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Abstract: Aero-engine direct thrust control can not only improve the thrust control precision but also save the oper-
ating cost by reducing the reserved margin in design and making full use of aircraft engine potential performance.
However, it is a big challenge to estimate engine thrust accurately. To tackle this problem, this paper proposes an
ensemble of improved wavelet extreme learning machine (EW-ELM) for aircraft engine thrust estimation. Ex-
treme learning machine (ELM) has been proved as an emerging learning technique with high efficiency. Since the
combination of ELM and wavelet theory has the both excellent properties, wavelet activation functions are used in
the hidden nodes to enhance non-linearity dealing ability. Besides, as original ELM may result in ill-condition and
robustness problems due to the random determination of the parameters for hidden nodes, particle swarm optimi-
zation (PSO) algorithm is adopted to select the input weights and hidden biases. Furthermore. the ensemble of the
improved wavelet ELM is utilized to construct the relationship between the sensor measurements and thrust. The
simulation results verify the effectiveness and efficiency of the developed method and show that aero-engine thrust
estimation using EW-ELM can satisfy the requirements of direct thrust control in terms of estimation accuracy and
computation time.
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0 Introduction

Since aero-engine is one of the most critical
subsystems in aircraft with the primary duty to
provide thrust for aircraft stably, safely and relia-
bly, the main purpose of aero-engine control is to
regulate and manage the thrust. However, the
thrust of engine cannot be measured directly in

flight.

choice but to take parameters like rotational speed

Traditional control methods have no

and pressure ratio that can be measured by sen-
sors as feedback signals. Therefore, the thrust
control can be achieved by controlling parameters
that are closely related to thrust and can be easily

1-2]

measured" Nevertheless, due to the wide
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working range and rapid changes of working con-
ditions in the whole flight envelope, parameters
like rotational speed and pressure ratio cannot re-
present the thrust accurately any more. In addi-
tion, with manufacture and assembly tolerances
and gradual degradation of engine performance
during service period, the relationship between
thrust and sensor measurements becomes more
complicated. All these factors lead to inaccuracy
in traditional indirect thrust control. In order to
guarantee the high performance and safety of aer-
o-engine, the concept of conservative design is
usually adopted to reserve enough safety margins
so as to make up the uncertainties, but this is at the

price of that the potential performance of aero-
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engine may be not performed sufficiently™. To
make full use of the aero-engine potential per-
formance so as to improve thrust and increase the
economic efficiency, it is quite necessary to realize
direct thrust control where the thrust estimator
can be seen as a virtual sensor and the estimated
thrust is taken as a feedback signal"*™'. Tt can be
seen that the estimation of thrust is crucial for di-
rect thrust control, but how to estimate engine
thrust accurately is a big challenge. To tackle this
problem., this paper proposes an ensemble of im-
proved wavelet extreme learning machine (EW-
ELM) for aircraft engine thrust estimation.
Extreme learning machine (ELM) is a novel
learning technique for single-hidden layer feed-
forward neural network, which is proposed by

167 Instead of iteratively adjusting

Huang et al.
learning parameters like many gradient-based
methods, ELM randomly generates the input
weights and hidden biases and calculates the out-
put weights analytically. Thus it can learn much
faster than traditional neural networks and sup-
port vector machine with similar or better gener-
alization performance™® . With the remarkable ad-
vantages, ELLM has attracted lots of attentions.
However, due to the random initialization of the
hidden neuron parameters, limitations still exist
such as ill-condition and robustness problems.
Besides, the choice of the activation function type
also has great influence on the network perform-

ancel’ 1,

For these factors, the performance of
the algorithm may be not so good as expectations
when applied to real problems.

To alleviate the above weaknesses, in this
work, some modifications are made on the basis
of original ELM. As the combination of ELM and
wavelet theory has both the excellent properties
of wavelet transform and the powerful capability
of ELM, wavelet activation functions are used in
the hidden nodes to enhance non-linearity dealing
ability. Besides, a simple and efficient optimiza-
swarm optimization

tion algorithm, particle

(PSO) is used to select the input weights and hid-

den biases. Moreover, the optimal candidates are
selected and made ensemble to improve stability.
Then some experiments are carried out to train

and test the thrust estimator.

1 Preliminaries

In this section, a brief review of ELM and

PSO are given to provide necessary backgrounds.
1.1 Extreme learning machine

For a given data set of N arbitrary distinct
samples Q=1{x;, t;}V, x;=[xi s s> sxs | ER"
is the input vector and t;=[t; sti s*** +1;, | ER™ is
the corresponding target vector. The ELM with L
hidden nodes and activation function g(x) can be
expressed as

L
Eﬂ,g(w,- e x;, +0) =t

i=1

j=1,N (D

where w,=[w; »wy s+ »w, |Tis the weight vector
connecting the i-th hidden node and the input
neurons, b; the bias of the /-th hidden node, and
B =[R2+ +Bm ] the output weight connect-
ing the i-th hidden node and the output nodes.
The N equations can be rewritten in form of
matrix
HB=T (2)

where

L L tN ] N

and H is the hidden layer output matrix
g(w, o« x, +b) -

H= : :
(W, o Xy +by) e

g(w, « x; +b.)

glwp « xy +b.)] v
(®))
As analyzed in Ref. [6], the hidden node pa-
rameters w; and b; can be simply assigned with
random values and do not need tuning, the output
weight matrix is the only parameter that should
be calculated, which can be determined by see-
king the least-square solution to the given linear
system as follows
p=H'T (4

where H' is the Moore-Penrose generalized in-
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verse of matrix H, which can be calculated
through orthogonal projection H' = (H"H) ' H"
when H"H is nonsingular.

On the basis of ridge regression theory™, it
was suggested that a positive value should be in-
troduced to the diagonal elements of H'H to im-
prove stability and achieve better generalization
performance when determining the output weight
g

Thus, Eq. (4) becomes

B=(H'H+AD 'H'T (5)

1.2 Particle swarm optimization

PSO is a novel evolutionary algorithm which
is developed by Kennedy and Eberhart?*, As a
population-based stochastic optimization method
inspired by the social behaviors of organisms like
fishes in a school or birds in a flock, PSO has
found many applications in solving complex opti-
mization problems and shown promising perform-
ance'!,
In PSO algorithm, a swarm consists of many
particles and each individual, which represents a
potential solution to the task at hand, keeps track
of its position, velocity and best position found so
far. The global best position in the searching
space can be found after some iterations. In every
iteration, each particle adjusts its velocity to fol-
low the two best values: The best position pbest;
the particle has arrived and the best position gbest
any particle in this population have achieved.
Then a new position of each particle is obtained
and assessed by the fitness function. Suppose the
size of the population is N and dimension of the
searching space is D. The present position of the
i-th particle is represented as X; = (x}, 2%, =+,
x¢), and the movement velocity is denoted as
V,= (v, v}, «»+, v¢). The particles can update

their velocities and positions with the following

[15]

equations
v (t+ 1) =wof! (1) +c¢; * rand{[ pbest! (t) —x¢ (t) ]+
¢, * rands| gbest’ (t) — x4 (1) ] (6)
{41 =2 @) + o (0 «P)

1<i<N.,1<<d<D

where w is called the inertial weight, ¢, and ¢, are
the learning factors and usually selected as con-
stant 2, and rand{ and rand$ are random numbers

in the region [0, 1].

2 EW-ELM

As discussed in Refs.[9-10], the proper
choice of activation functions for the neurons in
hidden layer is of great importance to achieve sat-
isfying performance. Aiming at improving the
convergence of algorithm, a dual activation func-
tion composed by an inverse hyperbolic sine and a
Morlet wavelet was adopted in Ref. [16], which
obtained good performance. Following that, this
paper uses the same activation function in the hid-
den nodes combining neural and wavelet theory to

improve prediction capability, that is
g(a) :% [arcsinh(2) + cos(52)e" "] (8)

The dilation and translation factors of wave-
lets need to be initialized in prior and then the
PSO is used to improve the wavelet ELM. The
general flowchart for EW-ELM algorithm is de-
picted in Fig. 1 and the detailed steps are as fol-
lows.

Start

Generate initial swarm

*.—

Evaluate particle fitness

The present is
better than pbest,
or ghest?

Update pbest, or gbest

Update particle speed and
position

Make ensemble I

End

Fig. 1 General flowchart for EW-ELM algorithm
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Step 1 Randomly generate the initial parti-
cles, including the priori location and velocity of
particles. Each particle consists of a set of input
weights and hidden biases

X,:[U«’llawlzv'” s Wi 5 015 by s

ceesby ]
Step 2 Compute the output weights and e-

s Wiy 5 WLy s Wrg s °°°

valuate every particle. For each particle, the cor-
responding output weights can be obtained with
Eq. (5), then the better individuals are selected
according to the fitness of each individual. The
fitness function is defined as the root mean
squared error (RMSE) on the validation set

S X pariare) =

L

S S e x, b0,

LA - (9
N

where N is the number of the samples in valida-

2
2

tion set and L the number of hidden neurons.
Step 3 Update pbest; and gbest. According
to the fitness of all particles in the swarm, the lo-
cal best position of each individual pbest; and the
global best position gbest of the swarm are com-
puted. As investigated by Zhu"'™ and Bartlett"®!,
the networks with not only small training error
but also small norm of weights seem to be superi-
or in generalization performance. Therefore, both
the RMSE on the validation set and the norm of
output weights are taken into consideration for
the determination of pbest; and gbest'*). The de-
tails are shown as follows
X, (f(pbest,) — f(X,) >
af(pbest;)) or
pbest, = (f(pbest,)f(X,) | < )
«f (pbest,) and B | =y |

pbest; else

aom
X, (f(gbest) — f(X,)>
af(gbest)) or
gbest— | f(gbest) — (X)) | < (1)
(af(gbest) and B.. = Px, )

gbest else
where X;, pbest; and gbest are the current posi-

tion of the i-th particle, local best position of the

i-th particle and the global best position of the
S (Xi), f (pbest;) and

f(gbest) are the corresponding fitness values.

swarm, respectively.

Bx. + Bes, and By are the corresponding output
weights attained with Eq. (5). >0 is a tolerance
rate which can be tuned to balance the emphasis
on the training error and the norm of output
weightst*,

Step 4 Update the speed and position for
each particle. Each particle adjusts its speed with
Eq. (6) and then the new position is obtained ac-
cording to Eq. (7). Besides, some limitations
should be put on the speed and position of each
individual. The above optimization process is re-
peated until the minimum criterion is achieved or
the maximum iterations are completed. There-
fore, some improved wavelet ELLMs with optimal
parameters are attained.

Step 5 Select superior candidates and make
ensemble. The idea of neural network ensembles
originated in the early 1990s and then spread

[20]

widely*”’. It has been accepted that the stability
of a single neural network can be further im-
proved by using an ensemble of neural net-
workst?. As analyzed by Zhou et al. %, it tends
to perform better performance to ensemble many
of the candidate learners rather than all net-
works. Therefore, a sorting and selecting strate-
gy is adopted based on the training error and the
norm of output weights to select superior candi-
dates. Firstly, all the individuals are sorted ac-
cording to the training error on invalidation set
and the first individuals are picked out. Then the
individuals are sorted based on the norm of output
weights further and the first 2N individuals are
selected to generate ensemble result. As sugges-
ted by Ref. [237], the ensemble using a simple av-
erage outperforms optimizing weights, for the
latter may lead to overfitting problem. Thus a
simple average is utilized to make ensemble in

this paper.
3 Aero-engine Thrust Estimation

the EW-ELM algorithm

presented previously is adopted to develop thrust

In this section,
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estimator for a military two-shaft turbofan engine
with afterburner. Fig. 2 shows the major compo-
nents of the aircraft engine, including inlet, fan,
compressor, high-pressure turbine (HPT), low-
pressure turbine (LPT), afterburner and nozzle.
As it is very energy-costing to use real aero-en-
gine for experiments and there may be many risks
of accident occurring at test, a simulation model
is employed to generate data samples for the
training and testing of the thrust estimator. The
simulation model used here is a component-level
model (CLLM) with high confidence which assem-

bles the major components of aero-engine and cal-

1 2 22 3 4435 6 65 78 9
| i3 i 16 i
: H : : i
1 1 1 1 >
I : N
< i
) B A ]
|
i < )
—i T e : | !
b e
I ! Combustor !

1
Inlet Fan Compressor HPTLPT Afterburner Nozzle

Fig. 2 Simplified diagram for a military turbofan engine

culates engine state variables based on the work-
ing conditions and the control inputs from engine
controller with the aim to simulate engine charac-
teristics.

As the thrust of aero-engine varies greatly in
the full flight envelope, it is difficult to estimate
thrust accurately with a sole estimator. A possi-
ble solution to this problem is to group the sam-
ples in the full envelope to a few clusters in which
the thrusts are similar and deviate slightly, and
an estimator is designed for each of the clusters.
In the thrust estimation phase, firstly the cluster
that the sample is belong to is determined by
comparing the distance between the sample and
all the cluster centers, and then the correspond-
ing thrust estimator is chosen to perform thrust
estimation. In this paer, the K-means clustering
method is adopted to partition all the samples to
ten clusters. The schematic of aero-engine full
flight envelop thrust estimator is depicted in

Fig. 3.

Thrust
Thust N\ g ) st |
. . Controller I——I Actuator L i
instruction | T _—
+ _ P -
T T T T T T T T T T T T T T T T Tt TTTTT T T T T TTTTTTT TN I
1 1
1 1
1 ke 1
] ] 1
Estimated | #1 EW-ELM] K_means | ! Sensor
J—CTL Ol S|
thrust ' #n EW-ELM.| cluster |1 measurements
i Thrust : |
| estimator |

Fig. 3 Schematic of aero-engine full flight envelop thrust estimator

In total, there are as many as 45 output pa-
rameters in the CLM. However, not all the pa-
rameters can be taken as the inputs of the thrust
estimator owing to two cases. One is that not so
many sensors can be equipped to measure all the
parameters because the weight of an aero-engine
will increase and more room is needed to furnish
them. Another is that too many inputs may result
in a lot of redundancies which tend to increase the
computation complexity and have negative impact
on the generalization performance. Therefore, it

is quite necessary to select proper features as in-

puts. During this process, two principles are
taken into consideration: strong measurability of
the parameter which will guarantee that the se-
lected parameters are easy to be measured so as to
reduce the cost of parameter measurement, and
expert experience which will make the selection
more reasonable. Finally, six features are select-
ed as the inputs to construct thrust estimator
which are the altitude ( H), the Mach number
(Ma) , the bypass exit total pressure (P,;), the
main fuel flow (W;), the afterburner fuel flow

(W) » and the engine temperature ratio which is
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defined as the ratio of afterburner inlet total tem-
perature T to compressor inlet total temperature
T.. Before developing the thrust estimator, the
1]. The relative

deviation (RD) between the estimated thrust and

inputs are normalized into [0,

the actual value is taken as the evaluation criteria
which is defined as

RD— Estimated value— Actual value 12)

Actual value

The paper performs all the experiments in
MATLAB 2012 environment on a personal com-
puter with i7 processor, 4 GB memory, and Win-
dows 7 operation system. For EW-ELM, the
maximum optimization epoch is set to be 30, the
population size is selected as 20, and 50 hidden
nodes are used. Taking the engine working under
steady-state as an example, some simulation data
samples in different flight environment and work-
ing conditions are collected. The experimental re-
sults for one of the thrust estimators, the #1 es-
timator, are presented in Fig. 4. From Fig. 4, it
can be observed that the accuracy of the thrust es-
timator is satisfying, as the relative deviations on
both the training and testing sets are within
0.25%. The detailed results of thrust estimation
for aero-engine in full envelop are tabulated in
Table 1, in which, MAX represents the maxi-
mum RD, MEDIAN means the median RD, and
MEAN and STD denote the mean value and the
standard deviation of RDs, respectively. As
shown in Table 1, the thrust estimator based on
support vector regression (SVR) obtains predic-
tion accuracy comparable to that of estimator
based on ELM, but it takes much more time to
perform prediction. In contrast, the performance
of estimator based on ELM seems satisfying, as it
has good real time performance and the prediction
accuracy is passable. However, it is not quite sta-

ble due to the random determination of the learn-

ing parameters and the results are the average of
30 trials. In general, the estimator based on EW-
ELM is optimal, which outperforms SVR in pre-
diction time and achieves better robustness com-
pared to ELM. The maximum RD of that thrust
estimator is 0. 169% ., which is also superior to
the thrust estimator based on adaptive genetic
neural network with maximum RD of 0. 281% in
Ref. [5]. As a novel learning algorithm, ELM
can be performed in high efficiency with good
generalization performance and stability after be-
ing further optimized by PSO and made ensem-
ble. Thus the thrust estimation using EW-ELM
can meet the requirements of direct thrust control
in terms of thrust estimation accuracy and predic-
tion time even when the engine works in a wide

range flight condition.
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Training sample

(a)Training result

0.25

020

0.15F ‘

Relative deviation / %

I
TR

i ' [
l’ .\ I % ‘ | Iy |\| il \
Lo it g
200 400 600 800

|
Ui

1N

Testing sample

(b) Testing result
Fig. 4 Experimental results of thrust estimation for

#1 estimator

Table 1 Statistical results of performance for full flight envelop thrust estimator

Algorithm MAX MEDIAN MEAN STD Test time/ms
SVR 2.52X10°° 1.56x10* 2.46X107" 3.13X107" 2.49
ELM 2.73X107° 1.74X107" 2.64X10°" 3.09X10" 0.13

EW-ELM 1.69X10* 1.39X10* 2.10X10°* 2.63X10°" 0. 56
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Due to the wear, tear, corrosion and fouling
over the engine service period, aero-engine health
which

tends to cause the engine thrust to deviate from

condition will degrade in the lifetime,

the initial totally healthy state. Hence, in order
to achieve direct thrust control, it is very impor-
tant to guarantee the accuracy of thrust estima-
aging
process. As it has been proved that ELM has

tion during the engine degrading and
good generalization performance after further op-
timization, and the thrust estimator based on
EW-ELM will accommodate the engine perform-
ance degradation if the deterioration samples are
added to the training set in the training phase of
thrust estimator. For evaluating the effectiveness
of the method, some experiments are carried out
at the engine design point (H=0 km, Ma =0,
PLA=70°) and under the cruse condition (H=12
km, Ma=0.8, PLA=40°), where PLA is power
level angle.

There are many factors which lead to engine
health degradation, and the efficiency and flow
rate deviation of the compressor and the turbine
are usually adopted for engine health assess-
ment?*, As the efficiency changes along with the
flow capability when the performance of gas path
component degrades®!, in this paper only the ef-
ficiency deteriorations are considered and the flow
rates of the components are determined according
to couple factor between the efficiency and flow
rate. For the generation of training samples, the
efficiency degradations of compressor and turbine
are partitioned by an equal interval of 1% in the
range of 0—5% and a total of 6*= 1 296 samples
By this

way the instances of performance degradation in

are collected for each flight condition.

one component or more than one component and
even in all the primary gas path components are
covered. As for the testing data set, a total of
3* =81 samples with degradation of 1.3% ., 2.5%
and 3. 8% in the efficiency are generated to test
the generalization performance of the method.
The results are shown in Fig. 5 and the details are
listed in Table 2. It can be seen that both the es-
timation accuracy and real-time performance are
satisfying, which shows the thrust estimation
method proposed has good degradation accommo-

dation ability.
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Fig. 5 Experimental results of the thrust estimation

for aero-engine with health degradation

Table 2 Statistical results of thrust estimation for aero-engine with health degradation

Test ti
Working condition Data set MAX MEDIAN MEAN STD est time/

ms

Training  1.71X107% 6.59X107° 1.08X10~" 1.84X10"" 0.48

H=0km, Ma = 0

Testing  2.03X107° 8.82X107° 1.76X10~" 3.42X10~" 0.48

Training  3.14X107° 5.49X10°" 6.94X10"" 5.53%10"" 0.48

H =12 km, Ma = 0.8

Testing  1.68X10°° 4.69X10* 5.89X10 % 4.45xX10* 0.48
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The estimator designed above is very suitable
for the thrust estimation under steady state. As
for the thrust estimation during dynamic process,
it can be achieved by introducing some previous
thrust to the input of EW-ELM. Since aero-en-
gine can be considered as a second-order object
approximately, the estimated thrust of the previ-
ous two steps, f(t—1) and f(t—2) are added to
the input. So as to assess the performance of the
thrust estimator, some experiments are per-
formed at the flight height of H=0 km and the
Mach number of Ma = 0. Since the feedback
thrust is taken as the input parameter, it should
be firstly normalized to [1, 2]. In the training
phase, the throttle lever is pushed form 25° to
70°, and then pulled back from 70° to 25°, thus as
many as 1 196 train samples are collected. In the
testing phase, the throttle lever is randomly
pushed and pulled in the closed interval [ 25°,
70°], and the test results are presented in Fig. 6.
The details of the results are given in Table 3. It
can be learned that the dynamic thrust estimator
can meet the requirement in term of prediction

time but the accuracy is not so good as steady-

state thrust estimator, as on the testing data set
the maximum RD is 1. 98% and the percentage of
the samples with RD>1% is about 1. 90%. As
show in Fig. 6, the samples with relatively large
prediction error usually gather in the region
where the thrust is relatively small. This is due
to that the same absolute prediction error will
cause lager relative deviation when the actual
thrust is small. Nevertheless, for the thrust esti-
mation during dynamic process, the prediction ac-

curacy is acceptable.

.
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=

=
=)
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=
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Fig. 6 Experimental results of thrust estimation dur-

ing dynamic process(RD>1%)

Table 3 Statistical results of thrust estimation during dynamic process

Samples with  Samples with Test time/
Data s MAX MEDIAN MEAN STD
ata set RD>1% RD>1.5% ms
Training  1.84X10°% 2.03X10° 5.33X10°° 1.12X10* 0 0 0.51
Testing 1.98X107% 1.31X107* 6.80X10* 2.21X10°° 102(1.90%) 45(0. 84 %) 0.51

4 Conclusions

In this paper, a new learning algorithm
named ensemble of improved wavelet extreme
learning machine was proposed and used to build
aero-engine thrust estimator for direct thrust con-
trol. In EW-ELM, PSO was adopted to optimize
the parameters for the hidden neurons so as to re-
duce the negative impact of un-optimal parame-
ters. As the ensemble of neural networks can fur-
ther improve the stability, the optimal candidates
in the population were selected to make ensem-
ble. Not only the training error but also the norm

of output weights which is tightly related to gen-

eralization performance were considered for the
determination of optimal learning parameters and
the selection of optimal candidates. Furthermore,
a thrust estimator based on EW-ELM was con-
structed and evaluated using the data generated
by an engine component-level model. The results
show that the proposed method can generate bet-
ter generalization performance compared to SVR
at faster prediction speed and outperforms origi-
nal ELM in terms of stability and robustness. It
also states that the thrust estimation using EW-
ELM can satisfy the requirements of direct thrust
control in terms of prediction accuracy. As differ-

ence may exist in the results of numerical simula-
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tions and the actual effect, future work will focus
on the further evaluation of the thrust estimator
based on EW-ELM through processor-in-the-loop
simulation and hardware-in-the-loop simulation in
an operating environment more similar to real

world.
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