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Abstract: Signals can be sampled by compressive sensing theory with a much less rate than those by traditional

Nyquist sampling theorem, and reconstructed with high probability, only when signals are sparse in the time do-

main or a transform domain . Most signals are not sparse in real world, but can be expressed in sparse form by

some kind of sparse transformation. Commonly used sparse transformations will lose some information, because

their transform bases are generally fixed. In this paper, we use principal component analysis for data reduction,

and select new variable with low dimension and linearly correlated to the original variable, instead of the original

variable with high dimension, thus the useful data of the original signals can be included in the sparse signals after

dimensionality reduction with maximize portability. Therefore, the loss of data can be reduced as much as possi-

ble, and the efficiency of signal reconstruction can be improved. Finally, the composite material plate is used for

the experimental verification. The experimental result shows that the sparse representation of signals based on

principal component analysis can reduce signal distortion and improve signal reconstruction efficiency.
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0 Introduction

Principal component analysis (PCA) is one
of the most commonly used multivariate statisti-

cal techniques™

1 It uses an orthogonal mathemati-
cal transformation to convert the observed values
of a set of possible dependent variables to princi-
pal components, the values that are not linearly
related . The number of principal components is
less than or equal to the number of original varia-
bles. Only when the data is combined with nor-
mal distribution, the principal component is inde-

pendent from each other. PCA is sensitive to the
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correlation level between the original variables. It
is also known as Hotelling transform, discrete
KLT transform or proper orthogonal decomposi-
tion in different fields.

By projecting the data into the low dimen-
sional space and obtaining the most possible fea-
tures of the original data, PCA can be used to
deal with the data of high dimension, noisy and
high correlation. So far it has developed into a
kind of exploratory data analysis and prediction
model in terms of feature extraction using covari-
ance or correlation matrix decomposition or using

a set of matrix signal values. In recent decades,
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scholars have looked into the characteristics of
PCA extraction and dimension reduction in differ-
ent disciplinest®*. Wold et al.' used cross ex-
amination to determine the number of PCA prin-
cipal components, and a PCA—method for model

1) introduced "time lag transfer"

prediction. Ku
to statistical monitoring, and developed the moni-
toring method of the previous static PCA to a dy-
namic PCA method, which was applied to the de-
tection of the disturbance of the dynamic multiva-
riable system.

As long as the signals are sparse, through
the sampling rate of compressive sensing (CS)is
far lower than that of the traditional Nyquist

791 The theory must be prem-

sampling theorem
ised on the sparsity of the signal, and PCA can be
used for data dimensionality reduction. Masiero
et al.™™ used PCA to find transformations to
sparsify signals for CS to retrieve. They dynami-
cally adapted non-stationary real-world signals
through the online estimation on their correlation
properties in space and time, and then utilized
PCA to to derive the transformations for CS. Li
et al. ' proposed an adaptive block compressive
sensing based on edge detection at the encoder,
and a smoothed projected LLandweber (SPL) re-
construction algorithm based on principal compo-
nent analysis at the decoder. The reconstruction
algorithm used PCA to train a dictionary adapting
to image structure with hard thresholding, thus
the image blocking effects were eliminated effec-
tively and the reconstructed image quality was

2] presented a real-time

improved. Dietz et al.
dynamic image reconstruction technique, which
combined CS and PCA to achieve real-time adap-
tive radiotherapy with the use of a linac-magnetic
resonance imaging system. Li et al. ™ proposed
an efficient image fusion framework for infrared
and visible images on the basis of robust principal
component analysis (RPCA) and CS. Compared
with several popular fusion algorithms, this
framework could extract the infrared targets
while retaining the background information in the
visible images.

Therefore, the compressive sensing method

based on PCA is proposed to provide a better so-

lution to sparse data representation problem of

huge amount of ultrasonic phased array signal.

1 Principal Component Analysis

PCA is to reduce the dimension of the origi-
nal data space by constructing a new set of latent
variables, and then extract statistical features
from the mapping space, therefore to understand
the spatial characteristics of the original data.
The variables of the new mapping space are com-
posed of linear combination of the original data
variables, which greatly reduces the dimension of
the projection space. The number of new varia-
bles is less than that of the original variables,
while still carry useful information of the original
data as much as possible. Its contents include the
definition and acquisition of main elements, as
well as the principal component of the data recon-
struction. Since the statistical characteristic vec-
tors of the projection space are orthogonal to each
other, the correlations between variables are
eliminated, and the complexity of the original
process characteristic analysis is simplified.
Therefore, this method can effectively identify
the most important elements and structures in the
data, remove the noise and redundancy, reduce
the original complex data, and reveal the simple
structure behind the complex data.

Given the original data x = (x;) yxms x is
standardized to eliminate the dimensional effects,

and the expression is shown as

oy =T (D

Y R
where z;, = ?El’liz" and S = nflzh

i—1

(x5 —2;) s j=1:2, .
The correlation coefficient matrix is calculat-

ed between the data variables after standardized

operation, and the covariance matrix R is
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where the element rj; represents the correlation
coefficient of the original variable 1'/_, and 2’ » and

ru =71y » shown as
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Jacobi method is used to solve the character-
istic equation |M — R|=0, and the eigenvalues of
the covariance matrix and the corresponding eig-
envectors are obtained. Then it is sorted accord-
ing to the size of the order, and the characteristic
value is recorded as [A; sAss+**sA, | » and the cor-
responding feature vector is recorded as [ p,sps
vee ,pm]

pi=1[pPaspess D] 4)

Then the main elements are calculated ¢, =
Xp: ,» where the principal component ¢; on behalf
of the projection of the data matrix x on the direc-
tion of the load vector corresponding to the main
element.

The contribution rate of each principal com-

. A .
ponents is calculated as — i=1,2,,m, as

n

hITY
k=1
hIPY
1

well as the cumulative contribution rate *—,i =

Zz\k

k=1

1,2,.m.

In general, the 1th, 2th, kth principal com-
ponent corresponding to the eigenvalues of A, A, »
<+, A, will be selected, where the cumulative con-
tribution rate of eigenvalues is between 85% and
95%.

In addition, according to the needs. the cor-
responding dimension (that is, the number of
principal components) is selected to composition

of the transformation matrix

[} iz Tk
21 L3 Yok

A= | L . (5)
Yl () Vonk

Finally, the new data after dimension reduc-
tion is calculated as

s=AT . x (6)

2 Compressive Sensing Method Based
on PCA

CS is a novel theory of sampling and restora-
tion for sparse signal™. As long as the original
signals are sparse in the time domain or under
some kind of orthogonal transform, the signals
can be sampled in a low sampling rate, and the o-

riginal signals can be reconstructed with high

probability.
2.1 Sparse representation of signals

CS is based on the premise that the signal
must be sparse. When sparsifying the signals,
the appropriate sparse transform base according
to the signal characteristics is necessary to be se-
lected.

Suppose an original x signal with the length
of N, the number of signal is M, a N XM dimen-
sion matrix can be constructed with the original
signal, because there are mutual relationship be-
tween the amplitude of each signal in each time
point. According to the principal component anal-
ysis, the covariance matrix obtained of N X N di-
mension can be used as the sparse transform base
for sparse representation of signal. Then, the o-
riginal signal x can be expressed as

N
x= >0, or x =WO (D

i=1
where W= [¢ns ¢u... » n ] is the transformation
matrix of N X N dimension, @ the sparse coeffi-
cient vector obtained by x according to the princi-
pal component analysis, and must meet the fol-
lowing formula
O=V"xor 0 = x,y;, >=y'x (8
PCA reduces a kind of high dimensional data
to low dimensional data. Then, a set of new vari-
ables in low dimensional replace the original vari-
ables in high dimension satisfies the conditions
associated with the original ones. Therefore, the

new variables can carry the maximum information
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of the original ones. PCA can be used to make
sparse representation of the signals. Compared
with the commonly used sparse representation
method, the sparse signals obtained by the pro-
posed method is more closely related to the origi-
nal signals.
According to Section 1, the sparse coefficient
vector of original signal is calculated as
O=¥"x (9
where ¥ is the transformation of matrix A in Sec-

tion 1.
2.2 Projection observation of signals

The core of the compressive sensing theory is
to design the measurement matrix, and directly
determine whether the compressive sensing can
be implemented successfully. If the signal x has a
sparse representation under an orthogonal trans-
form ¥, a measurement matrix @, ¥ & RV,
which is not related to the transform base ¥ , and

a linear measurement of M dimension can be ob-

tained
Vi =<0, > (10)
Suppose the production measurement vector
is y=[y1+y25... syu]s then
y =00 =0¥" x (1D

In order to restore the original signal with
high probability, the production measurement
matrix @, which is not related to the sparse
transform base ¥ and satisfied with the restricted
isometry property, is needed to be constructed to
make production transformation of the signal.
Gauss random measurement matrix is not related
to the majority of the fixed orthogonal base and
satisfies the restricted isometry property, so the
Gauss matrix can be used as the projection obser-

L4181 - For the ultrasonic phased ar-

vation matrix
ray signal, the Gauss random measurement ma-
trix is multiplied with the sparse coefficient of the
phased array signal, and the observation vector of
the signal can be obtained.

Suppose the measurement matrix @ is M X N

dimension, and @€ R™*Y, then the general term

L. 1
Di,j) =—h, (12)
R v

Each element in the matrix is independent to

the Gauss distribution with the mean value of 0,

. 1 . L.
and the variance of —— . This matrix is not re-

lated to the vast majority of sparse signals, and
requires less measurement values in the recon-
struction. Gauss random measurement matrix is
a matrix with very strong randomicity but high

uncertainty. For a signal with a length of N and a
sparse degree of K, only M}cKlog(%) meas-

ured values are needed to recover the original sig-
nal with high probability, where ¢ is a very small

constant.
2.3 Sparse reconstruction of signals

During the process of compressive sensing,
reconstructing the signal x from the observations
y is the inverse problem related to compression
sampling, and is called signal reconstruction. By
solving Eq. (11), the reconstructed signal can be
obtained. This problem is underdetermined with
infinite solutions. Candes et al. proved that the
underdetermined problem can be solved by sol-
ving the minimum /, —norm™*!, that is,
y=00 =P¥ " x (13)

Eq. (13) is a linear programming problem,

min@®, s. t.

and is also a convex optimization problem. Tak-
ing the reconstruction error into account, it is
converted into a minimum /,;-norm problem as

DO —y, < e (14)

During the process of signal reconstruction,

min®, s. t.

convex optimization algorithm and greedy itera-
tive algorithm are commonly used”™. One kind
of algorithm is based on convex optimization,
mainly by increasing the constraint to obtain the
sparsest. And commonly used algorithms are ba-
sis pursuit algorithm and gradient projection
sparse reconstruction algorithm. The other kind
of algorithm is based on greedy iterative algo-
rithm, mainly by the combination of local optimi-

zation method to find the non-zero coefficients, in
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order to approach the original signal. Commonly
used algorithms are matching pursuit algorithm

and orthogonal matching pursuit algorithm.

3 Experiment and Results

A composite plate is the experimental object.
There are nine piezoelectric elements in the linear
array arranged on the plate with an equal interval
of 12 mm. In signal acquisition, data collection
points are 1 024, and sampling frequency is f,=
1 000 000 Hz.

One array element is set as a drive to trans-
mit signal, and the other eight elements as the
sensor to receive the reflection signal. Each array
element stimulates the signal in turns, then each
degree corresponds to 9 X 8 signals, and 9 X 8 X
181 sets of data can be obtained. The 90° direc-
tion of the data emitted by No. 0 array element
and received by No. 1 array element is selected as
the experimental data, and the processing method
of other angles is consistent with this. The time

domain waveform of the data set is shown in

Fig. 1.

Fig. 1 Waveform of original signal in time domain

At first, PCA is used to deal with the wave-
form obtained by the 90° direction of the phased
array signal emitted by No. 0 array element and
received by No. 1 array element. The sparse rep-
resentation of the original signal is obtained, as
shown in Fig. 2. It can be seen that the sparse co-
efficient of the phased array signal after PCA
transform is mostly zero or close to zero, which is

consistent with the characteristic of sparse signal.
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Fig. 2 Sparse coefficient after principal

component analysis

Then, the length of utrasonic phased array
data is N=1 200, and the number of observations
M =400 is selected to complete the operation of
signal projection observation, and the waveform

is shown in Fig. 3.

Fig. 3 Signal obtained by projection observation

Finally, the basis pursuit algorithm is used
to deal with the ultrasonic phased array signal,
and the reconstructed signals obtained are shown

in Fig. 4.

4 Experimental Error Analysis

The reconstructed signal based on orthogonal
matching pursuit algorithm has some differences
in the signal waveform, compared with the origi-
nal phased array signal. In order to analyze the
effect of the reconstruction algorithm more accu-
rately, the reconstructed error with different re-
construction algorithm is displayed numerically,
as shown in Table 1. The absolute error AV and

the relative error § are calculated as below
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Enlarged in Fig.4(b)

t/ ms
(a) Reconstruction of the original signal

t/ ms
(b) Local enlargement of reconstructed signal

Fig. 4 The signal reconstruction based
on basis pursuit algorithm
AV =1V, —V,| (15)
Vo —V
3:"V7“x1oo% (16)
1

where V, is the amplitude of reconstructed signal
at the point of maximum amplitude deviation,
and V| the amplitude of original phased array sig-

nal at the same point.

Table 1 Reconstruction error
Algorithm Absolute error Relative error
BP 0.187 1 0. 39
GPSR 2.932°5 0.061 6
OMP 0.061 6 0.065 9

In Table 1, GPSR is gradient projection for
sparse reconstruction algorithm, and OMP is or-
Fig. 5
shows the reconstructed signal obtained by BP,
GPSR and OMP, respectively.

thogonal matching pursuit algorithm.

Table 2 shows the error comparison of some
common transform base and the principal compo-

nent analysis method.

Original

Amplitude / V

Enlarged in Fig.5(b)

t/ ms
(a) Reconstruction of the original signal

Original

t/ ms
(b) Local enlargement of reconstructed signal

Fig.5 The signal reconstruction based
on BP, GPSR and OMP
Table 2 The error comparison

Orthogonal Absolute Relative

transformation error error
PCA 0.187 1 0.003 9
PCT 0.894 3 0.018 8
DFT 21.022 9 0.012 7

In Table 2, DCT is discrete cosine trans-
form, and DFT is discrete fourier transform.

The analysis of experimental error indicates
that the relative error is relatively lower than that
of commonly used method. That is, the proposed
method can be applied to signal sparse representa-

tion of compressive sensing.
5 Conclusions

This paper studies the compressive sensing
sparse sampling method based on PCA. This
method not only solves the difficulty in storage
and processing due to the large amount of data

obtained by ultrasonic phased array structural
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health monitoring, but also effectively improves
the relationship between the original signal and
the signal after sparse representation. And the
experimental result shows that PCA can be used
to reconstruct the signal obtained from the phased
array structure health monitoring after sparse
representation of the signal with small recon-
struction error. In future research, we can choose
more optimized projection observation matrix,
and more efficient reconstruction algorithm to re-

construct the ultrasonic phased array signal.
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