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Abstract; Because of the inevitable debugging lag, imperfect debugging process is used to replace perfect debugging
process in the analysis of software reliability growth model. Considering neither testing-effort nor testing coverage
can describe software reliability for imperfect debugging completely, by hybridizing testing-effort with testing cov-
erage under imperfect debugging, this paper proposes a new model named GMW-LO-ID. Under the assumption
that the number of faults is proportional to the current number of detected faults. this model combines generalized
modified Weibull (GMW) testing-effort function with logistic (LLO) testing coverage function, and inherits
GMW s amazing flexibility and 1.O’s high fitting precision. Furthermore. the fitting accuracy and predictive pow-
er are verified by two series of experiments and we can draw a conclusion that our model fits the actual failure data
better and predicts the software future behavior better than other ten traditional models, which only consider one or
two points of testing-effort, testing coverage and imperfect debugging.
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0 Introduction

With the rapid development of software engi-
neering, software reliability, one of the most im-
portant text indexes used for ensuring the relia-
bility of software products during and after soft-
ware development, is of great concern. During
the last thirty years, large numbers of software
reliability growth models (SRGMs) are proposed
to track the reliability growth trend of the soft-
ware testing process'"*). SRGMs can be used for
defects detection, failure rate calculation and fail-
ure prediction. Especially, due to the understanda-
ble and simple formula, non-homogeneous Poisson
process (NHPP) SRGMs are most widely-used.

During the software reliability analysis, large
amounts of manpower and CPU hours, which are

called testing-effort (TE), are consumed. Obvi-
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ously, the consumption rate of TE cannot be a
constant and it may change the shape of software
reliability growth curve. Testing-effort function
(TEF), such as logistic (LO) TEF™*', was estab-
lished for quantitatively describing the distribu-
tion of testing resources. Zhang et al. ! added fi-
nite queuing model into generalized modified
Weibull (GMW) TEF with respect to the testing-
effort in failure detection process (FDP) and fail-
ure correction process (FCP). Lin' proposed a
software reliability modeling framework used to
gauge the influence of test phase transitions and
got a significant effect on fault detection. Pachau-
ri et al.'™ used genetic algorithm (GA) and
multi-attribute utility theory (MAUT) to keep
fault detection rate as a constant.

Moreover, just like TE, testing coverage
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(TC) can also help programmers detect defects.
Cai'* found that there would be some correlations
between TC and software reliability. Thus, tes-
ting coverage function (TCF) was established for
quantitatively describing TC’s transformation,
such as LO TCF™. Li et al. " proposed an IS-
LO-SRGM combining inflected S-shaped TEF
with LO TCF and yielded a wonderful fitting.
Chatterjee and Singh"" incorporated a logistic-ex-
ponential TCF with imperfect debugging and the
new model’ s prediction was very close to actual
software faults.

Furthermore, a detected fault cannot be cor-
rected immediately and the time required to cor-
rect a detected fault is usually called debugging
lag/delay™.

pear during the fault correcting. In other words,

One or several new faults may ap-

the number of faults is not a constant and it will
grow during the detection, which is called the im-
perfect debugging (ID). Peng'” and Zhang'¥
both built their SRGMs under 1D, and the new
models had better descriptive and predictive pow-
er than the others. Wang et al. "™ proposed a
SRGM under ID considering log-logistic distribu-
tion fault content function and achieved good per-
formance.

In a word, the introduction of TE, TC and
ID, not only makes the SRGMs reliable, but also
improves the defect detection rate. However, lit-
tle research has been conducted to SRGMs combi-
ning ID with both TE and TC. Thus, it is desired
to put forward an ID dependent SRGM consider-
ing both TE and TC to better fit the actual data.

To address this problem, a new SRGM mod-
el named GMW-LO-ID is proposed in this paper.
In contrast to most of the existing models, our
model not only combines the GMW TEF and LLO
TCF, but also assumes that the current number
of faults is dynamic. The fitting accuracy and pre-
dictive power are improved by means of consider-

ing TE and TC under ID.

1 The Proposed GMW-LO-ID Model

In this section, a new model named GMW-

LO-ID, which considers both TE and TC under

ID, is proposed in this section. GMW-LO-ID
considers testing resources’ allocation, code cov-
erage analysis and debugging lag. Moreover, it
has GMW TEF’s great flexibility and LO TCF’s
highly fitting precision.

The NHPP SRGMs considering ID are for-
these following

mulated based on assump-

tionsHo- 112l
(1) The faults detected process follows the
NHPP process;

(2) The current failure is caused by the rest
faults in software;

(3) During time interval[ ¢,¢+ At ], the mean
value of detected number of faults from the cur-
rent TE is proportional to the rest number of
faults. In addition, the ratio between them is
called the current fault detection rate r(z) and it

can be calculated by

C'(t)
1—Cw)

where C’(¢) denotes coverage rate;

r(t) = (D

(4) Whenever a fault is detected, it can be
corrected immediately;

(5) The micro updating of code coverage
function C(#) can be neglected when new faults
appear.

Based on these assumptions above, GMW
TEF, LO TCF and the form of ID are introduced
in the following.

GMW TEF is based on generalized modified
Weibull distribution, and the cumulative TEM™ is
given by

W) =a(l—exp(— pt"e’))’ (2
where a denotes the total effort expenditure; m
and 4 are shape parameters; 8 is a scale parameter
and A is an accelerating factor.

LO TCF is presented in Eq. (3) as

dm(o) 1 C'(t)
dr w() 1—C@)

where N denotes the total number of faults; m(2)

(N —m () 3)

denotes the mean value function of detected faults

. . . N f— 71
during time interval [z,t+At];C(1) = Y

reveals the final coverage; o« denotes the parame-
ter of coverage rate.
The parameters of TEF and TCF can be esti-
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mated by means of least square estimation
(LSE)F17,

maximum likelihood estimation (MLE) are listed

Two reasons why we do not utilize

in the following. On the one hand, after we

transform Eq. (3) into

t

m(t) = NefB(W“”J PV (W () de

0

C ()
aA—Cw))

the datasets offer us a series of ¢t and m(¢), which

where r(¢) =

and B(1) = J F(W () de.

can be regarded as independent variable and de-
pendent variable, respectively. LSE is more like-
ly to be used in 2-/y- coordinate system. On the
other hand, the number of data containing in the
datasets is quite small. MLE, which is based on
statistics, may achieve a larger estimation error.
Hence, the parameters are estimated by LSE.

How to describe the dynamic function N (¢)
is the key point in SRGMs considering ID. In this
paper, we assume that the current number of
faults is proportional to the number of detected
faultst™, i.e.

N) =N+ 6m (1) 4)

where § denotes a proportionality coefficient.

By combining these three parts together, the
proposed model GMW-L.O-ID is presented in the
following

dm() 1 a(N+ @@ —Dm())
dr  w() 1+ Ae™

where m (¢) denotes the mean value function of

5

detected faults during time interval [z, ¢+ At ];
w(t) reveals the function of TE consumption

rate, and it can be calculated as the derivative of

dW ()
de -~

After solving the differential equation with
the boundary condition of m(0)=0,W(0)=0 and
the assumption of § % 1, we get GMW-LO-ID

shown as

cumulative TE, i.e. w(t) =

(60— 1>aa<1—e*»?f’"ci" L ) )

1+ Aexp(—aa(1—e# <)%
(6)

GMW-LO-ID has great flexibility. By assig-

ning the scale parameters and shape parameters in

m(t) = %(1 — exp(

Eq. (6), it will degenerate to other simple kinds
of SRGMs considering TE, TC and ID. For ex-

ample, when A=0,0=1,m=2 we get the Ray-
leigh-1.LO-ID shown in Eq. (7).

(0= Dar(l=e ") ) )
1+ Aexp(—aa(1—¢ 7))

D)
Obviously, GMW-LO-ID has nine parame-

ters. Thus, we can hardly estimate them togeth-

m(t) = %(1 — exp(

er. Li" mentioned a similar method of parame-
ter estimation: Estimate the parameters related
to TEF first and calculate the rest parameters
with the estimated ones. Hereon, we get our
method of parameter estimation:

(1) Estimate the five parameters relating to
TEF, i e

datasets;

parameters as f3, m, A, 6, by TE

(2) After the substitution of five parameters
in step (1) into Eq. (7)., there will be only one
general NHPP SRGM parameter N, two parame-
ters A and q related to TCF and a proportionality
coefficient § in the formula. Using LSE to esti-
mate the rest four parameters can obtain an accu-

rate estimation set easily.

2 Experiments and Analysis

In this section, the fitting accuracy and pre-
dictive power of our proposed model are validated
in constrast to ten SRGMs under two classical
datasets. LSE is used to estimate their parame-

ters.
2.1 Dataset description

In this paper, two datasets are used for veri-
fication that our GMW-LO-ID model has a better
descriptive and predictive power than other mod-
els. The first dataset is from the System T1 data
of the Rome Air Development Center (RADC)!.
This dataset, which contains running time, tes-
ting-effort (computer time) and number of detec-
ted faults, is widely used in the latest studies,
such as Zhang™ and Peng'’. The second dataset
is from the PL/I application program test data.
Its structure is similar to the first dataset and was
used by Pachauri™, Chatterjee!'. As both of
the datasets are widely used in the latest resear-
ches, the comparison between our proposed mod-

el and the others can be easily arranged.
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2.2 Experimental preparation

In order to find a better descriptive model,
five criteria are used to measure the fitting

effects, as shown in Table 1.

Table 1 Criteria for model comparisons
Name Definition
k
(y; —m())?
M i i
SE Z .

k

& / k ’
R-Square 1—2(y,—m(t,))2;ﬁ2<y’*2 %)Z
i—1 i

i=1 =1

.
Bias E (w(t; )k* w; )

i=1
d /
Variation \/( 2 (w(t;) — w; — Bias)? ) |k
i=1 !
v/ Variance + Bias’

RMSPE

To MSE, variation and RMSPE, the smaller
the criterion is, the better the model performs. In
addition, a better performance achieves when R-

Square and bias is more close to constant 1 and 0,

Moreover, ten SRGMs considering TE, TC
or both are introduced for the model comparison.
Goel-Okumoto is introduced as a representation
of the traditional SRGM without considering TE
and TC. Seven SRGMs,
shaped and GMW | are introduced as the repre-

such as inflected S-

sentations of models considering TE only. Be-
sides, IS-LO"™ is introduced as the SRGM con-
sidering both TE and TC. SRGM-GTEFID"* is
the representation of SRGM considering TE un-
der ID. Furthermore, if an SRGM considers more
than two parts of TE, TC and 1D, it definitely
contains more parameters, which may have better
fitting and predictive power.
2.3 Comparison of fitting power

Ten SRGMs considering TE, TC or both are
introduced to validate the fitting performance of
GMW-LO-ID in this section. Table 2 and Table 3

show the estimated parameters and fitting results

of all eleven models for DS1 and DS2, respectively.

respectively.
Table 2 Estimated parameters and fitting results of eleven SRGMs in DS1
DS1
SRGM W) - —
Parameters (LSE) MSE R-Square Bias Variation =~ RMSPE
Goel- a=18.941 2,
m(t)=q(l—e ") 109.709 2 0.917 2
Okumoto b=0.024 8
Logistict™ N N=20.1005, A=4Z4.89, ) 7006 0.9749 —0.0049 0.3980  0.630 9
ogistic dFAc™ =0, 493 5 . . ¢ . . . ¢
Exponential " N=27.186 0,8=2.71X10"° _
) _ N (1—e #")? 115.374 6 0.9531 —0.0065 0.404 0 0.635 6
Weibull'**] m=4.587 8, 0=1.778 3
Inflected N(l—e #) N=29.114 2,=0.493 2, _
) T 60.196 5 0.9756 —0.004 8 0.3980 0.630 9
S-shapedt'* 1+ ¢e ¢=4601.1
. " N=32.5818,8=1.73X10 7, _
Weibull N{d—e #*") 50.978 0 0.9793 —0.0523 0.5330 0.7319
m=25.2810
Generalized N=40.846 1,5=0.215 3,
. N (1—e &)™ 139.644 0 0.9433 —0.2870 0.4860 0.753 9
exponential m=39. 846 4
a=30.264 8,8=0.690 6,
GMWP! @ (1—6*3”'0)‘[ )0 m=0,004 0,,=0.093 1, 100.3986 0.9592 —0.0136 0.426 2 0.653 0
0=20.731 0
Burr type N a=28.002 5,8=0.043 9
a(l*(l‘#(ﬁt)”) ") _ 86.857 0 0.964 7 —0.0049 0.408 3 0.639 0
XII 0=6.561 7,m=5.149 5
. ] —e B N=29.114 2.8=0.493 2,
1S-LOM™ N(lie,ﬁ) p 27.3999 0.9889 —0.0048 0.3980 0.630 9
1+ge ¢=4601.1
W=28.846 2,2=0.503 3,
SRGM p=0.568 1,6=0.000 3,
G”}EFIID“” Wab (R+DF n =2,k=3.382 4, 30.5398 0.9781 —0.0258 0.407 0 0.638 5

(=0.671 2,n,=2,

GMW-LO-ID

®=—0.001 1.6=—0.474 4
«=30. 264 8,8=0. 690 6.,

a (1—e #"¥ 0 m=0.004 0,4=0.093 1.  26.649 8
§=20.7310

.989 2

.036 8

0.

432 4
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Table 3 Estimated parameters and fitting results of eleven SRGMs in DS2

DS2
SRGM - .
Parameters (LSE) MSE R-Square Bias Variation =~ RMSPE
Goel-Okumoto a=1482,b = 3.44 X107 160. 149 2 0.991 3
Logistic®™ N = 54,837 2,A = 13.032,¢ = 0.226 3 1 130.600 0 0.890 5 0.055 5 1.185 3 1.090 1
Exponential N=112.9117,4=3.1X107°
_ 113.113 3 0.9890 —0.0103 0.9605 0.980 1
Weibult'*] m = 2.8114,0 = 0.396 8
Inflected
N =291.5838,3=0.090 1,9 = 3.164 2 1 006.900 0 0.9024 —0.0061 0.949 3 0.974 3
S-shaped-**-
Weibull N = 269.895 6,8 = 0.006 5,m = 1.156 0 113.222 4 0.9890 —0.0146 0.9652 0.982 6
Generalized
N = 300.649 4,4=0.012 3,m = 1.175 0 166. 068 4 0.983 9 0.001 7 0.966 9 0.983 3

exponential

a=64.9717,4=0.043 4,m = 0.821 9
A=0.0550,0=1.077 3

GMW"!

a = 437.963 7.4 = 0,012 3

Burr type XII
=1.1824,m = 0.702 1

ISSLOM™ N =91.583 8,8=0.090 1,¢ = 3.164 2
W = 67.251 3,0 = 0.142 5,
SROM B=0.5364,b=2.7X107",

n, = 5,k =15.08114,
[ =0.896 9,0 = —0.9X10°°,
0= —0.574 5,n, = 2

GTEFID"

a=64.9717,4=0.043 4,m = 0.821 9
GMW-LO-ID
A=10.0550,0=1.0773

380.998 7 0.9631 —0.0018 0.9419 0.970 5
652.003 8 0.936 8 —0.0120 0.968 3 0.984 1
94.801 3 0.9908 —0.0061 0.949 3 0.974 3
559.428 5 0.9558 —0.0117 0.960 3 0.980 0
108.402 2 0.9895 —0.0018 0.9419 0.970 5

The numbers highlighted in bold are the best
results of each column. And in the tables, Goel-
Okumoto is a traditional SRGM without consider-
ing TE, which means there will be no W(#) or w(#).
That is why the last three criteria (bias, variation and
RMSPE) in Table 1 are missing and m(#) is used to
fill the blank of W (¢) instead. The F in W (z) of

>3

ny =0n, =0

_ <_ﬁ)”| (—/Q)”Z (7’1 2+1) I:ef(nlcbf(nanl)mLa)r_l] }
mo+ (,+1Dat+8 ’

W (¢) is utilized here as the substitution of full ex-

SRGM-GTEFID is short for F =

pression of SRGMs., Two reasons are shown in
the following: On the one hand, all 11 SRGMs in
Table 2 follow the NHPP process, which means
structure of

all models are based on the

d’zy)ﬁzr(z)(]\f*m(t)). The main differ-

ences between 11 SRGMs are the formula of

W (t). On the other hand, the full expressions of
SRGMs are not intuitive. The 11 long formulas
may make Table 2 chaotic for understanding. Ob-
viously, in both experiments, IS-LO and GMW-
LO-ID almost achieve all the best performance,
which shows that SRGMs considering both TE
and TC have better curve fitting effects than other
SRGMs.

The best three, GMW-LO-ID, IS-LO and
Weibull, are plotted in Fig. 1 and Fig. 2 to show
the comparison between real and estimated re-
sults for each dataset, respectively. The subfig-
ures in left plot the observed/estimated TE
curves and the subfigures in right plot the cumu-
lative failure curves. Obviously, all three SRGMs
yield good fittings, but we can hardly tell which
one has the best fitting power, Thus, we use relative
error (RE) to analyze the transformation of fitting

accuracy-'?, and the results of fitting accuracy vs
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time are shown in Figs. 3, 4.

Mesimated (1) — My (2;)
Myeal (tr )

As shown in Fig. 3 and Fig. 4, GMW-LO-ID has

the fastest convergence speed and gets close to the x-

RE, = (8

axis in the shortest time. Hereon, it has the best fit-
ting power of all three SRGMs and can be used to de-
scribe the real testing-effort expenditure.

Actual data
LO-ID

IS-LO
Weibull

Actual data
GMW-LO-I

IS-LO
Weibull

j2}
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Q
2
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=
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=
=
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g
=
©)

10 15 20 5 10 15 20
Testing time / week Testing time / week
Fig. 1 Observed/estimated TE and cumulative failure

curves of three SRGMs vs time in DSI

Testing effort / CPU hour

10 IS-LO
{Kslel{b?lll Weibull

10 15 . ) 2
Testing time / week Testing time / week

Actual data
GMW-LO-ID

Cumulative number of detected faults

Fig. 2 Observed/estimated TE and cumulative failure

curves of three SRGMs vs time in DS2

GMW-LO-ID
IS-LO
Weibull

8 10 12 14 16
Testing time / week

Fig. 3 RE curves of three SRGMs in DS1

GMW-LO-ID
IS-LO
Weibull

8 10 12 14 16 18
Testing time / week

Fig.4 RE curves of three SRGMs in DS2
2.4 Comparison of predictive power

The predictive performance of the proposed
model is validated in this section. In order to measure
the predictive power of SRGMs, we divide the dataset
into training set and testing set. Training set is used
to estimate models’ parameters and testing set is for
validating the predictive power of models. In terms of
the MSE in testing set, we can tell the differences be-
tween the predictive power of SRGMs.

To each group of the experiments, the training
set contains 70% , 80% or 90% of data, respective-
ly. Table 4 and Table 5 respectively show the predic-
tive results of all 11 models for DS1 and DS2. The
numbers in bold are the best results of each column.

Table 4 shows that the best model for 80% and
90% of DS1 is the proposed model because it has the
smallest MSE (46. 855 2 and 6. 712 1).

Table 4 Comparison results of the predictive power in DS1

MSE (Predicted part)

Model name
70% of data 80% of data 90% of data

Goel-Okumoto 1 975.667 2 1 702.751 8  357.555 2

Logistic 8.268 6 803.828 0 267.291 1
Exponential
1721.952 7 1384.414 4  246.281 2
Weibull
Inflected
1512.624 6 1076.1837 273.754 0
S-shaped
Weibull 1681.710 0 1080.109 2  160.520 8
Generalized _
. 1755.963 2 1339.472 0 189. 167 4
exponential
GMW 1570.191 0 1 254.4755 226.019 7
Burr type XII 1696.989 6 1387.3831 196.121 1
IS LO 383.800 3 134.935 3 52.455 8
SRGM-
1 143.008 5 873.967 1 198. 342 0
GTEFID
GMW-LO-
D 356.329 5 46. 855 2 6.712 1
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Table 5 Comparison results of the predictive power in DS2

MSE (Predicted part)
Model name

70% of data 80% of data 90% of data

Goel-Okumoto 2 155.220 6 1 344.917 2  601.079 5

179.549 2 62.322 0 132. 747

[@2]

Logistic

Exponential

Weibull

1752.2921 873.060 8 448.704 9

Inflected S-shaped 2 286.787 4 1 029.7052  488.3417

Weibull 940.586 2 694.577 9 413.726 7

Generalized
) 1117.800 1 803. 638 3 393. 806 8
exponential

GMW 1679.898 4  880.751 3 463.751 8
Burr type XII 1 445,675 4 743.424 2 420.069 5
ISLO 1879.181 7  559.546 6 143. 442 3
SRGM-GTEFID 494,184 6 349.316 6 165. 748 3

GMW-LO-ID 165.937 7 234.587 6 60.566 1

The other MSE can be 2. 88 times (IS-1.O’ s
134.935 3 for 80%), even 39. 82 times (Logistic’s
267. 291 1 for 90%) larger than GMW-LO-ID’s.
However, Logistic gets an amazing performance
(8.268 6) for 70% of DS1 while the MSE of GMW-
LO-ID (356.329 5) is 43 times larger. Figs. 5—7 are
plotted to reveal the reason why Logistic performs so
terrific in this situation.

Figs. 5—7 show the predictive performance of
Logistic and GMW-LO-ID for 70%, 80% and 90%
of DS1, respectively. The z- and y-axes denote the
testing time and the cumulative number of detected
faults, respectively. The circle and square dots are
the training and testing sets. In addition, the blue
solid curves represent the predictive performances of
Logistic and the red dash ones represent the perform-
ances of our proposed model. We can summarize that
if the training set is 80% or 90% of DS1, our model
has a better performance. Furthermore, the result
goes opposite if the training set is 70% of DSI.

Here follows the reason why Logistic performs
so terrific in Fig. 5. As can be seen in Fig. 5, we can-
not tell the tendency of DSI just focusing on the
training set because the increasing rate of DS1 only
decreases in testing set. It is the reason that GMW-
LO-ID makes a mistake in judging the tendency of
data, which leads to the huge MSE unfortunately.

Besides, Logistic’s S-shape helps to decide the tend-
ency of curve and gets a terrific result. Though the
MSE of GMW-LO-ID is far larger than Logistic’s, it
still performs better than other nine SRGMs. Thus,
the proposed model has a better predictive power.
However, when the training set is 80% or 90% of
DSI1, these time training sets contain the data part in
which the increasing rate decreases. Our model rec-
ognizes it and achieves better predictive performance
in Figs. 6,7.

Training set
Test set
Logistic
GMW-LO-ID

8 10 12 14 16 18 20 22
Testing time / week

Fig. 5 Logistic and GMW-LO-ID’ s performances
for 70% of DSI

Training set
Test set
Logistic
GMW-LO-ID

8 10 12 14 16 18 20 22
Testing time / week

Fig. 6 Logistic and GMW-LO-ID’ s performances
for 80% of DS1

Training set
Test set
Logistic
GMW-LO-ID

ative number of detected fz

=]
=
=}
=

8 10 12 14 16
Testing time / week

Fig. 7 Logistic and GMW-LO-ID’s performances

for 90% of DS1
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As for DS2, Table 5 shows that the best SRGM
for 70% and 90% of DS2 is the proposed model be-
cause it has the smallest MSE (165.937 7 and
60.566 1). The other MSE can be 5. 67 times
(Weibull’ s 940. 586 2 for 70%), even 9. 92 times
(Goel-Okumoto’ s 601. 079 5 for 90%) larger than
GMW-LO-ID’s.  The
(62. 322 0) performs better than the proposed model
(234.587 6) for 80% of DS2 is the same just men-

reason  why  Logistic

tioned above and it still performs better than other
nine SRGMs as well.

In a word, the proposed model has a better pre-
dictive power and can effectively predict software fail-

ure behavior.

3 Conclusions

As the dynamic allocation of testing resources,
the raise of code coverage rate and the existence of
debugging lag will affect software reliability growth
curve. By incorporating TE and TC into traditional
SRGMs, we use debugging lag to update the constant
number of faults with a dynamic variety. Under the
assumption that the number of faults is proportional
to the current number of detected faults, we propose
a new model named GMW-LO-ID combining GMW
TEF with LO TCF. LSE is utilized to figure out the
estimated values of parameters involved.

After analyzing the experimental results based
on MSE, RE and other four kinds of criteria in two
testing datasets, we can draw a conclusion that
GMW-LO-ID fits the real failure data better and has
a better predictive power than other ten SRGMSs only
considering one or two points of TE, TC and ID.
Meanwhile, due to the assignment of some scale pa-
rameters and shape parameters, it is more flexible
than most of the SRGMs and it can degenerate to
other simple kinds of SRGMs, such as Rayleigh-1.O-
ID. Consequently, this hybrid model brings us a
good performance.

It will be worthwhile to do further research on
extending or finding new TEF, TCF and other forms
of ID. Moreover, trying to find a more accuracy

method of parameter estimation may be another study

direction.
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