Denote
P, =pD, P, =pD*", P,=2pD"
P\=2pD{" . Q = gD, Q =qDi™
Q= 24D . Qi=2gD{¥ . D, =Di
D, =DV, Dy=2D{" , D\=2D{»?
and

P=P, U P, P/:P:JU/)G
QR=Q UQ.Q=QUQ
It is easy to prove that
Zyv=Z;UPUP UQUQ U2z, U
{rg} U {0}
where Zi . P, P .Q.Q",2Z;,,{ pq},{0} are pair-

wise null-intersection.

Define
C,=P, UpiUQUQUD, UDyU
{par U {0}
C,=P, UpiUQiUD UD,
Then

C,UC =Zyv.C, N Ci=9¢
We define a new generalized cyclotomic se-
quences S={s;} of order two of length 2pq as
0 ¢ mod N € C,
1 Otherwise

S =

The sequence S has period N. In one period
of sequence S, there are pg+ (p—+1)/2 zeroes and
pq(p+1)/2 ones. Thus, the sequence S has an
imbalance p+1.

3 Linear Complexity and Minimal

Polynomial of S

Now we begin to calculate the linear com-

plexity and minimal polynomial of the new gener-

alized cyclotomic sequence S. Let the symbols be
the same as before. Then for S, the correspond-

ing S(x) is given by

S(a) = Dja' =

i€ (,‘1
O+ DT+ DT+ D+ Dt € Fula]
i€ P i€ P i€Q, i€ Dy ieD|

Let m be the order of 2 modulo pq. Then
there exists a primitive pg-th root of unity « over
the splitting field Fy» of x** —1. The linear com-
plexity of the sequence is then given by L(S) =
N—1]{j:SCq; )=0,0<j<<N—1}|. Note that

0=a" —1=0a"—1=(0")"—1=
(af — DA +a” +a* 4 =+ ")
And it follows that
Dlat =D+ 2 e =1
i€ p i€py  i€P

By symmetry, we obtain

Dat =D+ 2 e =1

iepP i€ P i€ P}
D=0+ > a' =1
ieQ i€Q, i€Q)
D=0+ >l =1
iceq i€ Q) i€Q
2ia' =02 + 2 )d =1
i€, i€ pD? i€ pp\?
Dial=C 2] + D=1
i€q, icqp(” i€qD?
Lemma 2 Leta € D;. Then aD; = D+ jymod 2 »

where 7,j=0,17,
Similar to Lemma 2 in Ref. [2],we have the
following result.
Lemma 3

before. Then

Let the symbols be the same as

[ —
2a" =

iep,
f 0 te PUP U (pg}
lg—D/2(bmod2) t€QUQ
Proof Suppose that t& P. Since g is a com-
mon primitive root of both p and 2q and the order
of g modulo pq is e, by the definition of x we have
D, mod g ={g"*" mod q:s=0,1,+,
(e—2)/2) U {g""2 mod q:s=0,1,-+,
(e—2)/2) ={g""":5s=0,1,-,
(e—2)/2}) mod g=D}?
,(e—2)/2},

When s ranges over {0, 1, «*
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D,mod ¢ takes on each element of D{? (p — 1)
times.

It follows

Dla" =(p—1D mod 2) D) " =0

i€, sl
Similarly, suppose € P’, then
D, mod ¢ =
{g"™ mod g:s=0,1,+,(e—2)/2} U
{g”"x mod g:5s =0,1,+,(e—2)/2} =
{g"":s=0,1,++,(e—2)/2} mod ¢g=D{”
When s ranges over {0, 1, -, (e—2)/2},
D;mod ¢ takes on each element of D (p— 1)

25s+1

25+1

times.
We have
Dla" =p—1 mod2) D] a" =0
i€ D, i€ Di?

Suppose tE€ Q,then
D, mod p ={g"" mod p:
s=0,1,.(e—2)/2} U
{g""x mod p:s=0,1,,(e—2)/2} =
{g" " :is=0,1,+,(e—2)/2}(mod p) U
{g""?:5s=0,1,,(e—2)/2}(mod p) =Z,
When s ranges over {0,1, =, (e—2)/2},
D,mod p takes on each element of Z, (¢—1)/2
times.
Hence. > a" =((g—1)/2 mod 2) > a' =
€D, i,
(g—1)/2 mod 2.
Suppose 1€ Q' , then
D, mod p={g"”" mod p:
s=0,1,,(e—2)/2} U
{g""x mod p:s=0,1,,(e—2)/2} =
{g"":s=0,1,,(e—2)/2) mod p U
{g"":s=0,1,,(e—2)/2) mod p=2,
When s ranges over {0, 1, -, (e—2)/2},
D,;mod p takes on each element of Z, (¢—1)/2

times.
Therefore
Dl =((g—1)/2 mod 2) Dla’ =
i€D, icQ

(g—1)/2 mod 2
Suppose t= pq, then
Za“ = 21:6 mod 2=0
161)1 161)1

Lemma 4 Let the symbols be defined as the

same as before. Then

0 te PUP U {pg}
(¢g—D/2mod2 t€QUQ
Proof It can be proved in the same way as
that for Lemma 3.
Lemma 5 Let the symbols be the same as
before. If t&€ Z3 U 2Z,, .then
Sla) =
JS(“) te Zy U2z, .t mod p € D
1S@+1 1€ zi U2z, t mod p € D
Proof Similar to the proof for Lemma 3, we

omit it here.

Lemma 6 S(q)€{0,1} if and only if p=
+1 mod 8.
Proof Since the characteristic of the field

Fon is 2,1t follows that [S(a ) ]*= S(¢?) . From
Lemma 5, we obtain S(¢”) = S( ¢« ) if and only if
2€ D{”. Hence, SCa )€ {0,1} if and only if 2€
D{”. Note that D{” is the set of quadratic resi-
dues modulo p, thus, 2€ D{’ if and only if p=
+1mod 8

Lemma 7
(DI t€PUP'. >l¢" €1{0.1} if and only
i€ P
if g=+1mod 8. > o € (0,1} if and only if
i€ ppi?
g==%1 mod 8.
() M eQUQ’ D)a" €1{0.1) if and only if
i€q
p==+1mod 8. >, o € {0,1} if and only if
i€ qD?
p==%1 mod 8 .
Proof 1f t€ P, Do = > )G €
i€ P i€ D§?

Z5,) . Letg = az”z s then B is a primitive gth root
of unity in the splitting field of 29— 1. Since the
characteristic of the field F,» is 2,1t follows that

(Zjoz“)Z Eaz“ = Z a". Note that

ic 1"'1 S P'1

iczp-2D\?
g a" E a' = E " if and only if 2
i€2p2D(? ie2p2D? i€P)

€ D{” ,also note that D{? is the set of quadratic

residues modulo q. Thus, we obtain Ea” e {0,

i€ P'l

1} if and only if g==+1 mod 8. The rest of the
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conclusion of this lemma can be similarly proved.

Lemma 8
(> + > +(p—1/2 mod 2
i€ 0 i€ P
S(a) = te PUP
Za" reQUQ
i€q)
(p—1)/2(b mod 2) t=pqor 0

Proof If t€PUP', from Lemmas 3—5
and | D{* |=| D{? |, D{*” mod q = D{”,

tain

S =+ 2+ + D2+ > a" =

i€ Py i€ P i€Q i€ D, i€ D,

D+ D+ D 1+0+0=

i€P i€ P ie D\

Dl 4+ Dl + (p—D/24+0+0=

S i€ P

Dl F D H(p—D/2=

i€ pp{? e by

D) + D" +(p—1/2

T

Therefore,if t€PUP .S(a' )= ( Z +

ic pD(l")

we ob-

DHa F(p—1)/2.

i€ P
Ifre QU Q. from Lemmas 3 — 5 and
| DP*” |=| D |, D{* mod p= D{”, we know
that
S) =7+ D7+ D7+ D+ D)D" =
i€ Py i€ P i€Q) i€ D, i€ D)

SV S+ St (q—1)/2+ (g— /2=

ie D{*0 ie D! i€Q

(q—D/24+(q—D/2+ Dla"+(g—1D/2+
i€ Q)
(g—1D/2=>q"

i€Q,

Thus.If t€QUQ" .S(a') = D la" .

icqQ,
If t1=pq, from Lemmas 3—5, we get
S) =+ D+ D+ D)+ Da" =
i€P;  i€P) i€Q) €Dy €D
(g—D/2+@—D/2+(p—D/2+0+0=
(p—1)/2 mod 2
We also note that
S(H=@—D/24+@—D/24+(p—1/2 +
ete=(p—1)/2 mod 2
This completes the Proof.
The main results of sequence S are summa-
rized in the following two theorems.
Define

d,(x) = H (x—a")
iePUP
Theorem 1

(1) If p=3 mod 8,then

L(S) =2pq,m(x) =2 —1

(2) If p=5 mod 8 and ¢g==+3 mod 8,then

L(S) =2pqg —2,m(x) =" —1D)/(*+ 1D

(3) If p=5 mod 8 and g==1 mod 8.then
L(S) =2pq — 2q.,m(x) = (™™ — 1) /(2> + Dd,(2)
Proof
p=3 mod 8 and ¢==+3 mod 8, using Lemmas 5—
8, we obtain ged(a*” —1,S(x))=1,then m(x) =
2 —1,L(S)=2pq. Suppose p=3 mod 8 and
g==%1 mod 8, then 2 € D, 2 &€ D .

the discussion of Ref. [6], for all «, exactly one

of Dl "€ P, UPy)and > a"Gt€ P, U

i€ pp{? ic pp'?

For case (1) in Theorem 1 suppose

From

/ .
P) is zero.

We fix ¢ such that 2 " =00GeEP,UP)),

03}

i€ pD
then ») o' = 1 (1€ P, UP)). Note D" =
iepD‘l‘” iep
( E a" )? from Lemma 8 we obtain
ic pp{?
S(a) =C > + D" +(p—1)/2 mod 2 =1
ieppl®  iEP,
te€ P, U P
Sa)=C > 4+ DDa"+ (p—1)/2 mod 2=1
iepD(l‘” lep/]
te P U P!

Using Lemmas 5—8,we obtain
J;éo re2Z, Uz UeuQ
S(a)=1 €& P |J P’'(by the choice of @)
IZI t=pq or 0
Hence,ged(2* —1,S(x)) =1,then m(x) =
=1, L(S)=2pq.
For case (2) in Theorem 1 , suppose p=
5 mod 8 and ¢g==+3 mod 8,using Lemmas 5—8.,
we obtain
Y
# 0  Otherwise
Therefore ged (2™ —1,S(x)) = (2* + 1),
then m(a) = (™ —1)/(a*+1),L(S)=2pg—2.
For case (3) in Theorem 1, suppose p =
5mod8 and ¢ = £ 1 mod 8, then 2 € D{”,
2€ D .

From the discussion of Ref. [6],for all a ,exactly
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oneof ») o (¢t € Py, UPy)and >, a"(t €

16/)1')(1"> i€ /’D(\q)

P, U P’) is zero.
We fix ¢ such that 2 o« = 0,0€eP,UP/,

(q)
then E a

i€ pD)
4
1.2€ P, U P). Note »a" =
i€ ppi? i€
. 2 .
( E a“) from Lemma 8, we obtain
)

i€ pD;
Sa) =C >, + D" +(p—1/

(@ i€ P

i€ ph)
2mod2=0 €& P, JP)
Sa)=C > + D" +(p—1/
i€ ppi? i€er
2mod2=0 €& P, UJP)

Using Lemmas 5—8, we obtain
S(a‘){7£0 te2Z, Uz ueua
=0 € P U P'(by the choice of @)
Therefore, ged (2*% — 1, S(x)) = (2 + 1)
di(x2), then m(x) = (2" —1)/(F*+1)d, (2),
L(S)=2pqg—2q.
Define

dz(l‘) - H

i€2Z, UZy simodp€ D

(1‘—(1i) ,dg(.r) -

p)
0

[T x—a>

i€Q UQ)
Theorem 2 (1) If p=1 mod 8 and q=
43 mod 8,then
L(S)=2pqg —2¢e—p—1
m(x) =@ —1)/(z" + Dd,(2)d; (2)
(2) If p=1 mod 8 and g==+1 mod 8,then
L(S) =pg —qg.m(x) =
(2™ — 1) /(2" + Dd, (2)dy (2)ds (1)
(3) If p=7 mod 8, then
L(S)=2pq —2¢e—p+1,m(x) =
(a* —1)/dy(x2)d,y (2)
Proof Similar to the proof of Theorem 1,
the detail of which is omitted.
Note that since the coefficients of d,(x),

d,(x) and d;(x) are invariant under the Frobe-

nius action, d,(x) ,d,(x) ,ds(x) € F,[x].

4 Efficiency Validation

By using Magma, we check every case in our
paper. In the following, one example of the se-

quence is given to illustrate the efficiency of our

method; the experimental results coincide with
the results presented in the article completely.
Let p=19,¢q=17,g=3,2=307. Then it is
easy to verify this meet all the conditions of The-
orem 1 case (1) that we need. In this case, the
sequence 1s
S$=[0,0,0,1,0,1,1,1,0,0,1,1,1,0,1,0,0,
0,0,0,1,0,1,1,1,0,0,1,1,1,0,1,0,0,0,0,0,1,
o,1,1,1,0,0,1,1,1,0,1,0,0,0,0,0,1,0,1,1,1,
0,0,1,1,1,0,1,0,0,1,0,0,1,0,1,1,1,0,0,1,1,
1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,0,1,0,
,1,0,0,1,0,1,1,1,0,0,1,1,1,0,1,0,0,0,0,0,
1,0,1,1,1,0,0,1,1,1,0,1,0,0,0,0,0,1,0,1,1,
1,0,0,1,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,
1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,0,1,
0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,0,1,0,0,0,0,
,1,0,1,1,1,0,0,1,1,1,0,1,0,0,0,0,0,1,0,1,
1,1,0,0,1,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,
1,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,0,
1,0,0,1,0,0,1,0,1,1,1,0,0,1,1,1,0,1,0,0,0,
,0,1,0,1,1,1,0,0,1,1,1,0,1,0,0,0,0,0,1,0,
1,1,1,0,0,1,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,
o,1,1,1,0,1,0,0,1,0,0,1,0,1,1,1,0,0,1,1,1,
0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,0,1,0,0,
0,0,0,1,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,1,1,
0,0,1,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,
1,0,1,0,0,1,0,0,1,0,1,1,1,0,0,1,1,1,0,1,0,
0,0,0,0,1,0,1,1,1,0,0,1,1,1,0,1,0,0,1,0,0,
1,0,1,1,1,0,0,1,1,1,0,1,0,0,0,0,0,1,0,1,1,
1,0,0,1,1,1,0,1,0,0,1,0,0,1,0,1,1,1,0,0,1,
1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,0,1,
0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,0,1,0,0,0,0,
,1,0,1,1,1,0,0,1,1,1,0,1,0,0,0,0,0,1,0,1,
1,1,0,0,1,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,
1,1,1,0,1,0,0,1,0,0,1,0,1,1,1,0,0,1,1,1,0,
1.0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,0,1,0,0]
The minimal polynomial of sequence as

above is m(x) = 2°° —1 and the linear complexi-

ty is L(S) =646.
5 Conclusions

We propose a new generalized cyclotomic bi-
nary sequence of length 2pq. Then, we deter-

mined its linear complexity and minimal polyno-
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mial. The results show that the linear complexity
of the sequences S depends on the values of (p
mod 8) and (¢ mod 8). Consequently, the pro-
posed sequence is " good” in terms of its linear
complexity and may be attractive for applications

in cryptography and communication.
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