Jun. 2018

Transactions of Nanjing University of Aeronautics and Astronautics

High-Order Discontinuous Galerkin Solution of Compressible Flows
with a Hybrid Lattice Boltzmann Flux

Sun Yongcheng ™, Cai Junwei, Qin Wanglong

The 28th Research Institute of China Electronics Technology Group Corporation, Nanjing 210007, P. R. China
(Received 14 November 2017; revised 18 December 2017; accepted 22 December 2017)

Abstract: A discontinuous Galerkin (DG)-based lattice Boltzmann method is employed to solve the Euler and Navi-
er-Stokes equations. Instead of adopting the widely used local Lax-Friedrichs flux and Roe Flux etc. , a hybrid lat-
tice Boltzmann flux solver (LBFS) is employed to evaluate the inviscid flux across the cell interfaces. The main ad-
vantage of the hybrid LBFS is its flexibility for capturing both strong shocks and thin boundary layers through in-
troducing a function which varies from zero to one to control the artificial viscosity. Numerical results indicate that
the hybrid lattice Boltzmann flux solver behaves very well combining with the high-order DG method when simula-
ting both inviscid and viscous flows.
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0 Introduction

During the past two decades, high-order dis-
continuous Galerkin (DG) methods™™ have been
receiving growing interests due to its advantages
such as high accuracy, great geometry flexibility,
straightforward implementation of h/P adaption
and parallel computing. Bassi et al. used a high-
order DG method to solve the Euler equations in
1997%) and then developed BR1 scheme (the first
Bassi-Rebay scheme) and BR2 scheme (the sec-
ond Bassi-Rebay scheme) for solving the Navier-
Stokes (N-S) equationst *,

time, Oden et al. introduced a high-order DG

Almost at the same

scheme for the N-S equations without using any

auxiliary variablest™.

In recent years, the LDG
and CDG schemes were also developed for solving
the N-S equations in Refs. [ 6,7 ], respectively.
Since the DG method is quite similar with the fi-
nite volume (FV) method, the numerical fluxes em-
ployed in FV method are also widely used in DG meth-

od, such as local Lax-Friedrichs (LLF), Roe etc.
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As an alternative, the Boltzmann equation-
based flux solvers are becoming more and more
attractive, such as the kinetic flux vector splitting
(KFVS) scheme™ and the gas-kinetic Bhatnagar-
Gross-Krook ( BGK) scheme™ ™. The KFVS
scheme usually cannot produce numerical results
as accurate as those obtained by Roe''" or
AUSM!% since the collision process is controlled
by numerical time step. The gas-kinetic Bhatna-
gar-Gross-Krook (BGK) scheme handles the par-
ticle collisions using the BGK model and controls
the dissipation in the streaming process by the
collision time, which gives accurate solutions for
both inviscid and viscous flows. However, the
use of the Maxwellian function in KFVS and the
gas-kinetic Bhatnagar-Gross-Krook (BGK) scheme
increases the complexity and reduces the efficien-
cym’m.

Recently, some efforts have been made to
develop efficient lattice Boltzmann flux solver

[13-16]

(LBFS) for compressible flows . where the

inviscid flux at the cell interface is reconstructed
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using the local solution of one-dimensional com- -y ) % (Dl ) )
. . . W(Tsysl) = Vi) (x,y
pressible lattice Boltzmann model. It is noted that = s

the non-equilibrium part of the distribution func-
tion at cell interfaces introduces numerical dissi-
pation, which is helpful for capturing shocks, but
not expected in smooth regions, such as boundary
layers.

A high-order DG method is employed here to
solve both inviscid and viscous flows. Instead of
using the conventional numerical inviscid fluxes,
a hybrid LBFS is adopted, in which a switch func-
tion is introduced to control the numerical dissi-
pation. Numerical results indicate that the hybrid
LBFS combining with the high-order DG method
can give accurate solutions for both inviscid and

viscous flows.

1 DG Discretization of N-S Equa-
tions

The N-S equations in the conservation form
can be written as

%J+v CFW) LV FU.TU) =0 (1)

where U are the conservation variables and F., F,
are the inviscid and viscous flux functions, re-
spectively.

After multiplying a test function V', integra-
ting over the computational domain and perform-
ing an integration by parts, the following weak
form is obtained

9

J VUdQ+J VF WU, VU) « nds—
dt)a 0

JVV-F(U,VU)dQ:O vV (2
n

where F(U,VU)=F (U)+F,(U,VU). By sub-
dividing the computational domain (2 into the non-
overlapping elements (2., the semi-discrete sys-
tem is written as

ij Vhled\Qf +J V},F(Ul,yth) « ndd —
dt)a, 20,

J VVh 'F(Uh9VU1,)d\Q(,:O for Vh (3)
n(

where U, and V, are the high-order approxima-
tions of U and V

N(p)

U,(x.y.0) = D u, (D¢, (0 y) (4
j=1

where ¢; (x,y) are the basis functions of degree
p. Eq. (3) then becomes

d

7J ¢IU1!d\Qk +J ¢,F(U},3VU11) . nd@*
dt)a, 20,

J V¢« FWU,,VU,dQ, =0 1<<i<<N(p)
a,

(6)
Here, the BR2 scheme™ is employed, which
introduces the following “face” contributions de-

fined as

| grmda =] g ~tms @D
aQ, 9,

where U, :%(U+U+) and U" is the state of the

neighboring element. Replacing the flux function
FW,,VU,) * n with a numerical flux function,
Eq. (6) becomes

)

a—tjﬂ‘f,md@, +

J SZS,'H(U]]sVUh‘FrJ_QF 7U?;7VU?;+rjg(7n)d6*
20,

J v¢; ’F(Uh?th +r,7_qk)ds(2[):0
n!’
1<<i<<N(p) (8)

There are volume and surface integrations in
Eq. (8). In order to efficiently solve this equa-
tion, Gauss numerical integration method is
adopted in this work. The numerical flux H in-
cludes the inviscid part H. (U, ,U; ,n) and the vis-
cous part H, (U, , VUthrmr Uy , VU, Jrrfn” W),
The viscous part can be evaluated by averaging

the left and right side of the interface
Hq;(Uh , VU, + r,)g( 9UT: ’ VU?: +ri7rn(‘ sn) =

LU VU, + 1)+ FUL VUG 4 rig) ]+

(€))
As to the inviscid numerical flux, instead of
using the widely used LLF flux, Roe flux,

AUSM flux, etc., an LBFS is employed in this

work.

2 Hybrid Lattice Boltzmann Flux
Solver

In the hybrid lattice Boltzmann flux solver,

the inviscid flux is evaluated by local reconstruc-
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tion of solution using one-dimensional lattice Bo-
ltzmann model, while the viscous flux is still ap-
proximated by conventional smooth function ap-
proximation. Thus, in this work, we only con-
sider the evaluation of inviscid flux at the cell in-
terface. For the sake of derivation, the detailed
expression of inviscid flux is given first. For two-
dimensional case, the inviscid flux in Eq. (7) can

be written as

(OUh
(U, U, + pIn, —oU,U.n,
H— | St IO
(U, U, + p)n, —pU,Upmn,
(oE + pU,

where n=(n, ,n,) denotes the unit normal vector
on the control surface in the Cartesian coordinate
system. p,U,,U, and p present the density, nor-
mal velocity, tangential velocity and the pressure
of the mean flow, respectively. E is the total en-

ergy defined as
E=e+%(U?,+U§) (D

where e=p/[(y—1) o] is the potential energy of
the mean flow.

In the present work, the inviscid flux H, is
computed by LBFS. It is known that the conser-
vative variables and fluxes at the cell interfaces
can be expressed as the summation of lattice ve-
locity, moments and distribution function accord-
ing to the conservation forms of moments'**1. U-
sually, the distribution function at the cell inter-
face consists of equilibrium part and non-equilib-
rium part. From the Chapman-Enskog analysis
and applying Taylor series expansion in time and
physical space, the non-equilibrium part of the
distribution function can be approximated by the
difference of equilibrium distribution functions at
the cell interface and its surrounding point™'7" *J,
Finally, the inviscid flux at the cell interface can

be written as

H = > c¢.g,0.,0)+
i=1

4 4

w0 [ D) epug (—Edtt— ) — D ep.g. (0.0 |=
i=1 i=1

H' 4 [H' —H'] (12)

where 7, is the dimensionless collision time, ot

the streaming time step, & the particle velocity in
i-direction, and g;(0,7), and g; (—&dt,t—4t) are
the equilibrium distribution functions at the cell
interface and its surrounding points. A non-free
parameter D1Q4 model, proposed by Yang et

[14. 15]

al. , is adopted in Eq. (14). ¢, stands for the

moments, which can be written as

(pM:(l,S;,%EZ—’—eP)T (13)

where e, = [1 — %(7 — 1) }e is the potential en-

ergy of particles and D the abbreviation of dimen-
sional lattice Boltzmann model (D=1 for D1Q4
model). From the Chapman-Enskog analysis™®’,
we know that the first term on the R. H. S. of
Eq. (14) contributes to the inviscid flux while the
second term on the R. H. S, of Eq. (14) is the nu-
merical dissipation. 7, can be viewed as the
weight of the numerical dissipation in the present
work. By introducing a switch function to control
the value of z,, we can achieve the goal of setting
the numerical dissipation to be zero in smooth re-
gion while the maximum value in the vicinity of
strong shock wave, The details of the evaluation for

H'. H" and 7, in Eq. (14) will be shown below.
2.1 Evaluation of H!

H'! is the flux attributed to the equilibrium
distribution function at the cell interface g,(0,2).
To obtain g, (0,2), the conservative variables at
the cell interface should be computed in advance.
According to the compatibility condition and the
conservation forms of moments, the density, mo-
mentum in the normal direction and energy at-

tributed to normal velocity can be computed by

1 9 T
U — [p,phoU,, U +peJ -

DVEp.gi (— &St — o) (14)
i=1

In Eq. (16), the key issue is to evaluate the
equilibrium distribution function g; (— &d0t,t— 8t).
Like the conventional upwind schemes, it is as-
sumed that a local Riemann problem is formed at
the cell interface. Thus, the equilibrium distribu-
tion function g; (— &0t,t— 0t) can be evaluated

according to the location of —§&6¢. The non-free



416 Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 35

D1Q4 model is applied in this paper and
g (—E&0t ,1—351) can be specified as
gr 1=1,3
g,<—&8t,z—(‘>‘z>=quR P (15)

where g and g¥ are the equilibrium distribution
functions at the left and right sides of the cell in-
terface, which can be calculated from the corre-
sponding conservative variables U, and Uy . The
process is illustrated in Fig. 1 and the details can
be found in Ref. [15]. Substituting Eq. (17) into
Eq. (16), we can obtain

Ui =Dl agh+ D) gk (16)
i=1.3 i=2.4
L.R L.R
1 N 1
g g gt g ST g og | g og
' I
g g g & E
——l—O——
1 1
1 1
Interface Interface

Fig. 1  Streaming process of non-free parameter D1Q4

model at the cell interface

In Eq. (18), only the conservative variables,
which attributed to the normal velocity, are ob-
tained. To evaluate the tangential velocity at the
cell interface, one of the feasible ways can be ex-

pressed as

4

WU " =Dgi+ Ul =D gh U+ > gk« U¥
i=2,4

i1 i1

an
where U,, Ul and U¥ are the tangential velocities
at the cell interface, the left and right side of cell
interface, respectively. With Egs. (18), (19),
the primitive variables o™, U, , U/, p" can be
obtained in a straightforward way. By substitu-
ting the above primitive variables directly into
Eq. (4), the inviscid flux at the cell interface H!

can be expressed as

eV,

(U, U, + pon, — oU,U.n,
H—|" P T pUa U gy
(WU, U, + pon, — U, Unn,

(pE + U,

2.2 Evaluation of H"

H" is the flux attributed to the equilibrium
distribution function at the surrounding points of
the cell (—&O0t,t—51).

interface g, Since

g;(—&0t,t—0t) has been determined by Eq. (17),
H! can be computed directly for this case. The
mass flux, the momentum flux in the normal di-
rection and the energy flux attributed to the nor-

mal velocity across the interface can be written as
11 2 1 2 T
H!'= [pU,,,pU,, Jri)(;)(?U,, +e>+p)U"] —
Dleggl + D tp.ght (19)
i=2.,4

i=1,3

In addition, the contribution of the tangential
velocity to the momentum flux in the tangential

direction and energy flux can be approximated by
4
WU U * =D 16g (—&dt,t—o) « Ul =
i—1

Dlegh U+ Dlegh « U 20

i=1.3 i=2.4
4
WU, U " =D 6g (— &t —o) » (U ) =
i=1

DiGgl e UD T+ Diggl - UHT @D

i=1,3 i=2,4

By collecting Egs. (21)—(23), the full ex-

pression of H" can be obtained
4
2 &g
i—1
4 4
Zg?g:nz - 25:81 ¢ sz'X ny
i=1 i=1
4 4
D&gm,+ > &g, +Uln,
i=1 i=1

4 1. 1 4 o
7§Si<?55+ep>g,+?§$,g,(Ur )

HH —

(22)
where g, =g, (— &0t .t—t).

2.3 Evaluation of 7,

In the hybrid LBFS, 7, is controlled by an in-
troduced switch function. In the smooth region
such as in boundary layer, the switch function
takes a value close to zero. However, around the
shock wave, it tends to be one. That is, in hybrid
LBFS, the numerical dissipation is almost zero in
smooth region to simulate accurately the thin
boundary layer, and a relatively large numerical
dissipation near the strong shock wave is con-
tained to suppress the instability of shock wave.
The switch function is defined as

_ ~ ‘QL_QR‘
70 tanh(C o+ ox ) (23)
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where tanh(x) is the hyperbolic tangent function,
and o, pr the densities at the left and right sides
of the cell interface. “01, — or | is the local discon-
tinuity over the cell interface and C is the amplifi-

cation factor, which is set as C=10 in this work.

3 Numerical Results

A few benchmark problems are tested with
the hybrid LBFS introduced above, including the
Sod shock tube, the inviscid flow around a cylin-
der, the inviscid flow with shocks around the
NACAO0012 airfoil and the laminar flow around
the NACAO0012 airfoil.

3.1 Sod shock tube problem

The shock tube problem is a particularly in-
teresting and difficult test case, since it presents
an exact solution to the full system of one-dimen-
sional Euler equations containing simultaneously
a shock wave, a contact discontinuity and expan-
sion fan. This test case is chosen to demonstrate
the flexibility of the LBFS combining with DG
method in capturing the shock. The initial value

of this problem is set as

(pL?ul‘?pL):(l’O?l) —0.5<<x<<O0
(‘OR’uRvi)R):(O.1255090.1) O<1<O5
24

A mesh size of 250 is used for simulation and
a third order (p = 2) DG method is adopted.
Fig. 2 shows the computed density profile ob-
tained by the LBFS scheme (red solid line) at t=
0.22. Exact solution (black solid line), the re-
sults of Lax-Friedrichs (LF) scheme (green dot-
ted line), HLLC scheme (blue dashed line),
AUSMDYV scheme (cyan dotted line) are also dis-
played in Fig. 2. It is observed that the perform-
ance of the schemes in capturing the shock is ba-
sically the same. However, in the vicinity of the
expansion wave, the result of LBFS is the same
with that of the AUSMDV scheme, which is
steeper than the results of both LF scheme and
HLILC scheme, demonstrating a more accurate
Fig. 3

gives the computed profiles of pressure and veloc-

scheme in dealing with complex flows.

ity with different schemes. The results of LBFS

match well with those of other schemes and the
exact solutions, which demonstrate the capacity

of the hybrid lattice Boltzmann flux solver.

Exact solution

LF scheme

HLLC scheme
AUSMDYV scheme
Lattice Boltzmann schem

:E‘
7
5}
)

Fig. 2 Density profile for the 1D Sod shock tube

Exact solution

LF scheme

HLLC scheme

AUSMDYV scheme
Lattice Boltzmann scheme]

(a) Pressure profile

Exact solution

LF scheme

HLLC scheme
AUSMDYV scheme
Lattice Boltzmann
scheme

-0.5-0.4-0.3-0.2-0.1 0.0 0.1 0.2 0.3 0.4 0.5
X
(b) Velocity profile

Fig. 3 Pressure and velocity profiles for 1D Sod shock tube

3.2 Inviscid flow around a cylinder

The case of the inviscid flow around a cylin-
der is used to validate the accuracy of the DG-
LBFS scheme. A structured C-grid (16 X 16) is
used in the entire computational domain (Fig. 4),
which is very coarse. The obtained Mach number

isolines with various orders ranging from 1 to 4
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are given in Fig. 5, where the Mach number iso-
lines become smoother with increasing order.
The numerical solutions are very close to the ana-
lytical solution when p=>=3. Fig. 6 displays the
distributions of the pressure coefficient C,. It can
be seen that the numerical solution becomes more
and more accurate with increasing order and no
significant difference can be observed when the
order p—=2, which demonstrates the great capaci-

ty of the DG-LBFS scheme.

! 1 1 L

-20-15-1.0-05 00 05 1.0 15 20
X
(b) Local view

Fig. 4 Mesh for inviscid flow around a 2D cylinder

25F = —
20F /

\ V¥
ERIN 7=

201
=2.51F /

(d)p=4

Fig. 5

Mach number contours obtained

using different orders

3.3 Transonic flow past NACA0012 airfoil

A transonic flow around the NACA0012 air-
foil case is used to test the ability of the DG-LLBFS
method in capturing the shock. The Mach num-
ber of the flow condition is 0. 85 and the attack
angle is 1. 25°,

Fig. 7 gives the global view and the local view
of the computational mesh, which contains 900

elements in total. Fig. 8 demonstrates the Mach
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Fig. 7 Computational mesh for transonic flow past NA-

CA0012 airfoil

number isolines obtained with different orders. It
can be observed that the accuracy becomes higher
with increasing orders. The computed pressure
coefficient C, (p =4) is shown in Fig. 9, which
depicts a good match compared with the result of
Ref. [20]. Fig. 10 illustrates the logarithmic den-
sity residual versus time step using an implicit

method. Converged results can be obtained within

Fig. 8

orders

-1.0 -05 00 05
X
(d)p=4

Mach number isolines obtained using different
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Ref.[20]
Present, p=4

Fig. 9 C, distribution for transonic flow past NACA012

airfoil (p=4)

[}
=1
=
=]
v
[}
-
on
(=)
|

60
Time step

Fig. 10 Logarithmic density residual versus time step (p=

1—4) for the transonic flow past NACAO012 airfoil

several time steps for different orders. Table 1
gives the computed lift coefficient C; and drag co-
efficient Cy4 using DG-LBFS method with different
orders. It can be seen that although a coarse grid
is used in this case, the results of the DG-LBFS

method agree well with that of the finite volume

method™.
Table 1 Results of C, and Cq
Method G Cq
Ref. [20] 0.354 95 0.022 55
DGM_ p, 0.3259 0.025 4
DGM_p, 0.348 0 0.023 6
DGM_p; 0.348 5 0.023 0
DGM_p, 0.347 3 0.022 6

3.4 Laminar flow past NACA0012 airfoil

A laminar flow around the NACAO0012 airfoil

is chosen to test the ability of the DG-LBFS
method in capturing the thin boundary layer. The
free-stream flow condition is given as Ma.. =0. 5
and Re.. =5 000 with an angle of attack «=0°. A
coarse mesh with 476 quadrilateral elements is
used for this test case as in Fig. 11. The Mach
number isolines of order p = 4 is displayed in
Fig. 12, in which a small recirculation bubble
caused by the separation of the flow can be seen in
the near-wake region of the airfoil. The results of
the pressure coefficient C, and the friction coeffi-
cient C; are given in Fig. 13, which concur with
the results of the Godunov flux function™!. The
computed lift coefficient C; and drag coefficient C,
of different orders using DG-LLBFS method are lis-
ted in Table 2, which agree well with the results
of Refs.[3,21], showing the capacity of the DG-

LLBFS method in solving the viscous flow prob-

lems.
20
0.0 0.5 1.0
X
(b) Local view
Fig. 11  Computing mesh used for simulation of laminar

flow past NACA0012 airfoil
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Fig. 12 Computed Mach number isolines of laminar flow

past NACA0012 airfoil (p=4)

Present
. [3]

0.2 0.4 0.6
X
(a) C, distribution

Present
;131

0.2 0.4

(b) C, distribution

Fig. 13 Computed C, and C; for laminar flow past NA-
CA0012 airfoil
Table 2 Comparison of C, and C,

Method Ci.iomal Ca.ronal

Ref. [20] 0.0 0. 055 57
Ref. [3] 0.0 0.055 11
DGM_p, 0.0 0.066 20
DGM_p, 0.0 0.054 90
DGM_ p; 0.0 0.053 50
DGM_p, 0.0 0.053 30

4 Conclusions

The high-order DG method combining with a
hybrid lattice Boltzmann flux solver is employed
to solve the compressible Euler equations and
Navier-Stokes equations. A switch function ran-
ging from 0 to 1 is introduced to control the nu-
merical dissipation when solving the inviscid nu-
merical flux, making the scheme accurate for
simulating both smooth flows and the flows with
shocks. Numerical results of some benchmark
problems indicate that accurate solutions can be
obtained even on very coarse grids using the in-

troduced numerical solver.
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