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Abstract: Let F, be a finite field with ¢g= p” elements, where p is an odd prime and m is a positive integer. Here,

let D, = {(x),a,) €FE\{(0,0)}: Tr(,zf’{k1 = Jr:ré’h2 "Y=c}, where c€F,, Tr is the trace function from F, to F,

and m/(m, ky) is odd, m/(m, k;) is even. Define a p-ary linear code Cp =c(a; ,a;) :(a .a;) €EF %}, where c(a, ,

a,)=(Tr(a,z, *a, IZ))”l .,ep- At most three-weight distributions of two classes of linear codes are settled.
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0 Introduction

Let F, be a finite field with ¢= p" elements
throughout this paper, where p is an odd prime
and m a positive integer, and let Tr be the trace
function from F, to F,. An [n,k,d] p-ary linear
code C is a k-dimensional subspace of F with the
minimum Hamming distance d. Let A, denote the
number of codewords with Hamming weight 7 in
code C of length n. The weight enumerator is de-
fined by

1+Az+ -+ A,z2"
-, A,) is called the

weight distribution of the code C. A code C is

The sequence (1, A, -

said to be a t-weight code if the number of nonze-
ro A, is equal to . The weight distribution is an
interesting topic and was investigated in Refs.
[1-9] . Weight distribution of code can not only
give the error correcting ability of the code, but
also allow the computation of the error probabili-
ty of error detection and correction.

Foraset D=1{d,,dy,.d,} =F,, define a

linear code of length n over F, by

Article ID:1005-1120(2017)01-0062-10

Cp ={(Tr(ad,) Trad,) . Tr(ad,)) :x € F,}
We call D the defining set of C,. Many known
linear codes could be produced by the selected de-
fining sets. For more details of these codes,
please refer to Refs. [1,37].

Here, assume that m., %, ,k, are the positive
integers with m/(m,k,) being odd, m/(m, k,)
being even. Then f; ()=2"""isa planar func-
tion over F,""" . Fixing c€F,, we define

D= {(z;.x;) € F;\{(0,0)}:
Tr(af " 4 27 =
Cp={cla,,ay):(a ,a,) € FZ}
where
claysay) = (Tra xy +a,x2)) 2 apen

In fact, we have some well-known results as
follows. If a; = 0, then it is just the result in
Ref. [11].

We will determine the weight distribution of

the linear codes Cp in three cases: (1) ¢=0;(2)

ce€F,;?,(3)cEF,\F,".

1 Preliminaries

Let F, be a finite field with ¢ elements,
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where ¢ is a power of a prime p. We define the
additive character of F, as follows

X:Fq" C : « X —> g})‘r(;z)
where ¢, is a complex p-th primitive root of unity
and Tr the trace function from F, to F,. The or-
thogonal property of additive characters is given
by
0 aceF,

Dy lar) =
la

<€F, a=0
Let 2:F, —>C * be a multiplicative character
of F,. The trivial character A, defined by
Ao () =1 for all € F, .
of multiplicative characters is given by
Z}{(I) *—JQil A=A

oy 71 0 Otherwise

Let A be the conjugate character of A and it is

The orthogonal property

defined by A(x) =2A(x). It is easy to obtain that

- .. . A,
A~ '=2x. The multiplicative group F, is isomor-
phic to F, . For F; =<a), define a multiplicative
character by ¢(a) =¢,—1, where {,-; denotes the

primitive root of complex unity. Then we have

]EA‘q = (¢>. Set 1]:5&% the quadratic character of

E,.

Define the Gauss sum over F, by
GO = D Ay

‘I’EF;
Let (j) denote the Legendre symbol. The

quadratic Gauss sums are known and given in the
following.

Lemma 1.1%%  Suppose that ¢= p" and 7 is

the quadratic multiplicative character of F,,

where p is odd prime. Then
Gp =D/ (pHm =

(— D" g

{<— D" /=1D)"Jg p=3 (mod4)

where p* = (— D p is the discriminant of a

p =1 (mod 4)

prime p.

Lemma 1, 2%

Let y be a nontrivial addi-
tive character of the F, with ¢ is odd, and let

fl)=a,a*+a x+a, €EF,[x] with a;7#0. Then
DUy (f(e) =ylas —ad (da) D pla) G(pay)

c€F(g

where 7 is the quadratic character of F,.

Let X, be the canonical additive character of
F, such that y(2)=y'(Tr(2)) for x€F,. Let 5
be a quadratic character of F,, then 5 (x) =
7 (N, (x)) for x€F, .

Lemma 1. 3" Let x € F; and ¢ = p",
where p is odd prime.

If mis , pla)=1.

If m is odd, 77(1):77/(1).

Moreover, G () =(—D" ' G(5)H",

G(y»p) and G(r/) are the Gauss sums over F, and

where

F,, respectively.

We now give a brief introduction to the theo-
ry of quadratic forms over finite fields. Quadratic
forms have been well studied and have been ap-

[9,14]

plied to sequence design and coding theo-

ry-',

Let d=gcd(k,m). Then
2 m/d is odd

P 1

In Refs. [16,17], Coulter gave the valuation

Lemma 1. 4

<pk+1’pm_1)_{

m/d is even

of the following Weil sums

S, (a,b) = z);((ar”k+1 -+ bx)

EaS ]Fq

a,b e F,
Lemma 1.5 Let m/d be odd. Then
Si(a,0) =9(a)G(p =
{ (— D" 'gn(a
(— D" " g p(a)

Lemma 1. 6%

p=1(mod 4)
p = 3(mod 4)

Let m/d be even with m =

2e. Then
Sk (Cl ,O) —
p° q /D # (— 1)’ and e/d is even
—p¢ @V £ (— 1) and e/d is odd

lp"” QDD — (1) and e/d is odd

e , .
—p @ T = (—=1)" and e/d is even.

L7 Let ¢ be odd and suppose

Lemma 1. 7
f'(X):a”kX/’M +aX is a permutation polynomial

over F,. Let z, be the unique solution of the

equation f(X)= —" . The evaluation of S, (a,b)
partitions into the following two cases:
(1) If m/d is odd
Sila.b) =gl GGy lat ™) =
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[ D ag@y et ™) p=1(mod 4)

1(— 1)’"71i’”«/c?7](a);((a1'6’h“) p = 3(mod 4)

(2) If m/d is even, m = 2¢, and aﬁ =

(—1)
SiCab) =(— D pey Caxl ™)

In fact, Lemma 1. 4 is a revised version of
the lemma in Ref. 4.

Lemma 1. 8"  Let ¢ be odd and suppose
f(X):a”kX”Zk “+aX is not a permutation polyno-
mial over F,. Then for b0, we have S;(a,b) =
0 unless the equation f(X)= —b”" is solvable. If

the equation is solvable, with some solution x,

says Silab)=— (=D p 4y (aat ).

Let £(X)=X""+X and
S={(b € F,:f(X)=—0" is solvable in F, }

If m/d is even, |S|=p*.

Lemma 1, 9™

2 Linear codes

Let ¥, be the finite field with g = p" ele-
ments, where p is an odd prime and m an even
positive integer with m = 2e. Let Tr denote the
trace function from F, to F,. In this section, we
always assume that e,d .k, .k, are the positive in-

tegers with m/ged (m, k1) odd , m/ged (m, ky)

even and d = ged (m. ky). Let fi (x) =277,

xz€F,,i=1,2.
2.1 The first case

Define

D, = {(x1,x,) € FIN{(0,0)}:
Tr(af" "+ 277 =0) D
Cp, ={cCaisay):(ay a,) € F)
where c(a, »a,) = (Trla,x, ta,x,)) i, 0pen, -
Lemma 2.1 Let n,=|D,|. Suppose that ¢/

d is odd, then

” :%+%(— PG =
P =14+ (—=D"(p—1p"!
J p=1 (mod4)
lp — 1+ D" EGp—Dp!
p =3 (mod 4)
Suppose that e¢/d is even, then

iqz_P p—1 etd N\ _
—C =P Pl G =
T p -7 7

P =1 (= D (p— D!

p=1 (mod 4)
P = 1T (=D E(p — D prt
p =3 (mod 4)
Proof 1 By Lemmas 1.4, 1.5 and 1. 6, we
have that

= LSS G ) =

>
YEF, oy EF,

2 £ £,
q*JriE Ex(yxfl”l) 2){(3}15”"):
p pyG]F; ,z-le]Fq .z'ZEFq
L LSV Gppn—p) e/dis odd

b ‘DyEF/j

T;le]lb EG(V)ri(y)(* D di is even

A’EF,:
Jc;‘+ PT—I(f pOGGp  e/dis odd

e/d is even

1"‘ GG

P
For each y € F¥,, if m is even,
1)1”71 o
2 1 and 5(y)=1;
For each y € F, , we can know yﬁ =1.

Then by Lemma 1.5, we can obtain the exact val-
ue of n,.
Theorem 2. 2

fined as Section 2. 1.

Let Cp, be the linear code de-

If ¢/d is odd, Cp, is a two-weight code with
the Hamming weight distribution in Table 1.

If ¢/d is even, CD(7 is a three-weight code
with the

Hamming weight distribution in

Table 2.
Table 1  e/d is odd
p=1 (mod 4)
Weight Multiplicity
0 1
Pl pn qhip+(p71)pm—1
P
(pi 1)(1)2”172 +(— 1)”113/“—1 ) P; 1(p2m +(—1)m! P )
p=3 (mod 4)
Weight Multiplicity
0 1
pZ,/’717p2,/’72 qh;p+(*l)%([3*1)p”' 1
(p—D(p™ 7+ r—1.
., 7(le+(_1)(m*l)'?pm)
(_1):11\?Pm*1) p
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Table 2 e/d is even

p=1 (mod 4)
Weight Multiplicity
0 1
(=D P =D - P — i
(p_l)pm ([*2)
pZm*I 7132/7,72 (pil)p/”*(l*\ +pm72dfl 71
(p—D(p 7+
(,71)(,7;;4»21[ 1 ym—d 1)
(7])mpm+c/*l) p p p
»=3 (mod 4)
Weight Multiplicity
0 1
(p—D(p*+ . s
. ) P — prt s
(71)77177(1271)])::14»41 ,_)
Pl — pin (p—1) prd=1 4 prtza=t 1

(p—D(p™*+
. o (pil) (pm+2dfl 7pm71171 )
(—DmEpri

Proof 2

distribution of the code Cp .

Firstly, we determine the weight
Define the following
parameter
N, =] {(x;,x,) € FI\{0,0)}:
Tr(?r”l T4 x 7“)*07
Tr(a,x, +asx,) =0} |
where a = (a,,a,) €EF .

basic facts of additive characters, for each a« =
(a,sa,) €F\{(0,0)}, we have
N, :% E EX(A/(Ifkl o +&T§k2 ) .
Caysay) EF[ZI)'EFﬂ

Ex(z(alxl +‘ayxy,)) — 1=

:GF
DIND WP LCTC SR

[CIRE )GF xEF

> Ex(z(a111+a212))+

() sy )€F EF

E 2 X(y(l‘fbl” + 2ty 4

2 M
Caysay) E]F(Iy,zell"p

By definition and the

il +— {21 +

P

2(a,x; +a,x,)) =
o tata

By Lemmas 1.5 and 1. 6, we have

’ E D0t D)y et =

veF; 1 €F, ©, €F,

LS GG~ ) e/dis odd

yEF, .

L SYG g (— p ) e/d is even

y€F,

JP

p—1 _ getd € ..
1])2 (= p7" DGO  is even

di is odd

PG

By a:(amaz)EF?,\ {(0,0)}, we have

E 20 x(zara) -

<€F, 7 €F,

2 X(zagxg) =0

v, €F,
255q
To compute N,, it is sufficient to determine
the value of the exponential sum

1 2 Ex(yl’”“+za111 .

veF‘EF

Zx(yx,’,’“ﬂ + za,x,)

2, €F,

For yeF, , 1we set d=gcd (k.m), when m/
d is even, m=2e, ¢/d is even, we know the poly-
nomial f (x) :y”kl 2 -+ yx is not a permutation
polynomial over F,; when m/d is odd or m/d is e-
ven, m=2e, e/d is odd, the polynomial £, (x)=

/)/11

y

tion polynomial over F,.

2k 2k
2"+ yr=y(x* ' +x) must be a permuta-

In fact, suppose that there is 0£b€ F, such
that £, (b)) =0. Then [ p—— 1.

primitive element of F, and b=q', then

/m*l

Let ¢ be a

t(p™t —1) = (mod p" — 1) (2)

Let d, :gcd(m,kl), then ged (2k, ,m) =d,
by m/d, odd. Hence ged (pr — 1, p" — 1) =

p/ﬂ N 1
2

(ph—1) and (pY1—1) , so Eq. (2) is con-

tradictory.
Since f;(x) =

poly-nomial over F,,

y(l"’ﬂ’ + x) is a permutation
for each a; € F, there is the
unique solution b; € F, of the equation 1'{’% +x;+
a{’k’ =0. In fact, there is a one-to-one correspon-
dence between a; €F, and b, € F,, and @, =0 corre-
sponds to b;=0.

Hence there is the unique solution wb, € F, of

. 2k; phi _ _
the equation y(x? ' +a;,+wa?’' ) =0, where w=

2
—¢cF,.
v »
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To compute the value of 2, we divide into
two cases.

The first case: e/d is odd. By Lemma 1.7,
we have

Q; :i? Z 2 X(yxfklﬂ + ywa,x,)

P y-u'EF/j ! G]Fq

2 X(yl"g’kz+1 + ywa,x;) =

T, € Fq

#Zrﬂym(n)(—nﬁp*-

yEF,

5 (3w ) =
i=1

we ]F;

LS (G -+

Yy€F,

2
20y (e Tr (25" ) )
1

o :
wEF,

p

Set
Iy ={b b)) € F,,{C0,0)} |

2

Tr (> 0! ) =0}

i=1

F:J — {([)1 ,!)2) e Ff]

Tr( D007 ) #0)

=1

Since m is even, then we have y(y) =1 for
yeF;.

If (by.0,) €T,

o, =D pk);f* D 6op

2 p2 __ pHe H —
N, =1 pr +( p)(zp 1)G(77)+

e o 2
CPOP=DlG
b
¢ 0 CO@ g,
b b

Hence, by Lemma 2.1, the weight of C, is

n, — N, :ujL%(ipe)G(ﬁ) _

4

2 2 _ pe _

q pzp < p);p D6y —
pzm—l _ pzm—z

If (by,b,)ET,

0, = pf“Gm;) SV Gt Tr (O b ) =
1

. x i=
y-,uEF/)

(p—1Dp .
/)727)(,(77)

By Lemma 2. 1, the weight of C, is

n — N, :‘fj);ppr_l(— PG — L2 —

(p—D P 4+ (=D"p™™")
p =1 (mod 4)
l(p _ 1)(p2n172 + (_ 1)/117%pmfl)
p = 3(mod 4)
The second case: e/d is even. By Lemmas
1.7, 1.8 and 1.9, if a, €E\S
0 :% 2 Zx(yl’{’klﬂ + ywa,x,)

]) Yy weE IF/: R G]Fq

2 X(yzé’]xz” + ywa,x;) =§ 2 0=0
r, €F, veF!
2 42 _petdN(p

By Lemma 2. 1, the weight of C, is

2 __ —
ng— N, =L =L Pl piiyGip —

p p
2 p? _ petd o
q pzi) _(=p ;2(]) DG(r;):
__ petd o 2
[)277171 _pZ/u*Z +( P )pgp 1) (}(77) _
(pil)(pZUﬁZ_’_(71)”1(‘071)10]”“[72)
p=1 (mod 4)
(p_1>(p2m 2 + <_1)m+%(p_1>pm+d 2)
p =3 (mod 4)
Ifa, €S

s :% Z Zx(yffklﬂ + ywa,x;) e

P y.u'GF/; x €F,

Ex(yf{;kz o + ywa,x,) =

z,€F
A S GG (— Dt peta
yEFI)'
2 3
Dl D) b)) =
u'EF/: i=1
_pﬁd , , - &
— 2 1(DGG D)y (o Tr( D ()" )
yEF, weEF, =1

If (])] 7[)2)61-‘0

_ petd . 2
g - CPOG =D

GGp

2 p2 _ petd _
N, =1 21) +( P )2(7) D
b b
(—pH(p—1)°
pz

2 _ p2 __ petd _
QPZP +( P ;(P DG(V)

By Lemma 2.1, the weight of C, is

GGp +

Gp =
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¢ —p  p—1 o
— N, =—F+——(— YG(p) —
ny p p p 77
2 p? _ opetd N (4
q 2P (= pTD(p 1>G(72):
b p
p2ml_p2m 2

If (b,,b,)€ET,

G(q) E X "(yw? Tr(Zb’) 1y =

yweF,

(p—l)p“”

03:

GGp
2 42
N, _q pZP
By Lemma 2.1, the weight of C, is

¢—p p—1 v ¢ — P
TNe= T T TG T =
" p P P 7 s
(P o 1)(])2”'72 + (— 1)’”p“l+df1)
p=1 (mod 4)
(p— D) (p™ % 4 (— Dy prid )
p =3 (mod 4)

Secondly, we determine the frequency of
each nonzero weight of CDo' It is sufficient to
consider the values of |I |17, ] .

By Lemma 2. 1, it is clear that

-2 r—1 ’) L— a6
P
e/d is odd
‘ I, |:77o Y - 9
q’fp + L(* ]JKHI)GU])
e/d is even
Since | Iy | <<q". Without loss of generality,

suppose that Iy % . If ¢/d is odd, then for each
c€ F,, there are (x,, ;) € F’ such that

k k
Tr(at' M+t =ceF; .

A |:7p712 E X/(yTr(x{’kl”—i—

b ,
)G,F/)(J.l ’""Z)qu

Hence

. o 2
Ié)zvl)*(fy):(p l)q +
p
7]5*12){/(7@)
, y€E
Zx(y‘r{’ﬁlﬂ) Ex(yxé’kzﬂ) =
« €F, ©, €F,
PoDa P LS Gy py () =
p b yelz«‘;
p—1, 5, 1N m—l m _
> (p™ + (D" p™) p=1 (mod 4)
p—1 2m . (n=D+% 4 m —
(p™"+ (=D 2p") p=3 (mod4)

b

If e/d is even, we have
(=pH(p—1)°
pz
Pt = (p— DA (= DTG )

By Lemma 1.9, A, = p*m — p"7* By the

1181 the frequen-

u’t(fl,) E {pZM 1 _p2m 2 + (}(7])

first two Pless Power Monments
ey A, of b, satisfies
Ay A, F AL =
b A, +6.A, +6,A, =p" 1 (p— Dn

Zm_l

where n:q;JrLil(
p P

obtain Tables 1,2.

—p e )G () —1. Hence, we

2.2 The second case
Fix ¢c€F;? and define

D, ={(x1,2,) € F2, Tr(af" " +247) =¢)
Cp, = {claisay):(ar a,) € Fl)

(®))

where c¢(a,sa.)=(Tr(a; x, +a21'2))(‘,1 ) ED, -

Since CD1 is a linear code over F,, it is inde-
pendent of the choice of ¢. For convenience, we
take c=1.

By Lemma 1. 1 and the computation of IV as
above, we can get the result.

Lemma 2.3 Let n, = | D, |.

e/d is odd, then

Suppose that

1, .

= 2m + (— D™ 1 "y

b b b
p=1 (mod 4)

1 yem

7( Zm+(_1)(m D+5 m)

b b b

p =3 (mod 4)
Suppose that e/d is even, then
Lt 1y
b

p=1 (mod 4)

L ot

P

p =3 (mod 4)
Theorem 2.4 Let CDl be the linear code de-
fined as Eq. (3).

If ¢/d is odd, Cp, is a two-weight code with the
Hamming weight distribution in Table 3.

If ¢/d is even, Cp, is a three-weight code with

the Hamming weight distribution in Table 4.
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Table 3 e¢/d is odd 1
D+= D) Ex(z(alxl + arx,)) +—
p=1 (mod 4 (2) .2y EFLZEF)
Weight Multiplicity E E X (y( Tr(xfkl S ngz 1y
0 1 (&)1, EF.y.2€F,
)'” 2
(p*l)p)’”*? (217)[)%“!’ (P )p”’ﬂ*l X(Z((llf] +a_711)) ::ZZ +
(p—Dp™ >+ D=L 1yt oy o\ +a.+a,
(—D" Papr ! 2p We have
p»=3 (mod 4) 1 . r
. — A= 5 200w 2 Gt 2y Gat =
Weight Multiplicity VEF] ) €F, © €F,
0 1 . 1 . .
(p—D)p» 7+ pp+D | (ZDE —?(7(7])(— ») e/dis odd
2 2
(71)(”) +'”>2pm 1 P o 1 )
o (p—Dpm ' —1 — GO (— p)  e/d is even
(p—Dp™" sz (P (=D pry v t
By (a;,a;) €F\{(0,0)}, we have that
Table 4 e/d is even .Q{z =0,
p=1 (mod 4) Similarly, we have
Weight Multiplicity , 1
5 ! Q)= D (NGGY (— p*) »
YEF
(p—D(p i+ . o
plm _ p:11+2d , ) k, o
(—1ym 1 prtae) Dy (P T (D) ) ) = 1))
— i=1
(pil)pzln 2 p— 1 (pm+2,/ 1 7pm d 1) ?LGF/) .
2 where (b, ,b,) is one-to-one correspondent to (a; »
(p—1)p* 2+ p’””d*—[)gl . as).
(— 1) Dy putd i S To compute the value of 2;, we divide it into
prt " ) —
two cases.
p»=3 (mod4) . .
The first case: e¢/d is odd.
Weight Multiplicit
e(l)g u lf 1C1ty If (bl ,bz ) 6 FO
m—2 P —1 ¢ /
(p—D(p™ *+ pim— gt 0, = p)zx (—y) =
(—1)" 1p111+11 2y yG]F;
2m—2 _ —2
(p—D)p* 2+ Pfl(pmzd—l,pwdﬂ) (p—=Dp GG
—1)ym D 9 pmtd—1 2 2 , .
(—D 2p - N =4 2 p—Dp PG =
pmt2d .
(p—1)p™? b 2

(pm F2d—1 _Pm*dfl )_1

Proof 3 It

Firstly, we determine the weight
distribution of the code C,)l . Fixe=1€F,. De-

fine the following parameter
N, = [{(x1.2,) € Fi;Tr(I{’kHl +
22 =1, Tr(arxy + aya,) =0} |
where a=(a, sa,) EF\{(0,0)}, we have

D

p (x, ,‘z,,>e'JFZ y2€F,

1 (Tr (" +

§7+1>_1)) X(Z((l]l']‘kazl‘?))*
LD D Gt ) —

2
p (s, )EFQyG]F)

Tr () o7
i=1

PP IG(p
— N, =(p—Dp"*

2 £,
(by b)) €Ty w® Tr(2 W) "1y #£0 for
i=1

any w&F, . By Lemma 1.2

0= ( 20 7y G@?)-
,\'-wG]F;
(S ") —1)))
i=1
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2 X pk2 1 /
Tr (D))" 1))/ (— GG = D0 et ywas ) =57 2. = »o=0
i—1 JZG]FAI yEF;
— P A _*PB ~ /N2 ’ qz -
Y GGp Y GpGy)H*y N, :?4—]5#‘1 ‘G
T ZZ: ()" ) By Lemma 2.1, the weight of C, is

. | N“J’ +p G — L — G =
N/ =gt PGl — p GG +p . b

, pvm 1 _ szz _'_ (1)7 l)prkd 2G(7]) —
GOPGGD o (= Tr (D)™ 1)) J(p—D(p”” Cb D)
i—1
p=1 (mod 4)
_(p— D¢ 1 _ 1
N - pz +p G(7]) l(i) 1)(])2/;172 + (— l)m+”'2 j)"'ﬂ{ﬁ)
) ‘ : £ p =3 (mod 4)
GG (— T (bHyr' !
pUGOGGD Y (= Tr( 2 @07 ) facs
(p—Dp™*—pmt 4 , ,,
por ok Q=L S GG (— DF pere
P CTr (D)™ )) p=1 (mod 4) vEF,
i=1 2
’ 2 )1\1
‘ y(w Tr (b)!
(p_l)p2z712+(_1>7lpnzl+ HEZFTX ( ( Z ))
(—DE (T (D) 1)) b en
i=1 Q{%:Pflw — p) .
p» =3 (mod 4) \ p’
Since | I, | <<q". Without loss of generality, Z y (=) =(p—Dp GG,

3‘6]1-‘/:

suppose that I, 7% . For some cE€F,?, there are
(2, ,2,) €F} such that Tr(axty T (xty TH=c€ N, = qiz + prm—lG(v)
P

F;*. By the property of the trace function, the
' ’ n — N, =(p—Dp"

values are presented averagely from F,”.

Hence, set

I (byoby) €T w Tr (M) 1Yy £0 for
i=1

2 .
Iy = (b by) € F o2 Tr(Zb{»’k'H) e any w&F, . By Lemma 1. 2

etd

.\ 2= 7;2 Gap (25 Wy (v
o= (b)) € F T (D)0 ) € Fy\F,? e
i=1 P
ity _
| I ‘—7]2 2 X(yTV(Ip1+]+ Tr(Z(b,) )—1)))
Zp ’G]F/(z z)EF
I{;kz.l) Ly)_%_‘_ , yEF uE]F
EX (—cy) Ex(yz (IS Tr(g(bi)')‘#l)* 1) )*X/(*y)) =
ye]}? kol EF i=
) 7])”[[(}( _——
bk (P*l)qz Z 77 — 3
I)ZE;FX ’ 2p Z
_ 2 . i
L= LG pm(op 2x<—( y=,—gq | ( Tr(;(bl) ))
2p €F, 2p !
’ Hence
p— = 2
Zp p G( ) ‘ Fz ‘ N: :;1)72+p1>h{ ZG(7]) _erd 2G(77) +
The second case: ¢/d is even. )
If as GF{,\S p("d 2G(17)G(7]/)277/(— Tr(Z(]),)pk'ﬂ))
i=1
/ 1 ’ ky )
\Q3 :72 Z X (7y) ZX(ylf +1 —|-y'w61111) . n 7N:1 :M+pﬁd71(}(n) 7[)(41172 .

p yw€EF, ) €F, pz
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2
GGG (— Tr (D)) 1) ) =
i=1

(p . 1)])21”72 . ])m+d71 + i)uﬂrdfl 77/

(T}"(Z(bi)pkHrl)) f)El (mod 4)
i=1

/

(p . 1)p21:172 . pm\a’*l . pm}d*l 7]

2
(Tr (D) )""))  p=3(mod 4)
i=1

Suppose that
by =(p—Dp" "+ (p—Dp G
by =(p—1p™*
by =(p—Dp™ 4 2p" ' G(p

By Lemma 1.9, A, = p™ — p"*.
[18]

By the
first two Pless Power Moments"'*', the frequency
A,,’, of b; satisfies the following equations

{Abl + A/,,_) + AI)3 = pzm —1
blAlzl + bZAI:2 + bSAhS = /)2]”71 (p—Dn

where nZ%(pz’”—p’”H). Hence, we obtain Ta-

bles 3,4.
In Eq. (3), suppose that c€F , \F,”.

larly, we can get the weight distribution of the

Simi-

linear code. The case can be omitted.

3 Conclusions

There is a recent survey on three-weight

[1923]  We remark that the third class of bi-

codes
nary codes is new. We did not find the parame-
ters of the binary three-weight codes of this paper
in these literatures.

Linear codes can be used to construct secret

[24]

sharing schemes . Let wp, and w,,., denote the

minimum and maximum nonzero Hamming
weights of a linear code C. To obtain secret sha-
ring schemes with interesting access structures,
we would like to construct linear codes with the
property that

W/ W > L1

P

We remark that the linear codes in this paper can
be employed in secret sharing schemes using the
framework in Ref. [24].
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