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Abstract: The Noether symmetries and the conserved quantities for generalized Birkhoffian systems with time delay
are studied. Firstly, the generalized Pfaff-Birkhoff principle with time delay is proposed, and the generalized Birk-
hoff’s equations with time delay are obtained. Secondly, the generalized Noether quasi-symmetric transformations
of the system are defined, and the criterion of the Noether symmetries is established. Then the Noether theorem
for generalized Birkhoffian systems with time delay is established. Finally, by imposing restrictions of constraints

on the infinitesimal transformations, the Noether theorem of constrained Birkhoffian systems with time delay is es-
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tablished. One example is given to illustrate the application of the results.
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0 Introduction

In recent years, time-delay phenomena in
real-life are widely noted and studied. Especially
in the process of application of computer control
technology. sensor testing technology and vibra-
tion control technology in various engineering
fields, even exiting a time-delay with millisecond
leads to complex changes of the stability and con-
trol performance of the system™*. And the re-
search subject on symmetry and conserved quanti-
ty has always been paid close attention by re-
searchers in mathematics, mechanics and phys-
ics. It is still been an expansive area studying on
the symmetries and conserved quantities when
considering the influence of time delay for me-
chanical systems.

As an important theoretical basis and mathe-
matical method, the variational problems with
time delay have been studied. El'sgol’c””’ was the
first researcher who proposed the variational

problems with delayed arguments. And after
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that, many results to this kind of research topic
combining with multifarious practical situations
are made"™". Tt is note worthy that the Noether
symmetries for variational and optimal problems
with time delay were studied by Frederico and
Torres'?! firstly. Recently, Zhang and Jint*'"
studied the Noether theory for non-conservative
dynamical systems with time delay and the Ham-
iltonian mechanical systems with time delay, and
derived the relevant results to the fractional mod-
61[15 16] .

In 1927, the American mathematician Birk-
hoff"' presented a kind of more general dynamic
equations (Birkhoff’s equations) and a more gen-
eral integral variational principle (Pfaff-Birkhoff
principle). Until now, many research branches
like the approaches of integration and reduction,
the stability of motion and the dynamical inverse
problem of Birkhoffian mechanics as well as the
practical applications have made a great pro-

gresst¥1% . Meit? 2 established the Noether theo-

ry for generalized Birkhoffian systems and con-
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1 1 1 Z‘7 . .
strained Birkhoffian systems. In the recent pa- J [6(R,(t.a)d* + R, (t.a)a> —
per'?), the Noether symmetries and conserved g
B(t,a,a.)) + o'W Jdr=0 (6)

quantities for Birkhoffian systems with time delay
were studied. However, the results in Ref. [22]
can not be generalized to the generalized Birkhof-
fian systems with time delay directly. Moreover,
the constrained Birkhoffian systems in the sense
of time delay have not been investigated yet. In
view of the development trends above, it is neces-
sary and meaningfully to study these new prob-

lems.

1 Generalized Birkhoff’s Equations
with Time Delay

We review some known results in the litera-
ture about standard generalized Birkhoff’s equa-

199 without considering the influence of time

tions
delay.
The generalized Pfaff-Birkhoff principle can

be expressed as
JIZ [8(R,(tsa)a’ — B(t,a))+6'W]de=0 (1)

with the commutative conditions

dda® =o6da> v=1,2,.2n (2)
and the boundary conditions
da* | =da*],—,=0 v=1,2,.2n (3)

where B(t.a) is the Birkhoffian, R, (z,a) are
Birkhoff’s functions, 8'W = A, (t,a)da* , and the
arbitrary differentiable functions A,(z,a) are
called additional items. When "W =0, the princi-
ple (1) is reduced to the standard Pfaff-Birkhoff-
principlet,
From the principle (1) we can derive the
standard generalized Birkhoff’s equations
IR, IR\ . J IR
(7»_4%” B (95 ST
=1,2,,2n (4)
Now, we consider a Birkhoffian system with
time delay whose Birkhoffian and Birkhoff’ s
functions are as follows
B(t.a(t),a(t —7)) o B(t.a,a,)
R,(t,a()) o R, (¢t @)
R,(tsa(t—7)) 2 R, (t,a) (5)
First, the generalized Pfaff-Birkhoff principle

)=—a,

da” da’

with time delay can be established as

where 8'W' =A", (t,aa.)8a" v =1,2,+,2n.
Moreover, the principle (6) satisfies the
commutative condition
déa® =8da” v=1,2,+,2n 7
and the boundary conditions
a’ () =f,(
te [t —7.t1] v=1,2,-,2n (8)
t=tys v=1,2,,2n (9)
where 7 is a given positive real number such that
T < 1y

functions in the interval [#; —z,t; ] , then the

a’ (1) =a’(t,)

—t,, and f,(¢) are given piecewise smooth

principle (6) can be written as

JIZ[R”ﬁaa + R,0a" + ”6aa +

Jda"

<7B6 + HB

R, .00 — ( )+A/,(18a":| dr =0

(10)

By integrating by parts and performing a lin-

ear change of variables 1 =6 + r and noticing the
boundary conditions (8) and (9), Eq. (10) can be

written as

—[&z"‘JZ (aR O () — aB<e>+

”(0+r)a O+ ) —

(7 /
IB g4 +A’#(6>)d<9} RS
Ja/; [
T, )T J .
J aaU (af; & () — +
IR, B
G+oa @+ — O+ +
7 s da”

A () 0+ R, () + R, (o) e+

[MJ, (QR%@)&»(e) aB<e>+
1y~ da”

ALo)do] |

T (IR
J — U,<aa a* ()
A ®)d9—R, (1) |di =

JfaaU (”R @i — L +

t
1

dB

%(ch};(eﬁ) Doto+
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A0 A0+ R, (1) + R, G ) Jde —

J,f,a“' H 7r<9a#(0)a ) —

iy

HB

B+ @)do—R,@ =0 D

Since the variation da* are independent of

each other, therefore, by the fundamental lem-

ma"® of the calculus of variations, we can derive

JIB
da”

(aR IR

=S ) e — (S5 —Q—%R;‘i(t))Jr

( () — af(z+r))di(t+r)*

da*

("B< o+ Rt n)=—a, 0
t € [ti+t, — 7]
IR,y IRV aoyy (2B 4 R,
(5050 — S ) (w<>+ )=
—A L) 1€ (—1ty] a2)

Eq. (12) can be called the differential equa-
tions of motion of the generalized Birkhoffian sys-
tem with time delay. If time delay does not exist,
Eq. (12) is reduced to standard generalized Birk-
hoff’s Eq. (4).

2 Variation of Pfaff Action with
Time Delay

Introduce the infinitesimal transformations of
- -parameter finite transformation group G,
" =t+ At,a* =at 4 Aa* p=1,2,,2n
(13)
and their expanding formulae are
" =t+eti(t,a) 0" =a" tek(ta)
p=1,2,,2n (14)
wheree, (a =1,2,++,7) are infinitesimal parame-
ters, & and & are called the infinitesimal genera-
tors or the generating functions of the infinitesi-
mal transformations.

The Pfaff action with time delay in Ref. [22]

is expressed as
A’ :Jzz (R, (¢t,a)da® + R, (t,a.)da’ —
!

B(t,a,a,)dt) (15)
The variation of Pfaff action with time delay
was discussed in Ref. [22] and two basic formulae

were obtained as follows

;. ty—tT i o
AA *J,] sa{dt[th)sz TR+ oDE

soe] [ B (o 1

R, >)+(3RW< to— aRM(zﬁ))a;(fﬁ)—
(aB< +o+ %t 0) (6 —arog) ) do+
|| e g roz—Bwa)+
(B -2tw)ew -

(7 L )‘Lﬂ(”)}(&—d"ma) fdr (16)
and

AA/ :J [ (R.(a () + R (e + 0 (e + o) —

B) L an+ (5

et vacro—Bw)acy
dt Jt

(aR Oa (D —ﬁm) Aar +
Jda”

G+ e+ —

(aR” ? /L(t + r)) Aa” +

R. (D) A& +Rw(z‘+r>Ad”]dt+

J [(Rvu)wt)—B(t))%(Atw

t,—t

OR, .-, . aB
( 5 a’(t) at(t))AtvL
(JR (Dar (1) — ”Bm) Aa +Ry(z‘,)A[z”}dt

a7

3 Noether Symmetries with Time

Delay

Now, we give the definitions of the Noether
symmetric transformations in time-delay situa-
tion.

Definition 17?1 If the Pfaff action (15) is in-
variant under the infinitesimal transformations
(13) of group, i.e., for each of the infinitesimal
transformations, the formula

AA" =0 (18)
holds, then the infinitesimal transformations are

called Noether symmetric transformations.
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If the Pfaff action (15) is

quasi-invariant under the infinitesimal transfor-

Definition 2%

mations (13) of group, i.e., for each of the in-

finitesimal transformations, the formula

AAY :—J’Z 4 AG) de (19)
o de

holds, where AG =¢,G* , and G*

the gauge function, then the infinitesimal trans-

=G(tsa,a.) is

formations are called Noether quasi-symmetric

transformations.

Definition 3 If the Pfaff action (15) is gen-

eralized quasi-invariant under the infinitesimal

transformations (13) of group, i.e., for each of
the infinitesimal transformations, the formula

’ ‘2

s =]

!

holds, where AG =¢,G* , and G* =G*“(t,a,a,) is
p :A/,,(taa,a,) , then

[%(AG)+A’#8a“}dt (20)

the gauge function, and A’
the infinitesimal transformations are called gener-
alized Noether quasi-symmetric transformations.
According to Definition 3 and Eq. (17), we
can yield the following criterion.
Criterion 1 If the infinitesimal transforma-
tions (14) of group satisfy the following condi-

tions

(R,(Oa* (1) + R, (t+1)a* (1) — B(1) %(AZ) +

(aR aRW(t—f—r)a (—

o a’ () +

@( ) — AL (Da (t))At+

JB

( “(Da

da’

0= S A (r))m%

(”R” (t+oar(t+ f>—

) Aa” +

—Q(AG)

R,(O)Aa> + R, (t +1)Aa> = 5

t € [tist, —7]
(R, (D)a*(t) *B(Z))%(AI)—F

(%mw( >—@<r>—A D@ () -+
<3R» e —=Lw ) a0+
da” da"

Ry(t)Ad”:f%(AG) LE (h—uty] (21)

then the transformations (13) are the generalized

Noether quasi-symmetric transformations for the

generalized Birkhoffian system with time delay.
Furthermore, in consideration of the expan-

ding formulae (14) of the infinitesimal transfor-

mations (13), formula (21) can be expressed as

R, (D& +Rw(t & — B()E +

a’ (1) + ””(t+r>a (t+o)—

@u) — AL 0F @) g+

(i —2Lw+a,m)e+

(’)B

<(7RV,

da’

G+ i+ — <z+f>)g« — G

t € [t1.t, — 7]
R, (& — B(é& +

(aR (Da (t)*@(t)*A/y(t)&”(t)>{-‘é+
dt
(Beirw Lo +a,m)e=—c

t e (1,
wherea=1,2,,r.
When r = 1, Eq. (22) can be called the

Noether identities of the generalized Birkhoffian

—Tsl ] (22)

system with time delay. Especially, if the time
delay does not exist, Criterion 1 is reduced to the
criterion of the Noether symmetries for standard

generalized Birkhoffian system.

4 Noether Theorem with Time Delay

Now we give the following Noether theorem
in which the conserved quantities are derived from
the generalized Noether quasi-symmetries of the
generalized Birkhoffian system (12) with time de-
lay.

Theorem 1  For the generalized Birkhoffian
system (12) with time delay, if the infinitesimal
transformations (14) satisfy the conditions (22),
then the system (12) has the conserved quantities
of the following form

I"'=R, (& +R, t+0)& —
B)& +G =c t € [ti.t; — 7]
I*=R, ()& — BWE + G =c*
t € (t, — sty | (23)
wherea =1,2,+,r.
Proof

Note that, the infinitesimal transfor-

mations (14) are the generalized Noether quasi-
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symmetric transformations of the system (12).

According to Criterion 1, we have

%[R,(r)s‘; +R.G+ D& —BOE +

G+ [(QR z)—@qz))w(z)—
(aaBg )+ B <z>)+
(Fezcr o~ HQR“<¢+T>)a;u+r>—

(52 St o+ ”(z‘—’—r))JrA/,,,(t)}(S‘;—
a"(DE)=0 t E [tyst, — 7]
%[Rp(t)s‘jfB(z)E‘s LG+

IR, IR o
[(@(” ﬁ(t))a(t)

(aB

() + B (t))—O—A/#(t)} (e —

a" (&) =0

wherea =1,2,+,7r.

t € (ty — sty |
Noticing Eq. (12), we can
prove the theorem easily.

Theorem 1 is called the Noether theorem of
the generalized Birkhoffian system with time de-
lay. Especially, if the time delay does not exist,
the Noether theorem of the generalized Birkhoffi-
an system with time delay is reduced to the
Noether theorem of standard generalized Birkhof-

fian system"",

5 Noether Theorem of Constrained
Birkhoffian Systems with Time
Delay

Next, we study the Noether theorem of con-
strained Birkhoffian systems with time delay.
Assume that the motion of the Birkhoffian
system with time delay is subjected to the follow-
ing g bilateral ideal constraints
fo(tsa*)=0 pg=1,2,-,g (24)
by taking the isochronal variation of Eq. (24), we

have

af
ZIBS e — .
Lisar =0 p=1.2."

The Pfaff-Birkhoff principle with time de-

can be expressed as

g (25

layt?

of"[R.(thwyie + R, (a0 —

B(t,a,a.)]dt =0 (26)

Introducing the Lagrange’s multipliers A, »

we can derive the equations of motion of the con-

strained Birkhoffian system with time delay by
combining Egs. (25), (26), which are

(aRvu) ﬁm) () — (98( >+@L< D)+

da” da’ da”
( IRy 1y &uw))a;(wf)—
da” J
(aB< +T>+&<f+f>)
A (f‘@(t) 1€ [t1+t, — 7]
# da” P
IR, IR . (9B IR
(S =@ ) e — (520 + T ) =

af,

A (1) 775(0 1€ (t, —14t5 ] @27

Combining Eq. (24) with Eq. (27), we can
find A; as the functions of ¢,a”.a% . Therefore,

Eq. (27) can be written as

R, . R, \- (9B, . R
(Sor @ = S 2@ )@@ — (S20 + T ) +
(B — 3Rﬂ<r+f>)a;<t+f>—

da’
(‘78< +f>+i<t+z>)=P,,(z>
t€ [tst, — 7]
(2t = Ben)irn — (Lo + Zoecn) =
da”
PO 1€ (t—rot)] (28)

where P, =P, (t,a,a.) =2, Py

Eq. (28) are called the equations of motion of
the free Birkhoffian system with time delay which
corresponds to the constrained Birkhoffian system
with time delay, that is, the equations of motion
of the corresponding free Birkhoffian system with
time delay. If the initial conditions of the motion
satisfy the constrained conditions (24), then the
solution of the corresponding free system (28)
will give the motion of the constrained Birkhoffi-
an system with time delay.

We observe that Eq. (28) of the correspond-
ing free Birkhoffian system with time delay are in

accordance with the generalized Birkhoffian sys-

’
”e

tem (12) with time delay. Just take P, =—A
Therefore, Theorem 1 can be applied in the
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corresponding free Birkhoffian system (28) with
time delay.

Theorem 2 For the corresponding free Birk-
hoffian system (28) with time delay, if the infini-
tesimal transformations (14) satisfy the condi-
tions

R (D&E+R,. G+o)& —BE +

(aR”um»(n R D+ o—
Jt dt

2B
at

IR,
da”

() + P, (a0 ) & + (5 (a0 —

aB

da*

(1) —P,(0)& +

adB

da

(Be (4 a0 —

S (tto)g=—0

t € [ty+t, — 7]
R, ()& — B(& +

(%

<8R,

da*

(Da’ (1) — %(z) -+ P,,(Z)d”(t)) & +

(ta* (1) *H—B(z‘,) fP/l(,:)> & =—Gr
da”

t € (t; —tsl3 | 29
where ¢ = 1,2,++,r, then the system (28) has
the conserved quantities of the form (23).

Theorem 2 can be called the generalized
Noether theorem of the corresponding free Birk-
hoffian system with time delay.

Eq. (25) can be expressed as

. ‘ af ‘

lﬁ(Aa" —a"At) =g, /s (&, —a"s5) =0

Jda” da”
B=1,2,.g5a=1,2,,r (300

Considering the independence of e, ,we have
2f )
s g —argny—0
da”

B=1,2,,g5a=1,2,,r 3D
Eq. (31) is the restrictions of constraints on the
infinitesimaltransformations.

Then, we can establish the Noether theorem
for the constrained Birkhoffian system with time
delay.

Theorem 3 For given constrained Birkhoffi-
an systems (24) and (27) with time delay, if the
infinitesimal transformations (14) satisfy the con-
ditions

R,(O&+R. G+ 0& — BW& +

IR, .. IR, . _IB
(at (D@ (0 + =t Da i+ o — 5 <t>)sg+

R, .. aB
(S0 — 2w ) & +
(&uﬂ)a;(tﬂ) - aB(t+r)>$i=—G"

da da !

t € [t1.t, — 7]
R, ()& — BW& +

AR, .. 9B
(5 a0 =) &+
AR, .. 9B s
(S0 = 20 ) g =—G

1€ (6 — 14ty (32)

and the conditions(31), the systems (24), (27)
have the conserved quantities of Eq. (23).

Proof

(32) and noticing Eq. (27), we can derive the

According to the conditions (31),

conserved quantities of Eq. (23).

Theorem 3 can be called the generalized
Noether theorem of the constrained Birkhoffian
system with time delay. In addition, if the system
is not subject to the constraints, Theorem 2 is re-
duced to the Noether theorem of free Birkhoffian

systems with time delay*,
6 Example

Consider a fourth-order Birkhoffian system
with time delay which describes the motion of a
particle with unit mass, and the Birkhoffian and

Birkhoff’s functions are
— L@ )+ @ )+ @)+

(al())*]
R, =a*),R, =a"(t),R; =R, =0
R, =a*),R,, =a'! (1) ,R;, =R,, =0 (33)
and the constraintis
f=d* () +bta' (1) —ba* (1) +1t=0 b=const (34)
where the Birkhoffian denotes the total energy of
the system and formula (34) is linear rheonomic-
nonholonomic constraint'’*). The Noether sym-
metries and conserved quantities of the system are
studied.
Eq. (27) gives that
—2a°(t) — 243 (t+ 1) =0
—2a' (1) —2at(t+7)=—0n
a'() —a* @) fatt+o) —alt+o) =2
a’ () —a' () +a:t+1) —alt+o) =ba
t € [tity, — 7]
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—2a° (1) =0, —2a' (1) =—bA,a' (1) —a® (1) =2
At () —a' () =bA tE (t, —1st, ] (35)

From Egs. (34), (35), we can find that
4

A= 1€ [ —7]
A:i t e (fv_fatzj (36)
bt :
Combining the generalized Birkhoff ” s

Eq. (12) with time delay, we obtain the addition-

al items
’ ’ 7i ’ :7i ’ :7£
Al—O,Az—bt WA bzz’A4 b
t € [t1.t; — 7]
ro_ ’ 72 ’ :71 ’ :7;
A1705A27!)t ’Ag /)ZZ’A-I b
1€ (ty — 1515 ] 37

Next, we study the Noether symmetries and
conserved quantities of the corresponding free
Birkhoffian system with time delay. The condi-
tions (22) give that

(D& +a (D& +al+ & +

al G+ Dk — BOE + 18, +
_ 4 4 4 10,y
( ORI ORI (t)>$0+<a ()
@O A D —al D =L )g +

(&2<z>—al<t>+c}3(t+f> TR —%)& —

_(}(f) Ife I:tl’tz_'[':l

& (DF +at Wk — BWE + (= Litw +
LD i 0) 6 e+
. 2 . ,
(¢' ) —a' @ — e+ (a0 —a' (0 —

%)84 =—G@) € @t —r.t,]  (3®)

They have the following solutions
5(1) :095% =a’ »S% :S :Ei =0
1

| -
o 2

<a3<t>>2—%<ai<z+r>>2
t € [ti+t, — 7]

liii 3 2
G' = 2(a (t))

S (tz_fvtzj (39)

and

5% 2095% =0,6& :1’52 :S% =0

GZZ*%IHI te [tlstgiT]

G2

—%lnt t € (t; — 415 | 40)

and
532095?:03’@:195@:8%20
\si_i 3 z_l 3 2
G = 5 (@’ () 2 (a:(t+1))

ilnz L€ [tyst; — 7]
b

‘377i 3 Zié
G’ = 5 (@’ (1)) blm
t € (ty — sty | 4D
and
55:0,5}:1‘,5%:1,55:1751:0
G4=4zz4blnt—a](t)—al(t+r)
t€ [tisty —7]
G' :ij%lnz—al(t) t € (t, — 151, (42)
h
and

& =0,6 =1,6=0,8=1,6 =0,
G’ :%lnt—al(t) —ai(t+o) t€ [ti.t; — 7]
D

GSZ[%lnl—al(t) t€ (t: —tstn] (43)

and
§=0.81=0,8 =18 =08 =1
G=—a"W)—aG+o) € [t 1]
G'=—a’(t) 1€ —1:ts] 4D
and
§=0.8=t.6=1.6=1.6=1
G7=;i21nz—al<z>—al<t+r>*az(”*

al(t+7) t € [ti+t, — 7]

g

G —bzlnz‘,*al(t)*az(t) t € (L, — sty ]

(45)

Eqgs. (39)—(45) correspond to the general-

ized quasi-symmetric transformations of the sys-
tem. Theorem 2 gives the conserved quantities as

follows
Ig :%<a3<z>>z+%<ai<t+r>>2:Const
L€ [tyst; — 7]
I :%(as([)) P=const (€ (&, 1.l

(46)
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IF=dad@) +at+7o) — %mt = const

t € [t1.t; — 7]

I =a* (1) *%lntzconst t € (t; — 1.ty |
h

(47
P @@+ L@t +a' 0+

4

t € [ty+t;, — 7]
b

Int = const

at(t+7) —

E :i(a**(t)) at () — élmt:const
2 b

tE (6 — 1oty (48)
I'=a* (Dt +a" (O +dG+or+ato+
4]_24b1nt—al<f>—a1<t+f> t € [tots — 7]
0
14:a3<t>z+a4<x>+2;22”1m—a1<t>
te (&, —st, ] (49)

F=a'(D1+a+o + e —a' () —
D

ar(t+7) 1€ [tst; — 7]

r =a3(t)t+]%lnt—a' D 1€ (th—vots]
)

(50)
I'=a'Wt+alt+ot—a* () —
a(t+o) t€ [tist, —7]
I'=a"'(Dt—a* ) tE U, —1st, ] (51D
and
I'=aWt+ad WOt+adG+ot+al G+t +
%lnl—a](l)—al(tJrr)—aZ(t)—af(ZJrT)
O
te [tlatz_‘[]
I'=aWt+a ()t +
2t —a' () — > (1)
b*

Only three of Egs. (46)—(52) are independ-

t 6 (tg *Tstg:l (52)

ent. Actually, we have

P=I'4+1" t& [t,+t; — 7]
FP=I'+1" t€ (&, — st ] (53)
I'=DP+1° t&€ [ty.t; —7]
I'=sP+1° t€ (4, — 7415 ] (54)

Then, we study the Noether symmetries and
conserved quantities of the constraint Birkhoffian
system with time delay. The conditions (31) give

—b(&—ad'E+ (& —ad'E)+
bt (& —a'e) =0 (55)

Note that, Egs. (39),(44) satisfy Eq. (55),
therefore Eqgs. (39),(44) correspond to the quasi-
symmetric transformations of the constrained
Birkhoffian delay. And
Eqgs. (46),(51) are the conserved quantities of the
system (Eqgs. (33),(34)).

Ifb =1, Eq. (42) satisfies Eq. (55) too,

therefore, Eq. (42) also corresponds to the quasi-

system with time

symmetric transformations. And Eq. (49) is the
conserved quantities of the system (Egs. (33),

(34)).

7 Conclusions

The Noether symmetries are studied, as well
as the conserved quantities of generalized Birkhof-
fian systems with time delay. We established the
generalized Pfaff-Birkhoff principle (1) with time
delay and obtained the generalized Birkhoff’s e-
quations (12) with time delay. We discussed the
relationship between the symmetries and con-
served quantities, and thus, we established the
Noether theorem for generalized Birkhoffian sys-
tems with time delay. Moreover, we discussed
the Noether theory of constrained Birkhoffian
systems with time delay. The methods and re-
sults of this paper are universal: If there is no
time delay, generalized Birkhoffian systems with
time delay are reduced to standard generalized
Birkhoffian systems. Theorem 1 in the perspec-
tive of time delay is reduced to the Noether theo-
rem of standard generalized Birkhoffian systems.
It is worth noting that time-delay phenomenon of
a system can be connected with a system under
the fractional models because of the same charac-
teristic of memory. And many more research
fields with obvious time-delay phenomenon are al-

so worth studying.
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