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Abstract; It is well known that Tikhonov regularization in standard form may determine approximate solutions that
are too smooth for ill-posed problems, so fractional Tikhonov methods have been introduced to remedy this short-
coming. And Tikhonov regularization for large-scale linear ill-posed problems is commonly implemented by deter-
mining a partial Arnoldi decomposition of the given matrix. In this paper, we propose a new method to compute an
approximate solution of large scale linear discrete ill-posed problems which applies projection fractional Tikhonov
regularization in Krylov subspace via Arnoldi process. The projection fractional Tikhonov regularization combines
the fractional matrices and orthogonal projection operators. A suitable value of the regularization parameter is de-
termined by the discrepancy principle. Numerical examples with application to image restoration are carried out to
examine that the performance of the method.
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0 Introduction

This paper is concerned with the solution of
least-square problem

min|Ax —b| A€ R™,x € R',b € R (1)

xeR”
with a large square matrix A of ill-determined
rank. In particular, such a matrix is severely ill-
conditioned and may be singular by which its sin-
gular values decrease to zero gradually and with-
out obvious interval. The vector b represents the
available data that is usually with a discrete error
or measurement error e R", 1. e.

b=b+e (2)

where b denotes the unknown error-free vector
associated with b. Throughout this paper we will

“ M ”
noise” and assume

refer to the error e € R" as
that the linear system of equations with the un-
known error-free right-hand side

Ax =b (3)
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is consistent and x denotes its solution of minimal
Euclidean norm. Then we will determine an ap-
proximation of x by computing an approximate
solution of the large scale linear discrete ill-posed
problem (1),
In view of the ill-condition of A and the error
e in b, the straightforward solution generally
yields a meaningless approximation, so it is es-
sential that the computation is stabilized by regu-
larization. Tikhonov regularization is one of the
most popular regularization methods for proper-
ties and application. Based on Tikhonov regulari-
zation, we consider a penalized least-squares
problem
min | Ax — b[* + 4 [Lx ) o

xER"
where the scalar 4~>0 is referred to the regulari-

zation parameter and the matrix L € R”" is the
regularization operator™®!. The method of this

paper requires L to be a square matrix. Calvetti
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1. "and Hansen et al. ©*! described a variety of

et a
square regularization operators. For the purpose
of obtaining an accurate approximate solution of
x, the least-squares problem (1) is replaced by
the minimization problem (4). The number of
rows in L, [/ < n, but regularization matrices
with [ > n were also applied. Let R (K) and
N(K) denote the range and null space of the ma-
trix K, respectively. The matrices A and L to be
chosen are assumed to satisfy
N(A) N NWL) ={0}
Then the Tikhonov minimization problem (4) has
the unique solution
x,: =(ATA+, 'L"L)"'A"b (5
for any ;>0 and the superscript “T” denotes
transposition of the matrix®.
This paper solves the minimization problem
(4) by simplifying it to standard form as well as
uses a fractional power of the matrix AA”T as
weighting matrix to measure the residual error in
standard with a semi-norm. And then, using a
few steps of the Arnoldi process, this paper re-
duces the problem (3) to a problem of smaller
size, which is solved by using the projection frac-
tional Tikhonov, and the regularization parame-
ters a and yp are determined. At last, the illustra-
tive numerical examples are also reported, and

concluding remark can be found.

1 Projection Fractional Tikhonov

In this section, we discuss the method which
combines the fractional matrices and orthogonal
projection operators. Projection fractional Tik-
honov regularization provides that the penalized
least-squares problem (4) can be simplified to
standard form and uses a fractional power as
weighting matrix to measure the residual error in

standard with a semi-norm.
1.1 Form simplification

The penalized least-squares problem (4) can
be simplified to standard form with the orthogo-
nal projection

L.=I—PP" P¢c R™,P'P=1 (6)

which is well suited for using in Tikhonov regu-

larization. In Eq. (6), L is used as regularization
operator. It is convenient to consider the relation
of the choice of the matrix L and the matrix P,
and actually the choice of P determines the choice
of L. Moreover, the choice of matrix P can be
carried out in many different ways, some of
which may yield regularization operators, and
they can give more accurate approximations of x
than the general finite difference-based regulariza-
tion operatorst’.
Give the A-weighted pseudo-inverse of L as
Li:=U—(AU0—LL)H'AL" € R™" ()
where L' € R’ denotes the Moore-Penrose
pseudoinverse of the regularization operator L,
and I is the identity matrix.
Suppose that Eq. (6) holds and introduce the
QR-factorization shown as
AP =0QR &
where R € R’ is upper triangular and Q € R""’
has orthonormal columns. Using the properties
of the Moore-Penrose pseudo-inverse and orthog-
onal projection, we have the following identities
for L
I-L'L=PP",L'=L (9
So yield that
(AU—L'L))" = (APP")" =P(AP)" =PR 'Q"

(10)
Substituting Egs. (8),(10) into Eq. (7), we get
L, ={U—PR'QTAL an
which simplifies to
L, =I—PR'Q"A a2

Transforming the matrix and vectors of Tik-

honov minimization problem (4) by the following

substitutions
A: =AL}, (13)
b: =b— Ax, (14)
where
xo: =AU —L'L)'b 15

When L is an orthogonal projection operator,

Egs. (13), (14), can be expressed in a simple manner as
A.=AL, = —00HA (16)
b:=b—Ax, =T —0Q0Q0")b aan

Let x:=Lx, then the penalized least-squares
problem (4) can be translated into the standard

form
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min{[Ax —b[* + .t x]*) (18)

ieRr
An attI‘ZCtiVC property of this transformation
is that the L defined by Eq. (7) is of simple form
which makes the orthogonal projection (6) easy
to use. For any s > 0, let A=1/p,and then the
minimization problem of Eq. (18) is
FQ:=]Ax ) — b +alx O [|” = minJ, (x)
a9
Given any A>>0, x(A) has a certain value and is
satisfied as
Ax () +ATAx (1) =A"b (20)
Then
F(0): =inf|Ax —b|?: =’ 21)
is defined. Consequently, F (1) is continuous in
[0,90), and some properties of F(Q) are given in
the following.
Proposition 1  F(}) is infinitely differentia-
ble, and has the following properties:
(D Ali}f{;F(A):HEHZ;
(2) For any A>>0, the first and second order
derivatives of F(Q) are as follows
FQ=|[x* FFQ) =2xQ),x" Q).
Proof:
(1) Computing the inner product of the for-
mula (20) with x()) yields
AlxCo > < allx | + |[Ax O |2 =
(AT, x(1)) < [A"B] x| (22)
which implies that
}Lq}\|i<a) =0
According to this estimate and Eq. (22), we ob-
tain that
lima x O \|:o,}i@||/li<A> |=0
Thus the conclusion (1) can be drawn from the
definition of F(Q).
(2) TImplicit differentiation of Eq. (19) with
respect to A combining with Eq. (20) yields
F'(0) =2(Ax (1) — b.A'x Q) +
20(x () x" Q)+ [x QO |7 =[x |7
F'QO =2(x Q) x" (D)
thus the conclusion (2) is proved.
Proposition 2 For b¢ Ker(A") , the function
F(Q) is nonnegative, and it is strictly monotoni-
cally increasing and strictly convex, i. e.

FQ)>0,FQQ)<0 VYa>0

Proof: We consider
') +ATA Q) = —x (O (23)
Computing the inner product of the formula (23)
with x" (1) yields
[Ax" QO [* +alx" O ? =— (xR .x" Q)

In view of Eq. (20), we obtain that
F'(o)=—2]Ax"QO]* —2a]x" Q@ * <0
F'() =0

Then we prove that the equal-sign in the a-
bove equation does not hold. Assume that 1 >0
satisfies F”(1) =0, then we have x" (1) =0. Due
to Eq. (23), x(1) =0 is obtained, then note that
the form (20) yields

Ah =0
which is contradictory with b & Ker(AT), there-
fore Proposition 2 has been proved.

Proposition 3 F()) satisfies the differential

relationship

(%{AF’(A) LR+ A7) =0

YA>0
Proof: Implicit differentiation of Eq. (20)
with respect to A yields
xQ) +ax" Q) +ATAx (D) =0
Computing the inner product of the above e-

quation with x(1) yields

(x(Q)sx()) FAx" WV sx () + (Ax" (V) . Ax (Q)) =0

and combining with Eq. (20) yields

/ A g 1 d 3= i _
F Q)+ 2F<A>+ 5 dA(Ax(/I),Ax(A)) 0

1. e.
d[A 1 13z 2| _
o S F QO+ S FQO + 5 [Ax QO [|* ) =0

Therefore, Proposition 3 has been proved.
1.2 Fractional Tikhonov

In this section, we use a fractional power of
the matrix AAT as weighting matrix to measure
the residual error in standard form (18) with a

semi-norm"*-

. We will replace the penalized least-
squares problem (18) by a minimization problem
of the form

min{|Ax —b i+, |x]*) 2

x€ER
where the matrix H is symmetric positive semi-
definite and
M|, =M HM)"” (25)
for any M. It is quite natural that the value of p
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counts for a great deal that determines how sensi-
tive the solution of Eq. (24) is to the error e in b.
The minimization problem (24) has a unique so-
lution .;c/l for any g, such as the penalized least-
squares problem (18).
Assuming that

H=(AAT) " (26)
for a=>0. When a<1, we define H as the Moore-
Penrose pseudo-inverse of AA™. The choice of a is
the key to determine ;cw , which makes the ap-
proximate solution more accurate. We refer to
the minimization problem (24) as the fractional
Tikhonov method (the weighted Tikhonov meth-
od)™,

Tikhonov regularization.

When a=1, we can obtain the standard

The normal equation associated with the pe-
nalized least-squares problem (24) is given by
((AAT) V7 Dx = (ATA)“ P A"h
@27
Then introduce the singular value decomposition
(SVD) of A, shown as
A=UxV" (28)
where
V="[v,0,,50,] € R
and
U="[u uy,*»u,] € R
are orthogonal matrices and
X =diaglo, 02550, ] € R™ 29)
whose diagonal elements are arranged in the fol-
lowing order
=0, > o1 = =0, =0 (30)

where the index 7 is the rank of A7,

01 >Jz > A

Substituting the singular value decomposi-
tion (Eq. (28)) into Eq. (27) yields

(' 44 "DV =XU"b (3D)
Then the solution of Eq. (27) can be written as
x =V 4+, 'D XU (32)
which is equivalent to
X, = 2@(0;)(%5)7}, (33)
i=1
where
(6) —— % (34)
pro e T u

The solution x, of Eq. (5) can be recovered from

the solution of Eq. (33) according to

x, =Lhx, ., + x, (35)
In addition, the filter function for some a>0
is given by Eq. (34), it has the following asymp-

totics

limg(s) =lim

_ o
1
o0 06

=%+ 06 (36)
M
and

o' +0G “P)BD

limgp(e) = 1im

& _
o O_a+l +#

Then we consider the filter function of stand-
ard Tikhonov regularization shown as

o
o’ +p
It is easy to show that the filter function (34) is

g}(a) =

less smoothing than ;0(0) for 0<<a<{1, and the
singular values are damped less by the filter func-
tion (34) than by g}(a) , which means that the ap-
proximate solution (35) has higher quality than

that with the exact solution.

2 Arnoldi-Projection Fractional Tik-

honov

The regularization method is based on the
singular value decomposition of the coefficient
matrix. However, the singular value decomposi-
tion requires a very large amount of computation
for the large-scale matrix. Therefore, we choose
to project the large-scale problem to the low-di-
mensional Krylov subspace. Lewis and Reichel
proposed Arnoldi Tikhonov regularization meth-
od™ in 2009, and introduced the method in de-
tail. Moreover, Global Arnoldi Tikhonov and
Tikhonov

Augmented Arnoldi Regularization

Methods were successively proposed™?'?7,

We propose to reduce the problem (3) to a
problem of smaller size by application of the
Arnoldi process applied to A with initial vector
vi=b/|b|. This yields the decomposition

AV, =V, H, (38)
where V,=[ v, ,v,,+,v, ]E R"”* is the first £ col-
umns of V,41» and V.., € R”*"Y has orthonor-
mal columns, which span the Krylov subspace

K,(A,b) =span(b,Ab,-,A*'b) (39)
We assume that % is chosen sufficiently small

so that H, is an upper Hessenberg matrix with
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Then H, is of

rank k. We seek to determine an approximate so-

nonvanishing subdiagonal entries.
lution x,, of Eq. (4) in the Krylov subspace
(39).
Substituting
x=V,y y¢& R
into Eq. (4) and using Eq. (38) yields the reduced
minimization problem

min{|H,y —Viab|* + .7 y|?) @0

GR
whose scy)lu‘uon is denoted by y,,. And the re-
duced minimization problem (40) solved using
the projection fractional Tikhonov regularization
methods is described in Section 1, then
r =V, 41D

is an approximate solution of Eq. (4).

3 Parameters Selection

This section discusses the determination of
We first consider
It fol-

the regularization parameter.
the effects of parameters a and p on ';;w’
lows from the solution that

g 2 10g("1)f;)3< H)r (42)

aJ H -
7(1 "
and

4 u[(

i=1

QL

%

P
43

? is a monotonically decreasing func-

e, | ;crm

s a

tion about p. It is quite natural that |x,.,

monotonically increasing function about a when
log(s;) >0

the choice of the regularization parameter u, so

. The amount of error e determines

that different values of the regularization parame-
ter u are obtained with different e. Generally, the
larger e is, the larger p should be. Due to the

norm of the computed solution decreases as p in-

creases, ||x may be smaller than the norm of

pea

solution of Eq. (24).

l,u |+ i e, the appropriate value

Interestingly, the value of

of a can yield a more accurate approximate solu-
tion of x.
Conjugating
X, :L.JFA-;,l.u + x
we have

Ax —b=Ax — b (44)

(16) and

The discrepancy associated with x, is

where A and b are given by Eq.

Eq. (17).

defined by

d,: —b— Ax, (45)

and we assume that an estimate of the norm of

the error

e: = | e (46)

Then we can apply the discrepancy principle to

determine a suitable value of the regularization
Let a=>0 be fixed and define that

0=ey U7

where =1 is a user-supplied constant independ-

parameter u.

ent of e. We determine x>0, so that the solution
x, of Eq. (4) satisfies

|b—Ax,.|=ep=06 (48)

Then the vector x, is asked to satisfy the dis-

5] Solution of Eq. (48) about

pea

crepancy principle

o 1s equivalent to the positive zero of the function

906,(#)*2@67*%1) 2(ulh)? + Zme) —

i=rtl

(49)
where r is the rank of A. Thus

@ () = *226?*1 (o™ 4+ 1) (ulb)? (50)

and -
@ () :620?“*2 (o™ + 1D ) (51)
We consider,:t]he initial approximate solution

(p,u (g)/

go”u(;l) to compute the positive zero of the func-

Mo s =0 for Newton method with w= o

tion ¢, (). The iterations with Newton's method

are terminated as soon as a value of 4, such that
f. () < T Gf — e (52)

1/100 in

Eq. (52) is used in our implementation, but other

has been determined. The factor

positive factors strictly smaller than 1 can be also

used.

4 Numerical Examples

We use three text examples to illustrate the
performance of the Arnoldi projection fractional
Tikhonov ( APFT ) regularization and compare
them to Arnoldi fractional Tikhonov (AFT) and
Arnoldi Tikhonov (AT) for large scale linear dis-
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crete ill-posed problems. The orthogonal projec-
tion with

P.=1/n"*[1,1,-,1]" € R"
has the same null space as the regularization oper-

ator

L: 1 6 R(n DXn

0 1 —1
which will be applied in the following examples.
All computations were carried out in MATLAB
with about 16 significant decimal digits.
Example 1 Considering the Fredholm inte-

gral equation of the first kind shown as

—§<w<§

the MATLAB code Shaw produces a discretiza-
tion AE R ™1 and the right-hand side b € R'
by a Galerkin method with orthonormal box func-

tions''*). The noise-level A is defined by A= || e]|/

Jluw,p)f(p)dp:g(w)

[B]|. Then, we will give a comparison of the ap-
proximate solution by the APFT regularization
method and exact solution when taking the differ-
ent value of the error vector e.

Fig. 1 illustrates that the approximate solu-
tion obtained by the APFT method can approxi-
mate the exact solution well, which means that
APFT regularization method is effective.

Example 2 The Fredholm integral equation
of the first kind is

*b
J EGaD) f(DdE=g(9) c<s<d

and the MATLAB code discretes Barrt, Shaw,
Phillips, Gravity, Foxgod and Deriv2 by a Galer-
kin method with orthonormal box functions about

the matrix order n =1 000. The noise-level A is

defined by

_ e
A=13

The regularization parameter 4 is determined

by the discrepancy principle. The tables report
/

level and show that the method we proposed im-

A

relative errors [x,,—x

pea

A

x| for several noise-

proves the accuracy of the computed solutions.
Tables 1 and 2 show the qualities of AT,
AFT and APFT for various examples (n =

— Exact solution
APFT solution

200 400 600
i
(a) /=1/10

— Exact solution
APFT solution
/\

200 400 600 800 1 00(
i
(b) 2=1/20

— Exact solution
APFT solution

200 400 600 800 1000
i

(c) A=1/100

— Exact solution
APFT solution

200 400 600 800 1 000
i

(d) A=1/1 000

Fig. 1 Recovery results of Phillips with diverse noise-level

1 000). The following results show that APFT

usually renders solutions of high quality. In other
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words, we can see that APFT is superior to AFT
and AT,

Table 1 Qualities of these methods with the error-level (1=
1%)

Problem & AT k AFT k APFT
Barrt 10 0.427 10 0. 369 3 0.293 0
Shaw 10 0. 257 10 0.225 8 0.202 0

Phillips 10 0. 149 10 0.112 4 0.119 0

Foxgod 10 0.270 10 0.171 2 0.052 7

Gravity 10 0.166 10 0.121 5 0.102 0
Deriv2 10 0. 988 10 0.987 10 0.9820

Table 2 Qualities of these methods with the error-level (1=

10%)

Problem & AT k AFT k  APFT
Barrt 10 0.2670 10 0.1780 3  0.0383
Shaw 10 0.1660 10 0.0897 8  0.066 5

Phillips 10 0.0326 10 0.0144 4 0.0316

Foxgod 10 0.0736 10 0.0295 2  0.029 4

Gravity 10 0.0516 10 0.0210 5 0.0281
Deriv2 10 0.9860 10 0.9850 10 0.9840

Example 3 We show the performance of the
method about the restoration of a discrete image
which has been contaminated by blur and noise.
Our task is to deblur the two-dimensional images
degraded by additive noise and spatially invariant
blur. The restoration problems were proposed by
the US Air Force Phillips Laboratory. The two-
dimensional image restoration problem can be
modeled by a linear system of equations Ax =b.
The matrix A is a discrete blurring operator re-
ferred to as a discrete point spread function. Then
the components of the vectors b and x are the lex-
icographically-ordered pixel values of distorted
images and the exact, respectively. We efficient-
ly compute matrix-vector products without ex-
plicitly forming A by using the fast discrete Fou-
rier transform and the discrete point spread func-
tion.

Fig. 2 displays the noise- and blur-free ima-
ges, the contaminated image, as well as restored
images of Lena which determined by the AFT and
APFT methods. Meanwhile, the images above il-

(b) Blurred Lena

(c) Restored Lena by AFT

(d) Restored Lena by APFT

Fig. 2 Original, blurred, and restored Lena images

lustrate that APFT gives better reconstructions
than AFT.

Fig. 3 displays the noise- and blur-free ima-
ges, the contaminated image, as well as restored
images of “MATH” which are determined by the
AT and APFT methods. The approximate solu-
tions abtained by the APFT method are nearly
optimal for this example. Actually, the computed
solutions are close to the orthogonal projection of
the exact solution into the range-restricted sub-

space. However, the AT produces an approxi-

(a) Original MATH (b) Blurred MATH

MA MA
TH TH

(c) Restored MATH by AT (d) Restored MATH by APFT

Fig.3 Original, blurred, and restored MATH images
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mate solution of lower quality than the APFT

method.

5 Conclusions

In this paper, we propose the APFT regular-
ization method for solving the large scale linear
discrete ill-posed problems. Our method is easy
to realize and numerical examples show that the
proposed method is effective by which we can give
a more accurate approximation than AT and AFT

methods.
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