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Abstract: Perturbation to symmetry and adiabatic invariants are studied for the fractional Lagrangian system and
the fractional Birkhoffian system in the sense of Riemann-Liouville derivatives. Firstly, the fractional Euler-La-
grange equation, the fractional Birkhoff equations as well as the fractional conservation laws for the two systems
are listed. Secondly. the definition of adiabatic invariant for fractional mechanical system is given. then perturba-
tion to symmetry and adiabatic invariants are established for the fractional Lagrangian system and the fractional
Birkhoffian system under the special and general infinitesimal transformations, respectively. Finally, two examples
are devoted to illustrate the results.
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0 Introduction

In 1917, adiabatic invariant was first pro-

posed by Burgerst',

A certain physical quantity
is called adiabatic invariant of a system if it varies
more slowly than the parameters which change
very slowly. In fact, the parameter changing very
slowly can be expressed as the action of small dis-
turbance. Under the action of small disturbance,
the original symmetry and conserved quantity
may change. At the same time, because pertur-
bation to symmetry and adiabatic invariant con-
cern the integrability of the equations of motion
of mechanical systems, they were studied by
many scientists, and many important results were

obtained™* ",

sults about adiabatic invariant referred to only in-

However, almost all of those re-

teger order derivatives of the variables. There-
fore, there is still much to do on the aspect of the
non-integer order derivatives of the variables.

Hence, in this paper, we intend to study pertur-
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bation to symmetry and adiabatic invariant in
terms of fractional calculus.

Fractional calculus has been studied for more
than 300 years by many famous mathematicians,
and many significant results about fractional cal-

]

culus have been obtained™*'™, Besides, based on

BS10 investigated

the fractional calculus, Riewe
the version of the Euler-Lagrange equations for
the problem of the calculus of variations with
fractional derivatives under the conservative and
non-conservative cases respectively. Since then,
many further studies on fractional problems can
be found™**], Lol

proved a formulation for the variational problem

For example, in 2002, Agrawal

in the sense of Riemann-Liouville derivatives.
Then Baleanu and Avkar'* used those Euler-La-
grange equations to study the problem with La-

grangian which is linear on the velocities. Fred-

[27

erico and Torres™?™ used the notion of the Euler-

Lagrange fractional extremal®®! to prove a
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Noether-type theorem. Using the similar method
adopted in Ref. [27], Zhou"" studied the frac-
tional Pfaff-Birkhoff principle in terms of Rie-
mann-Liouville derivatives, and obtained the frac-

Birkhoff

transversality conditions and the fractional-con-

tional equations, the corresponding

served quantities. Based on the results of Refs.
[27,39], we intend to study the adiabatic invari-

ant of the fractional calculus of variations.

1 Preliminaries

In this section, some relevant knowledge
would be recalled.

Definition 1-'*/ Let f be a continuous and in-
tegrable function in the interval [ ¢, .¢, ], for all
t €[t,52, ], the left Riemann-Liouville fractional
derivative , D;f(z) of order a » and the right Rie-
mann-Liouville fractional derivative ,D’fzf(t) of

order B, are defined as follows

. 1
JDif (D) =
Dif I o —a X
(i)"J[ C—0) " £ db D
de) Jo
Dff(y=— L%
e I (m—p)

AN, e
( d[) J OG-0 f@yds (2

where I'(+) is the Euler Gamma function, «,f are
the orders of the derivatives satisfyingn—1 <o <<
nsm—1<B<m,m,n &€ N.If a,p are integers,
those derivatives are defined in the usual sense,

that is
L DEf () = (%) @

D (1) = (—%) ro (3)

In this paper, we assume that 0 <a <{1,0<C
B <1.
In Ref. [20], Agrawal considered the func-

tional
*bh
I[g(+)] :J L(t.q(t),.Diq(.Dig()) de (4)

where g(a) =q, .q(b) =q, and the Lagrangian L.
[a,b] XR" XR"XR"—Ris a C* function with re-
spect to all its arguments. And he got the follow-

ing fractional Euler-Lagrange equation in terms of

Riemann-Liouville derivatives
9.L(t.q..Diq-Dig) +
D39:L(t,q5.Dig» Dig) +

DB, L(t,q,.Dq, Dig)=0 (5
In Ref. [39], Zhou and Zhang studied the ex-

tremum for the following functional
S(a*(*)) = Jzz (R}, Dia* + RI,DY a— B) dt
t °

pov=1,2,,2n (6)
where R =R*(t,a") ,Rf =Rf(t,a") are the Birk-
hoff's functions, B = B(z,a") is the Birkhoffian,
and they are both C* functions with respect to all
their arguments. And they obtained the following

fractional Birkhoff equations

JIR¢ IR?
da* [‘Dt/zav + da* 'D"gz a —

D¢ R: +, DIR? =0

7

B

da”

p=1,2,2n (D)
Definition 2" Given two functions f.g €
C'[a,b] . we introduce the following notation
Di(f.g) = —gDif + f.Dig (8
wheret € [a,b], andy € R;.
The linearity of the operators ,D?and ,D] im-
plies the linearity of the operator D7 .
If y =1, the operator D! reduces to
D/ (f.g)=—gD,f + f.D.g =

of + 1k =S (o> (9

2 Fractional Adiabatic Invariants

In this section, we study adiabatic invariants
under the general and special infinitesimal trans-
formations for the fractional Lagrangian system

and the fractional Birkhoffian system.

2.1 Adiabatic invariants for the fractional La-

grangian system

Firstly, let's consider only the infinitesimal
transformation for ¢
t=t.q(t) =q(t) +e£ (t,q) +o(e) (10)
where ¢ is called the infinitesimal generator.
Theorem 17" Under the infinitesimal trans-
formation (10), if the condition
d;L(t,q».Dig»Dig) « {+
;L (tyq,.Diqs.Dig) + D5t +
. L(t,q,.D%q, Diq) Dl =0 (1D
holds, then
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= [9,L(t+q..Dig+.Dig) —
d,L(t.q,.Diq,Diqg) ]+ ¢ a2
is a fractional-conserved quantity.
Theorem 25! Under the infinitesimal trans-
formations
t=t+e(tyq)+oe)
q(t) =q(t) +e£(t.q) +o0(e) (13)

if functional (4) is invariant, i. e.

J”L (sq(t) +.Diq (1), Dig (D)) dt =
r(r,]) o — - 9 _ _
Jf L{t,q@®) ,HD,q(z),,Df,q BHH)de A4
t(t )
for any subinterval [¢,.,t, | < [a,b]
ey = [0:L(t,q,.Diq ..Dig) —
8414(tvCI7uD7(1 ’szlf(I) ] . §+
[L(t.q..Diq..Dig)—
ads L(t,q,.Diq nD'}?Q) «.Diqg—
Ba4ll(ta([9uD7(JHD'gq>'1D'I€q]'T (15)
is a fractional-conserved quantity.
Definition 3 If
DI Drel )], @€ {asp)

j=0 i=1

is in direct proportion to ="’

I:ZZEEj(C} ’C?>]’

j=0 i=1

is called a z-th order adiabatic invariant of a frac-
tional order dynamical system.

For the fractional lLagrangian system (Eq.
(5)), if & satisfies Eq. (11), the following exact
invariant exists

It = [9;L(t.q,.Diq..Dig)—
d,L(t,q,.Diq+.Dig) ]+ ¢ (16)
Similarly, if z,,¢, satisly Eq. (14), the exact
invariant exists as follows
I,=1[9;L(t,q..D¢q,Diq)—
d,L(t.q.,.Diqg..Dig) T ¢ +
[L(t.q..Diq+.Dig) —
ads L (t,q,.Diq,.Dig) +.Dig]—
I L(tsq,.Diq,.Dig) «Dige zo (17)
Suppose the fractional lLagrangian system
(Eq. (5)) is disturbed by small quantity eQ , then
we can get the disturbed fractional Euler-La-
grange equation
9,L(t,q.,Diq.,Dig) +
D§a;L(t,q,.Dig»Dig)+

Dia,L(tsq,.Dig+Dig) = —eQ (18)

Under the action of small force of perturba-
tion éQ , the invariant of the system may vary.
Suppose that the disturbed infinitesimal generator
¢ can be expressed as

(=0 teg +e8 + - 19
we have Theorem 3 as follow.

Theorem 3 For the disturbed fractional La-
grangian system (Eq. (18)), if the infinitesimal
generators § (j =0,1,2,--+) satisly

d,L(t.q,.Diq-.Dig) * ¢ +

d;L(tsq..Diq»Dig) «.Dig; +

d,L(t,q,.Diq,.Diq) « Dig; +

Q-1 =0 20
the disturbed fractional L.agrangian system has a
-th order adiabatic invariant

Ii = Zsj I:a:aL(t7Q9(zD7q ’szq)_

j=0
9V1L(19QMD‘;CIHD'EQ)]' §_, @D

where we set -, =0, when j =0.
Proof From the disturbed fractional Euler-

Lagrange equation and the condition, we have
25’ [D; ;L (tsqs.Digs.Dig) +§) —
i=o0
D} (g +d,L(¢,q,.Diq,.Dig)) ]=
Esj [—¢ +.DidsL(t,q..Digs
i=o

Dig) — 3, Lt,q,.Diq,Dig) « & —
Q11— ¢ +.Di,Ltsq..Dig.Dig) 1=

Zsj (— Q¢ +eQt) =""QL.

Hence, the proof is completed.
Theorem 4 Under the infinitesimal transfor-
mations
t=t+e(tyq)+ o)
q(t) =q() + e (tq)+ o) 22)
where
=1, tery +efm o
¢=¢ +tel +eg + - (23
the disturbed fractional Lagrangian system (Eq.

(18)) has a zth order adiabatic invariant
I.= > {[d,L(t.q-.Diq+.Dig) —
i=o0

(’)4L(f;(]9uD7q HD'Ifq) ] * gj +
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[L(t»q:.Dig»Dig) —
adsL(t.q..Dq, Dig) Dig —
B L(tsq..Diq,.Dig) Dig]ez;} (24
Proof In order to consider ¢ as a dependent
variable, we use a Lipschitzian one-to-one trans-
formation
La 6]t = of (X)) € [ous0s] (25)
which satisfiest’, = f(1) =1 when A =0,1(s,) =a.
t(g,) =b.
From the definitions of the right Riemann-
Liouville fractional derivative and the left Rie-

mann-Liouville fractional derivative, we have

Dinat(e)) = (') . Dig(o)

' )
o

D5 g(t(e)) = ') 7 . Dle_q(o)  (26)
4 '

Hence
T0EC) 1 qt(o)) ]:Jj’um),q(z(o)) :
D q(t(6)) i DE g (1()) ) £ do =
ﬁ”L(uo—),q(z(a)) () X

_Dig(o) (£ ) DF s
' ) ' H*

q(o)) t' ,do =

9ng(0') ’

«
-

J””E(:((;) () ot

DEle_q(g)) do=

b
J L (taq(t) +.D2q (1) ,.Dig (1)) dit —

ITqCe)]

From Theorem 3, we can obtain

I[,Z<f((7> aq(l(()')) 31/59

+ Dig(e)s.D 1 Pq(o)) =
@ )" « H*
- - - aL
2| L=l g+ 7| @D
=0 gt s
If X =0, we can get

« Diq (o) = .Dig ()

«
o

[,Dﬂ/"?q(d) = ,Diqg () (28)
" )=
,L—a.L=0a,L—09,L 29
JL 8
o7 =—adsL +,Dig —9,L «,Diq + L (30)

14

Therefore, when A =0, we have

I. (t.q(t) . Diq(t) s, Dig (1)) =

D [@L—aL) ¢+

j=0

(—ad; L« .Diqg — B, L «.Dijg+ L)z, ]
The proof is completed.

2.2 Adiabatic invariants for the fractional Birk-

hoffian system

We consider only the infinitesimal transfor-

mations for a”
a’(t) =a" (1) +e&,(t,a") +o(e)
;uv:LZ,-",Zn;Z:Z 31

where & (y=1,2,+,2n) are called the infinitesi-
mal generators.

Theorem 5'*) Under the infinitesimal trans-
formations (Eq. (31)), if

IR? o IR s
aa"’gﬂl' Dia* + f)a"su,Dlza +
)
R, Dig. + RiDLe — Be =0 (32
2 a’

we have
C} (t,a ., Dia” ,,D’,g2 a") =
[R:(zya") — Ré(t,a")] € (tsa™) (33)
is a fractional-conserved quantity.

Therefore, for the fractional Birkhoffian sys-
tem (Eq. (7)), if & satisfies Eq. (32), exact in-
variant exists as follows

If = [Ri(t.a*) — RiCt,a") ] g (34)
Theorem 6-*" Under the infinitesimal trans-
formations
t=t+¢ek (t,a") +o(e)
a’(t) =a"(t) +e&,(tya") +o(e)
oy =1,2,,2n (35)
if functional (6) is invariant, i. e.

| ®a, D+ R Dl
T

1

B([aa’l)) dZ:

J; (R (t.a), Dia® + RE(thar) X
Dia* —B(t,a")) dt (36)
for any [T,,T,] < [t ¢, ]
Cyr = (R, *Rﬁ)éﬁ + [ —a)R; ,lDfa“jL
A —pREDY a — Blg, (37)
is a fractional conserved quantity for the fractional
Birkhoffian system (Eq. (7)).
Therefore, for the fractional Birkhoffian sys-
tem (Eq. (7)), if & ,& satisfy Eq. (36), there ex-
ists exact invariant

Iy =R —RHE + [ — )Ry Dia*+
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(1 —pPREDY o> — BJES (38)

Suppose the fractional Birkhoffian system

(Eq. (7)) is disturbed by small quantities eQ, (=
1.2,++,2n) , then we can get the disturbed frac-

tional Birkhoff equations

JIR® IR? p
IR Dear +° RS D# ar — 9B
da” ! da” 2 da*
rD(;z RZ + le)z?R'Z == _EQ;I (39)

Under the action of small forces of perturba-
tioneQ, , the invariant of the system may vary.
Suppose that the disturbed infinitesimal genera-
tors & (v=1,2,++,2n) can be expressed as

£ =& e, +e'& £+ (40)
Then we have Theorem 7 as follow.

Theorem 7 For the disturbed fractional Birk-
hoffian system (Eq. (39)), if the infinitesimal
generators &, (j =0,1,2,+-+) satisly

IR IR
(’)a/lsi .leilav + ﬁfﬂ '1D'1e,2 a’ +

Ry, Dig, + RLDLE — 228+ Qe =0 (D)

the disturbed fractional Birkhoff system has a z-th

order adiabatic invariant
I" = >/ (RE—RH & (42)
i=0
where we set &' =0, when j =0.

Proof From the disturbed fractional Birkhoff

equations and the condition, we have
D&l [Ds(Re.&) — Di(g R ]=
i=0

D¢/ (—&.Dy R + Ry, Digl+
j=0

RID? g — &, DIRD =

vl‘
N . IR
>e(—aDy R — Vel - Dia'—
i—o ‘ da
IRF . JB . .
SoE e Dha ST QL 1, DIR?) =
C

da” 2

D€ QET FeQE)=TQE
i—o
The proof is completed.
Theorem 8 Under the infinitesimal transfor-
mations
t=t+e& (ta") +o0(e)
a’(t) =a"(t) +e&,(tya") +o(e)
pov=1,2,,2n 43)

where

& =& te& +e7& +

£ =8 Fef +e'g £+ (44)
the disturbed fractional Birkhoffian system (Eq.
(39)) has a z-th order adiabatic invariant

I = > e {(Ri(t,a") —R(t,a)) & +

i=0

[d =) Ri(t,a"), Dia” — B(t,a")+
(A — P REi(t,a) Df a* €} (45)
Proof Consider a one to one transformation
L1+, 19t — fQQ) € [o1s02]
which satisfies 7(s1) = t,+¢(02) = ¢, and ¢, =
dt(¢)/do=f(1) =1, when A =0.
From the definitions of the right Riemann-
Liouville fractional derivative and the left Rie-
mann-Liouville fractional derivative, we can get

W Diga (t(e) = (') " 1 Dia* (o)
1(J>D'§2a”(t(o')) = )" JD'glf‘izza”(o') (46)

& )
13

Hence

S ,a’*(°)):Jr2 [R: (t(o) ,a" (t(5)) ) X

Diyar (1(a)) + RE(t(o)
a’ (t(e)) ) wp Df, a” (1)) —
B(t(o)sa* (t())) )t ,do=

J (R (t(o) va” (t(o)) ) (1) = X

D (o) + R (1) s (16)) ) X
(') JD%a”(a) — B,

a" (t())) ]t ,do=

J [R: (1(o) sa* (1)) ) (1) ™ X

1 _Dia’ (o) + Ri(t(s) s

« H?
o

a (1)) (/)" D _a* (o) —

« H?
"

BG(o)sa* (o)) ), ] de =

ng B, (t(o),a" (t(c)) o1,

1 Dia*(e).,D7:_a*(0)) do =

N/
([ﬂ) a)

|" (Recoa, Drar + R D —

B(z‘,a"))dt:S(a“(-))

For A =0, we have
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R (1(6) sa" (1)) ) (') X
4 Dfa* (o) + RE(t(o) var (t(5)) ) X

« H?

(' D7 DEe_a'(g) =

@ )"
13

R; (¢5a" (1)) Dia* (1) +

I

R"f(t,a/‘(t))lDC?za”(Z) 47
IB, 2
a', a,
(/)" 1 Dia* (o) +

R (t(g) sa" (t(e)) ) (/) 7F X
D _a’(6) —Bt(e),a (t(e)) ), ]=

« )7
A

(I1—=a)R;,Dia* + (1 =P R{DE a — B (48)

Hence, using the similar method adopted for

[R: (t(o)sa"(t(5))) X

Theorem 4, from Theorem 7, for A =0, we can

get
NV pe— Ry e 2B o
1&—;5{@ ROG+57 8=
Dl ((Re—RiH & +
j=0
[(1_0()R‘511D?ay
(1— R REDE a* — B]&) )
The proof is completed.

3 Two Illustrative Examples

In this section, we give two examples to il-
lustrate the results obtained above.
Example 1 Let us consider the following frac-

tional Lagrangian system

L =q, +.Diq, +.Diq. (49)
We can verify that
C(]):(ZH&Z):_ZQZ (50)

satisfy the condition (11). Then we can obtain
from Eq. (16) that
It = (g)* .Dig: — 2¢1¢:.Diq, GD
Suppose the system (Eq. (5)) is disturbed by the
following small quantities
eQ, =e(—3.Diq, *.Dig:) » eQ, =0 (52)
By calculating, the following solutions
G =aq:5=q (53)
satisfy Eq. (20). Therefore, from Theorem 3,
we get
It =(q)? .Diq, — 2q1q2.Diq1 +
e[(g)* .Dig, + q1q..Diq ] (54)

Of course, we can also obtain the higher-or-
der adiabatic invariants.

Example 2 Let us consider the extreme value
for the following fractional problem of the calcu-

lus of variations
ty ) R )
Sa"(+)) :J (a* ,ID‘,*a1 + at ,1D7a°—a2a5) dt
B

(53)
The problem (Eq. (55)) is a fourth order
Pfaff-Birkhoff fractional problem of the calculus
of variations in terms of Riemann-Liouville deriv-
atives. From Eq. (55) , we obtain that
B=d*d’ R =a* ,Rs =a',
Ry =R;=0.Rf=0 ;=1,2,3,4 (56
Obviously, the following solutions
gl =a .8 =—ad
&=d,8l=—a' 57
satisfy the condition (32). Then we can get the
exact invariant from Eq. (34) that
IP=a'"a’* +d’a’ (58)
Suppose the system (Eq. (7)) is disturbed by the
following small quantities
Q) =ea’,eQ, =eQ; =0,eQ, =ea’®  (59)
By some calculations, the following solutions
f=0.8 =g =a
& =—a",& =a",& =0 (60)
satisfy Eq. (41). Hence, from Theorem 7, we
get
I"=da"a* +d’a" +e@a® +aa") (61)
Of course, we can also obtain the higher-or-

der adiabatic invariants.

4 Conclusions

In this paper, adiabatic invariants are studied
for the fractional Lagrangian system and the frac-
tional Birkhoffian system in the sense of Rie-
mann-Liouville derivatives under the special and
general infinitesimal transformations. We can al-
so get adiabatic invariants in the sense of Caputo
derivatives, Riesz-Caputo derivatives, Riesz-Rie-
mann-Liouville derivatives and so on. Besides,
much work deserves to do since adiabatic invari-
ant and fractional variational problems are still in

their early days.
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