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Abstract: The sparse unmixing problem of greedy algorithms still remains a great challenge at finding an optimal
subset of endmembers for the observed data from the spectral library, due to the usually high correlation of the
spectral library. Under such circumstances, a novel greedy algorithm for sparse unmixing of hyperspectral data is
presented, termed the recursive dictionary-based simultaneous orthogonal matching pursuit (RD-SOMP). The al-
gorithm adopts a block-processing strategy to divide the whole hyperspectral image into several blocks. At each it-
eration of the block, the spectral library is projected into the orthogonal subspace and renormalized, which can re-
duce the correlation of the spectral library. Then RD-SOMP selects a new endmember with the maximum correla-
tion between the current residual and the orthogonal subspace of the spectral library. The endmembers picked in all
the blocks are associated as the endmember sets of the whole hyperspectral data. Finally, the abundances are esti-
mated using the whole hyperspectral data with the obtained endmember sets. It can be proved that RD-SOMP can
recover the optimal endmembers from the spectral library under certain conditions. Experimental results demon-

strate that the RD-SOMP algorithm outperforms the other algorithms, with a better spectral unmixing accuracy.
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0 Introduction

Due to the low spatial resolution of the hy-

1, each pixel in the

perspectral imaging sensor'
hyperspectral image usually contains a mixture of
several different materials. In order to deal with
the problem of spectral mixing. hyperspectral un-
mixing is used to decompose cach pixel' s spec-
trum to identify and quantify the fractional abun-
dances of the pure spectral signatures or endmem-

1**). In the past few years,

bers in each mixed pixe
the linear mixture model, which assumes that
each mixed pixel is expressed as a linear combina-
tion of endmembers weighted by their corre-
sponding abundances', has been widely applied
for hyperspectral unmixing, due to its computa-
tional tractability and flexibility. Under the linear

mixture model, several hyperspectral unmixing
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approaches based on geometry statistics®

and nonnegative matrix factorization'”) have been
proposed. However, some of these methodst®"
are unsupervised and could extract virtual end-
members with no physical meaning. Moreover,
these methods are likely to fail if the pure pixel
assumption is not fulfilled.

Sparse unmixing, as a semi-supervised linear
spectral unmixing approach, has drawn many
scholars’ attention by now. Sparse unmixing has
been proposed to model each mixed pixel in the
hyperspectral image, which assumes that the ob-
served image can be expressed as a linear combi-
nations of spectral signatures from a large spec-
tral library that is known in advance™!, Several
sparse regression techniques, such as greedy algo-

rithms ( GAs)f%,

convex relaxation meth-
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D are usu-

ods' ] and sparse Bayesian methods
ally adopted to solve the sparse unmixing prob-
lem. Convex relaxation methods, such as spectral
unmixing by variable splitting and augmented La-
grangian (SUnSAL)"", SUnSAL-TV'"* and the
constrained spectral unmixing by variable split-

( CLSUn-

SAL)YM | replace the /, norm with the /, norm,

ting and augmented Lagrangian
and use the alternating direction method of multi-
pliers CADMM) to solve the convex optimization
problems. Convex relaxation methods can obtain
the global sparse optimization solution and are
more sophisticated than the greedy algorithms.
However, convex relaxation methods cannot di-
rectly control the sparsity of the sparse optimiza-
tion solution, since the number of endmembers
participating in a mixed pixel is relatively small
compared with the dimensionality of spectral li-
brary. The sparse Bayesian methods, such as
Bayesian inference iterative conditional expecta-
tions (BIFICE)™, have been applied to the
sparse unmixing problem. In Ref. [14 ], the un-
mixing problem is formulated as a hierarchical
Bayesian inference problem, and priors for the
model parameters. The BI-ICE method can obtain
the sparse solution without tuning any parame-
ters. However, it is much more complicated than
the GAs and convex relaxation methods.

The greedy algorithms, such as orthogonal
matching pursuit (OMP)™, and matching pur-
suit (MP), can get an approximate solution for
the /, norm problem without smoothing the pen-
alty function and have low computational com-
plexity. However, the greedy algorithms still re-
main a great challenge in finding the optimal sub-
set of endmembers for the observed data from a
large standard spectral library, without consider-
ing the spatial information. A major drawback of
GAs is that GAs select one or more potential end-
members from the spectral library without con-
sidering the spatial information, which means it
tends to be trapped into the local optimal solu-
tions. To solve the local optimal solutions prob-
lem of GAs, several simultaneous greedy algo-

rithms (SGAs), such as simultaneous orthogonal

matching pursuit (SOMP)™, simultaneous sub-
space pursuit (SSP)"" and subspace matching
pursuit (SMP)M, were proposed. These SGAs
adopt a block-processing strategy to divide the
whole hyperspectral image into several blocks and
pick some potential endmembers from the spec-
tral library in each block. Then the endmembers
picked in each block are associated as the optimal
endmember sets of the whole hyperspectral data.
SGAs can find the actual endmembers much more
accurately than GAs but have the same low com-
putational complexity as GAs. However, SGAs
will adopt some nonexisting endmembers because
of the usually high correlation of the spectral li-
brary, which adopts a block-processing strategy
to select the potential endmembers. And the non-
existing endmembers will affect the spectral un-
mixing accuracy of SGAs.

Here, a novel algorithm is presented,
termed the recursive dictionary-based simultane-
ous orthogonal matching pursuit (RD-SOMP),
for sparse unmixing of hyperspectral data. RD-
SOMP can be split into two steps: an endmember
selection and an abundance estimation step. In
the endmember selection step, similar to SOMP
and SSP, RD-SOMP uses a block-processing
strategy to divide the whole hyperspectral image
into several blocks. In each block, the spectral
library is projected into the orthogonal subspace
and renormalized at each iteration, and then RD-
SOMP selects the endmember with the maximum
correlation between the current residual and the
orthogonal subspace of the spectral library. In
abundance estimation step, the abundances are
estimated using the obtained endmember set un-

der the constraint of nonnegativity.

1 Simultaneous Sparse Unmixing Model

The linear sparse unmixing model assumes
that the observed spectrum of a mixed pixel is a
linear combination of a few spectral signatures
presented in a known spectral library. Let y € R*
denote the measured spectrum vector of a mixed
pixel with L bands, A € R”" the L X m spectral

library, with m being the number of signatures in
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library A. Hence, the linear sparse unmixing
model can be expressed as [

y=Ax +n @b)
where x € R” denotes the fractional abundance
vector with regards to the library A and n € R*
the noise and model error.

The simultaneous sparse unmixing model as-
sumes that several input signals can be expressed
as the different linear combinations of the same
elementary signals. This means that, all the pix-
els in the hyperspectral image are constrained to
share the same subset of endmembers selected
from the spectral library. Then we can use SGA
methods for sparse unmixing, the sparse unmix-
ing model in Eq. (1) becomes

Y=AX +N (2)
where Y € R"¥ denotes the hyperspectral data
matrix with L bands and K mixed pixels, A €
R™" the spectral library, X € R the fractional
abundance matrix, where each column represents
the abundance fractions of a mixed pixel, and
N & R¥¥ the noise matrix.

Under the simultaneous sparse unmixing
model, the simultaneous sparse unmixing prob-
lem can be expressed as

w0 S LY —AX [ <<8 (D)

min | X

X
where | X | denotes the Frobenius norm of X,
| x

trix X, and ¢ the tolerated error due to the noise

ww_o the number of nonzero rows in the ma-

and model error.

2 Recursive Dictionary-Based Simul-
taneous Orthogonal Matching Pur-
suit
In this section, we first present our new al-

gorithm, RD-SOMP, for sparse unmixing of hy-

perspectral data. Then, a theoretical analysis of

the algorithm will be given.
2.1 Statement of algorithm

The whole process of RD-SOMP for sparse
unmixing of hyperspectral data is summarized in
Algorithm 1. The algorithm includes two main

parts: endmember selection and abundance esti-

mation. In the first part, we adopt a block-pro-
cessing strategy for RD-SOMP to efficiently se-
lect endmembers. This strategy divides the whole
hyperspectral image into several blocks. Then, in
each block, RD-SOMP will select several poten-
tial endmembers from the spectral library and add
them to the estimated endmember set. In the sec-
ond part, the abundances are estimated using the
obtained endmember set under the constraint of
nonnegativity.

Algorithm 1 RD-SOMP for hyperspectral
sparse unmixing

Part 1 (Endmember selection) :

1. Initialize hyperspectral data Y and spectral
library A

2. Divide hyperspectral data Y into several
blocks: Y=[Y,,Y,.*+,Y; ], and initialize the in-
dex set S = (), renormalized recursive matrix
Y=A

3: For each block do

4. Set index set S, = @ and iteration counter
k=1. Initialize the residual data of blockd : R, =
Y,

5: While stopping criterion has not been met
do

6: Compute the index of the best correlated

member of ¥ to the actual residual: j
arg max| (R™) "¢, |
of ¥

7. Update support set: S, =S, U J

»» where ¢; is the 7th column

8: Compute X' ZAZIJY,, (Ag, is the matrix
containing the columns of A having the indexes
from S, , and AZ‘/, is the pseudo-inverse of matrix
As, . It is defined as A;/} = (A;Ash )ﬂAEh )

9. Update residual: R’ =Y, fAS[JX’

10 W = PiA (PL (P. = I
AS/,(AE,,AS/) ‘AE/} ) is the orthogonal projection

matrix onto the range space of As,)
11: Renormalize ¢ = ¢,/ ¢ |2+ fori & S,
10: l<—[+1
11. End while
12: Set S=S U S,
13: End for
Part 2 ( Abundance estimation): Estimate

abundances using the original hyperspectral data
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matrix and the endmember set under the con-
straint of nonnegativity.

X < arg min|AsX —Y | , subject to X =0
X
2.2 Notation

Here, we introduce some definitions, and
then we give a theoretical analysis for the RD-
SOMP algorithm.

Definition 1 If x is a vector, x; the ith ele-

ment of x, the [, norm of x is defined as

IIpr:(Z\L

Ix]. =max|z
,

)l p<<oe (D)

(€P)

Definition 2 The (p,q) operator norms of

the matrix A is defined as

(6)

|Al,., = max
2£0

Several of the (p,q) operator norms can be
computed easily using the following Lemma®1"",

Lemma 1

(1) The (1.,9) operator norm is the maxi-
mum [/, norm of any column of A.

(2) The (2,2) operator norm is the maxi-
mum singular value of A.

(3) The (p,o0) operator norm is the maxi-

mum [/, norm of any row of A.

Definition 3 The cross-coherence parameter

pof a spectral library A and a renormalized recur-
sive matrix ¥ equal the maximum correlation be-

tween two distinct atom®

p=max| (A, .y, | (D

m#h
where A,, is the mth column of A, w, the Ath col-
umn of Y. If the cross-coherence parameter is
small, each pair of A, and w, is nearly orthogo-
nal.
Definition 4  The cumulative cross-coher-

ence parameter'® is defined as

u(K) = max max > | (A, y,) | (8)

Al<k jea iy
where the 1ndex set A is the support of all the
spectral signatures in the spectral library A. The
cumulative cross-coherence measures the maxi-
mum total correlation between a fixed atom li-

brary ¥ and K distinct spectral signatures. Partic-

ularly, ;(0) =0,

2.3 Theoretical analysis

The simultaneous sparse unmixing problem
in Eq. (3) is a NP-hard problem, which can be
approximately solved using greedy algorithms or
convex relaxation algorithms. For greedy algo-
rithms, SOMP is used to approximately solve the
optimization problem. Endmember selection and
abundance estimation are the two main parts of

SOMP.
SOMP, the endmembers in the joint support S are

In the endmember selection step of

sequentially selected in the iterations. At nth iter-
ation, an endmember is selected from the spectral
library A which explains the smallest angle be-
tween the current residual R" ' and the spectral

library.

i =arg max| A]

n—1

q

—S’h Ui 9

SOMP will recover a joint sparse representa-

tion with the support S whenever the exact recov-
ery condition (ERC)™* is met

max|AlA, |, <1 (10

Different from endmember selection of SOMP,

RD-SOMP selects the endmember with the smal-

lest angle after the endmember is projected into

the orthogonal subspace and renormalized at nth

iteration.
i =arg rnax” (‘II(” 1 )TRn 1 ”
z@‘?'h
_ P{A
while w{" P =220 1D
Yoo T eialll
where P& =1 — Ag(ATA¢) 1AL .

To clarify the difference of the endmember
selection process between SOMP and RD-SOMP,
consider the situation of the endmember selection
given in Fig. 1. Suppose R""' is the spectral vec-
tor of a mixed pixel, and it is constituted by two
SOMP selects the new
endmember based on the least angle between the
In Fig. 1,
RD-SOMP, on the contrary, se-

lects the new endmember with the least angle be-

endmembers p, and p,.

current residual and the endmembers.

it would be p;.

tween the current residual and the orthogonal
subspace of the spectral library. It is clear that
RD-SOMP will select p, instead of p;.

Theorem 1 RD-SOMP will recover a joint
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Fig.1 TIllustration of the flaw of endmember selection step

sparse representation with the support S when-
ever ERC is met.

| (wiAs) WAl ], <1 (12)

Proof According toY = ZiesA"X*‘ , for

the selection thresholding to select endmember
in the support S, we need the inner product of
signal with the corresponding atom w, which is
part of the support S to be larger than the inner
product with any atom which is not part of the
support S.

i €S|y Y | = [y Y LY ¢S A3

Concerning the fact that | X||,.. = [|X:].,
the inner product Eq. (13) can be rewritten as

i€ S:wlY] = I1X: ] [y A0 [—
2 ”X] ”1 ‘ <W19Ak>‘>

KE S, ki
”Xi ”l ‘ {(yisAD ‘_ ”X”Lm Z ‘ (yrisAL) ‘
RE S ki
(14)
i S:wyl =210 [y .a0 | <
kES
||X||ly°oz‘<|lljaAk>‘ (15
ke S

Using Definition 1, the above Eqgs. (14,15)
can be simplified into

S Si”‘l’;rY”l = ||Xl||1 ‘ (yisAp) ‘_

IX],. 2(K—1 (16)
k € S: ||X||l.oo 2 ‘ <l”k 9A]'> ‘: ”X”l,oo ;(K)
kES
an

Introducing Eqgs. (16, 17) into Eq. (13), we
can obtain

LY, - X[ |y s A _N“X”l.w ;(K_D =1
Xl,oc ﬂ(K)

lwivl, =
(18)

As | X]li.. = | X: .+ Eq. (18) can be rewritten as

|y A | = ””’§(” 1”,00 (K — 1) + u(K) =
i1
(K — 1) + 2(K) (19

After ¢ iterations, ¢ correct endmembers have
been selected and the residual R, is still a linear
combination of the endmembers in the support S .,
L e.

R, =AC, 20)

RD-SOMP will select a correct endmembers
at the next iteration, if the maximum correlation
between the residual R, and the atom y, which is
in the support S is larger than the maximum cor-
relation between R, and any atom that is outside
the support I. So we can make sure that the ex-

pression satisfies

maxeeq |yiR, | _ |WIR, [,
maxie; | w/R, | [WIR. |\

Let Z=WIAC, , Eq. (21) can be rewritten

as the following manner by using Lemma 1.

<1 @D

[WSAC .. WA (WEAS) 'Z,..
” WgA SCt ” 1,00 Zl.,:x: -
|wiA (wia) '] (22)

Using Lemma 1, Eq. (22) can be rewritten
as
WA (WiAD | = (WA ' wsAl],, <
| wiao || wsAll] ., (23)
To bound the first term of Eq. (23), the fact
that whenever | D|,, << 1one has | I+ D) '|,, <
(1—|D|,.» " is adopted.
Set D=WIAs—1I, then
ID]. ZY?EHSX( [(yisAD — 1]+ Z} [y, AD ) <
1—%;3\<q/,-,Ai>\+pEK—1) (24)
Invoke Eq. (19) and Eq. (24), the first term

of Eq. (23) can be rewritten as

T -1 1
| (wias) ”“<meisn\<w~Af>\—ﬁ<K—1><
1
25
n(K) (25
Then the second term of Eq. (23) can be ex-
pressed as
[wsAL ] =max D> [ (yi oA [ < (KO

kES ies

(26)
Introducing Eqgs. (25, 26) into Eq. (23), one
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can attain
l(wia) 'wsAl],, <1 27

This completes the argument.

3 Experiments

A simulated hyperspectral data set is used to
demonstrate the performance of the proposed al-
gorithm. In the experiment, the RD-SOMP algo-
rithm is compared with two SGAs (SOMPM",
SMPM), and two convex relaxation methods
(i.e.» SUnSALMY and SUnSAL-TV-#), The
abundance nonnegativity constraint has been
taken into account for all the algorithms. The TV
regularizer used in SUnSAL-TV is a nonisotropic
one. All the GAs have adopted the block-process-
ing strategy to efficiently select actual endmem-
bers. All the parameters of the test algorithms
are tuned to their best performances.

The spectral library A used in the experi-
ments is the United States Geological Survey
(USGS) digital spectral library (splib06a)t*’,
which comprises 498 spectral signatures with re-
flectance values given in 224 spectral bands. Fif-
teen spectral signatures are chosen from the spec-
tral library to generate the simulated data. Fig. 2
shows five spectral signatures used for the experi-
ments. The other ten spectral signatures that are
not displayed in Fig. 2 include Rhodochrosite
HS67, Neodymium _ Oxide GDS34, Grossular
WS484, Monazite HS255. 3B, Meionite WS700.
HLsep , Zoisite HS347. 3B, Spodumene HS210.
3B, Wollastonite HS348. 3B, Rhodonite HS325.
3B, and Pigeonite HS199. 3B. The metric used to
assess unmixing accuracy in all the experiments is
the signal-to-reconstruction error ( SRE) [,
which is used to measure the quality of the recon-

struction abundances of spectral endmembers.

, , E[[x]3]
SRE is defined as SRE = ——"—%>—, and
E[|x—x]:]
measured in unit decibel; SRE(dB) =

10log,, (SRE) . In general, the larger the SRE,
the closer the estimation of the truth.

In the experiments, six data sets of 50 pixel X
50 pixel and 224 bands per pixel are generated,

which contain a different number of endmembers:

5, 7,9, 11, 13, 15. In each simulated pixel, the
fractional abundances of the endmembers are ran-
domly generated, following a Dirichlet distribu-

). Note that there is no pure pixel in simu-

tion"
lated data 1, and the fractional abundances of the
endmembers are less than 0. 8. After simulated
data 1 is generated, correlated noise or Gaussian
white noise is added to simulated data 1, having
levels of the signal-to-noise ratio
| Ax |2
In ]2
noise is generated using the AWGN function in
MATILAB. The correlated noise is obtained by

low-pass filtering i. i. d. Gaussian noise.

different

(SNR =10log,, ( ) ). The Gaussian white

1.0 1.0
9 0.8 3 0.8
E 0.6 § 0.6
5 3
S 04F < 0.4
Q
~ 02t 0.2
0.0 Tl S 0.0
0.51.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 25
Wavelength/nm Wavelength/nm
(a) Axinite HS342.3B (b) Samarium Oxide GDS36
1.0 1.0
o 08T o 0.8
Q Q
506 §06¢1
B g
= 04 < 04
M2t ®oat
0.0 (R E— 0.0 .
0.51.0 1.5 2.0 25 0.51.0 1.5 2.0 25
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(c) Chrysocolla HS297.3B (d) Niter GDS43(K-Saltpeter)
1.0
0.8
8
g 06+
5]
% 0.4
021
0.0 L
0.51.0 1.5 2.0 2.5
Wavelength/nm

(e) Anthophyllite HS286.3B
Fig. 2 Five spectral signatures from USGS used in our

simulated data experiments

Figs. 3, 4 show the SRE results as a function
of endmember number obtained using different
test methods. The SREs of all the test methods
decrease when the endmember number increases.
RD-SOMP, SOMP, SMP, and SUnSAL-TV per-
form better than SUnSAL. Among all the meth-
ods, RD-SOMP and SMP behave better than the
other methods, and RD-SOMP can always obtain
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SUnSAL
SUnSAL TV
SMP

SOMP
RD-SOMP

NN NN
SN A O

Fig. 3 Results of the simulated data with 30 dB white

noise (SRE as function of endmember number)

SUnSAL
SUnSAL TV
SMP

SOMP
RD-SOMP

Fig. 4 Results of the simulated data with 30 dB correlated

noise (SRE as function of endmember number)

the best result. Fig. 5 and Fig. 6 show the SRE as
a function of SNR when the endmember number
is nine. The SREs of the test methods decrease
with the decrease of SNR. As shown in Fig. 5 and
Fig. 6, all the SGA methods are superior to SUn-
SAL and SUnSAL-TV. The result indicates that,
all the SGA methods adopt the block-processing
strategy to effectively pick up all the actual end-
members. Amongst all the SGA methods, RD-
SOMP achieves an overall optimal performance.
Fig. 7 shows the number of potential end-
members obtained from the spectral library using
all the SGA methods. RD-SOMP can select the
actual endmembers more accurately than SOMP

and SMP. All the GAs have adopted the block-

SUnSAL
SUnSAL TV
SMP

SOMP
RD-SOMP

Fig. 5 Results of the simulated data with white noise when
endmember number is nine (SRE as function of

SNR)

SUnSAL
SUnSAL TV
SMP

SOMP
RD-SOMP

Fig. 6 Results of the simulated data with correlated noise
when the endmember number is nine (SRE as func-

tion of SNR)

processing strategy to efficiently select actual
endmembers. Here, we discuss how to properly
set the block size for all the GAs. In general, in
the same simulated data experiment, the number
of selected endmembers by a GA algorithm will
decrease as the block size increases. However, a
large block size causes missing of some actual
endmembers. Note that the block sizes set of all
the GAs is different but tuned to their best per-
formances to achieve the optimal results. It is
worth mentioning that the nonexisting endmem-
bers in the estimated endmember set will have a
negative effect on the reconstruction of the abun-
dances corresponding to the actual endmembers.

RD-SOMP selects a new endmember from the or-
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SMP (white)

SOMP (white)
RD-SOMP (white)
SMP (correlated)
SOMP (correlated)
RD-SOMP (correlated)

Fig. 7 Results obtained by three SGA methods on the sim-
ulated data with 30 dB white noise or correlated
noise (Number of retained endmembers as function

of endmember number)

thogonal subspace of the spectral library at each
iteration, which can select the actual endmembers
more accurately than SOMP and SMP. It indi-
cates that RD-SOMP performs better than both
SOMP and SMP.

Table 1 shows the processing time measured
after applying the tested algorithms to the simu-
lated data with 30 dB white noise. The algo-
rithms are implemented in MATLAB 2009a and
executed on a desktop PC with an Intel Core
(TM) i5 CPU (3. 2 GHz) and 4 GB of DRAM
memory. RD-SOMP, SOMP and SMP have simi-
lar computational complexity while the SUnSAL-
TV algorithm is far more time-consuming com-

pared with the other algorithms.

Table 1  Processing time (s) measured after applying the

tested methods to simulated data with 30 dB white

noise
SUnSAL- RD-
Data cube SUnSAL SOMP  SMP
ata cube n. S()MP
Simulated ~
dat 43.07 142.26 8.096 8.225 5.903
ata

4 Conclusions

A new greedy algorithm is presented, termed
the RD-SOMP for sparse unmixing of hyperspec-
tral data. In the existing SGA methods, end-

member selection and abundance estimation are

two main parts. In the endmember selection
step, the endmember selection criterion of RD-
SOMP is different from SOMP and SMP. SOMP
and SMP select a new endmember with the least
angle between the current residual and the spec-
tral library, while RD-SOMP firstly projects the
spectral library into the orthogonal subspace and
renormalizes it to reduce the correlation of the
spectral library, and then RD-SOMP selects a
new endmember according to the maximum cor-
relation between the current residual and the or-
thogonal subspace of the spectral library. Thus,
RD-SOMP can select the actual endmembers
more accurately than SOMP and SMP. It is obvi-
ous that the more accurately the actual endmem-
bers are selected, the better the abundances will
be estimated. Experiments on the simulated data
also demonstrate that the RD-SOMP algorithm is

more effective for sparse unmixing than other

SGA algorithms.
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