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Abstract: The emergence of perovskite solar cells (PSCs) based on all-inorganic metal halide (IMH) has generated

enormous interest in the photovoltaic research community, and the power conversion efficiency (PCE) has excee-

ded 13%. Despite its outstanding performance in thermal stability, PSCs based on IMH still face problems such as

the lack of a suitable band gap and the inability to generate large areas. In this review, we will summarize the latest

progress of PSCs based on IMH.
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0 Introduction

Organic-inorganic metal halide (OMH) per-
ovskites drawn extreme attention since their tuna-
ble bandgap, large absorption coefficient, long e-
lectron-hole diffusion, and high charge carrier

L1 After about nine years of develop-

mobility
ment, the power conversion efficiency (PCE) of
OMH perovskite has reached 22. 7%M2%, De-
spite the high performances, because of unstable
organic monovalent cations, the OMH perovs-
kites suffered from poor stability under photo,

thermal, and moisture stresses™™*

. So replacing
the organic cations with inorganic monovalent
cations in the perovskite structure was put for-
ward because inorganic materials usually exhibit
higher stability than organic materials, especially
at high temperature.

Perovskites generally compose with three
different species with the formula of ABX; (Fig. 1
(a)), where A is a monovalent cation (methyl-
ammonium, CH;NH;, , MA"; formamidinium,
CH,(NH,), , FA7; Cs7), Bis a divalent metal
cation (Pb*"; Sn®" ; Ge*" ), and X is a halide ani-

on (Cl” 3 Br 5 I )™ " There is a very impor-
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tant parameter termed in a typical ABX; perovs-
Ra +Rs
V2 (Rx + Ry)

where R,, Ry, and Ry are the ionic radii of the

kite structure, as tolerance factor: t =

A, B, and X ions, respectively. And if the inor-
ganic monovalent cations which take place of the
organic cations can make the value of ¢ range from
0.8 to 1.1, the cubic perovskite crystalline struc-
ture will not be collapsed. A stable Cs'/MA™
mixed perovskite was put forward by Choi and his
co-workers, however, the record PCE was just
7.68 %% Furthermore, by adjusting the ratio
between the organic and inorganic cations, the
PCE has reached 21. 1% with a good stability
when exposed in ambient atmosphere %,
Further, all-inorganic metal halide (IMH)
perovskite without any organic components was
proposed and developed rapidly in the past three
years, and the PCE has exceeded 13%"%1. By
adjusting the proportion of halide anions and in-
corporate other ions, the band gaps of PSCs could
be adjusted to an acceptable level. And changes in
HTMs and ETMs can further improve PCE and
thermal stability. Although it still faces problems
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(b) Cross-sectional SEM image of a FTO/c-TiO,/m-
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(e) Thermogravimetric analyses of MABr, MAPbBr, PbBr, and CsBr.

J-V plots of the best performance of the PSCs based on Ref.[48]

Fig. 1 The structure and properties of the PSCs based on IMH

such as the inability to produce large areas, it still
has excellent business prospects and room for de-
velopment. Following this line of thought, in this
review, we will summarize the latest progress of

the solar cells based on IMH perovskites.

1 Preparation of Standard PSCs

There were a variety of PSC architectures
that have been studied and the structure of F-
doped tin oxide (FTO)/compact TiO, (c-TiO;)/
mesoporous Ti0, (m-Ti0O,)/IMH/hole transport
material (HTM)/Au exhibited the best perform-
ance (Fig. 1(b))M*) Moreover, various HTM
materials were employed in this structure, in re-
sult, poly[ bis(4-phenyD) (2,4, 6-trimethylphenyl)
amine] (PTAA) presented the highest PCE of
5.95% with a large open-circuit voltage of 1. 28
eV (Fig. 1(¢)). And Figs. 1(d)—C(e) compared
the properties, especially the stability between
the PSCs based on MAPbBr; and CsPbBr;.

Considering the bandgap and stability, CsPb-
Br; is the most suitable one as the standard PSCs
based on IMH. And as for the preparation of per-
ovskite thin films, they can be fabricated by solu-
tion processes or physical deposition methods. A
variety of deposition techniques, including spin-

coating of precursors in one- or two-step sequen-

tial methods, spraying., vapor-assisted deposi-
and dual

devel-

tion, gas-assisted solution process,
thermal
Opedr17.5’l—56—\.

quential methods are the most commonly used

source evaporation were

Among them, one- or two-step se-

methods. A two-step sequential method involves
spin-coating the solution of PbBr, onto the m-
TiO,substrate and putting it into the solution of
CsBr or spin-coating the solution onto it after be-
ing dried”".

volves spin-coating the solution of CsPbBr; onto

And one-step sequential method in-

the m-TiO, substrate directly. Compared with
two-step sequential method, the temperature of
annealing of one-step sequential method could be
lower, which makes it easier for fabrication and
application based on a flexible polymer sub-

strate:®,

However, the problem of insolubility
of Br-rich perovskite is still unsolved when the
one-step spin-coating method is chosen. There
are also some studies work on chemical vapor
deposition (CVD) method, but there is no out-

standing performance™™”,

2 Adjustment of Standard PSCs
2.1 The choice of halide anions

The CsPbBr; based PSCs showed excellent

stability, however, in terms of the light absorp-
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tion range, CsPbBr; was not an ideal absorber for
PSCs due to its large bandgap (about 2. 3 eV).
Among CsPbCl;, CsPbBr; and CsPbl;, the best
choice should be CsPbl; with the smallest
bandgap of about 1. 73 eV. However, as men-
tioned above, CsPbl; in the black cubic perovskite
phase is unstable in ambient atmosphere and will
yellow  non-perovskite

rapidly  convert to

phase’
CsPbBr; and the small bandgap of CsPbl,, the

halide mixed perovskites of CsPb(I,_,Br,); were

6062] 'So combining the good stability of

proposed. By adjusting the composition, the CsP-
bIBr, based PSCs displayed a stabilized PEC of
10. 56 % with negligible hysteresis with an alike
bandgap of 1. 9 eVIPHo6:58:65.640
bandgap of CsPbIBr, was still large to be used as

Actually, the

the absorber materials in PSCs.

Despite CsPblBr, exhibits smaller bandgap
than CsPbBr;, the PCEs of the CsPbIBr, based
PSCs are not very high till now, and the stability
in the ambient atmosphere is still poor. By var-
ying the stoichiometric ratio of K, the proper-
ties of the Cs,—, K,Pbl,Br film can be adjusted.
When x = 0. 075, the Csy g5 Ko o5 PbL,Br film
showed a significant increase in absorbance inten-
sity over the entire wavelength and exhibited the
maximum and average PCEs of 10.0% and 9.1%
in PSCs. Furthermore, the PSCs based on Csy_gs;
K. 075 PbI; Br films displayed much higher stability
than those based on CsPbl, Br'®’,

Actually, the bandgap of CsPblBr, was still
too large to be used as the absorber materials in
PSCs. Another strategy to enhance the stability
of CsPbl; is to reduce the size of CsPbl; nanocrys-
tals. It was reported that when the size of CsPbl;
nanocrystals was reduced to about 5 nm they will
become more stable’’. And the PSCs based on
CsPbl;quantum dots (QDs) exhibited good sta-
bility when exposed into the ambient atmosphere
for 60 d, whose PCE has reached 10. 77% with a
perfect open circuit voltage V. of 1.23 V%,

In conclusion, PSCs based on CsPbl; could
have a better band gap but poor stability, and its
stability could be increased by adjusting the value

of x in CsPb(I,_,Br,);, incorporating other cat-

ions or reducing the size of CsPbl; nanocrystals.
2.2 The choice of divalent metal cation

In addition to adjusting the proportion of hal-
ide anions, it is also a good strategy to incorpo-
rate other ions in divalent metal cations. Liang
and his co-workers have reported the synthesis
of a novel Cs-based inorganic perovskite,
CsPby ¢Sn, IBr; » through a convenient two-step
sequential solution-phase process in ambient air
without the need for a glovebox or humidity con-
trol, and it exhibits a high V. of 1. 26 V and a re-
markable PCE up to 11.33%. Moreover, the all-
inorganic PSCs show good long-term stability and
improved endurance against heat and mois-
ture®®™’. And Li demonstrated a series of
CsPb,—.Sn,IBr, perovskite alloys via one-step
(Fig. 2(a)), the

CsPby 75 Sn, »; IBr, with homogeneous and densely

anti-solvent method
crystallized morphology shows a remarkable PCE
of 11.53% and a high V.. of 1. 21 V with a much
improved phase stability and illumination stabili-
ty. And Lau reported a low-temperature-pro-
cessed PSCs, CsPby gsSro 4,1, Br, achieved a stabi-
lized efficiency at 10. 8 %), Furthermore, Liang
dropped Mn*" into perovskite CsPbIBr, to com-
pensate their shortcomings in band, and found
that the encapsulated CsPby g5 Mng. o5 1101 Bry g
cells exhibit good stability in ambient atmosphere
(Fig. 2(b)) with the highest PCE of 7. 36 %.

On the other hand, considering that lead is
not environment-friendly, the PSCs based on
lead-free IMH perovskites were investigated as
well. By calculations of bandgap of 260 IMH be-
longing to the class ABX;, with A=1L1i, Na, K,
Rb, Cs, B=Pb, Sn, and Ge, Mao and his co-
workers found three potential lead-free IMH in-
cluding cubic-KSnCl;, cubic-RbSnCl;, and trigo-
nal-NaGeBri®' . And there was a lot of investiga-
tion about PSCs based on CsSnX;. The bandgap
of CsSnClyand CsSnBr; are 1. 27 eV and 1. 75 eV.
However, when exposed into the ambient atmos-
phere, Sn*" ions will transfer to Sn'" ions rapid-

ly. By adjusting the conditions, such as adding
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CsPbIBr, CsPb,_Sn IBr, CsSnlBr,
(a) Optical images of a series of CsPb,_Sn IBr, perovskite'®”
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(b) Normalized Jy, ¥, FF, and PCE retentions of encapsulated
all-inorganic PSCs based on CsPbIBr, and CsPb,,,Mn, g1, ,
Br, ,,under ambient atmosphere™”
Fig.2 The performance of the PSCs based on CsPbl-

Br, . CsPbo. gos Mno 05 11,01 Brigs and a series of
CsPb,—, Sn, IBr, perovskite

SnF; into CsSnBr; IMH perovskites, this problem
the V.. of PSCs
And due to low

can be alleviated. However,
based on CsSnX; is not ideal.
Vs they exhibit PSCs of up to a record value of

about 3% Gao and his colleagues proposed

replacing Pb*t with Ag" and Bi*", and PSCs
based on Cs, AgBiBr; exhibits the power conver-
sion efficiency of 2. 23% with V,,= 1. 01 V,
short-circuit current J.= 3.19 mA/cm?®, file fac-
tor FF = 69.2%". And replacing lead cation
by Fe*" and Cu®*" were also investigated. Howev-
er, there was almost no successful case.

In conclusion, incorporating other ions in di-
valent metal cations can effectively reduce the
stability, reduce annealing

bandgap, improve

temperature, improve solubility, and increase

PCE. In addition, the PSCs based on lead-free

IMH perovskites still have huge research space.
2.3 Adjustment of HTMs and ETMs

Though the all-inorganic PSCs showed a per-
fect stability and PCE, the organic HTM was too
expensive. Jin et al. proposed the design of all-in-

, in which the organic HTMs

[50,51]

organic PSCs
and noble metal electrodes were completely elimi-
nated, as shown in Fig. 3(a). And Figs. 3(b)—
(e) shows the PCE of PSCs with carbon electrode
and its stabilities.

A new kind of ETM compared with a new
HTM also comes up this year. ZnO@C-60 bilay-

er was utilized as the electron-transporting layers
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(d) Normalized PCEs of CsPbBr,/carbon based all-
inorganic PSCs, MAPbL/carbon based hybrid
PSCs as a function of time heated at 100 °C

(e) Normalized PCEs of CsPbBr,/carbon based all-inorganic PSCs as a function of
storage time during temperature circles (between 22 °C and 100 °C)"**"

Fig. 3 The structure and properties of CsPbBr;/carbon based all-inorganic PSCs
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that demonstrated a high carrier extraction effi-
ciency and low leakage loss. And the new PSC ar-
chitectures is FTO/NiO,/CsPbl,Br/ZnO @ C-60/
Ag. Consequently, it yielded a PCE as high as
13.3% with an open circuit voltage V, of
1.14 V, short-circuit current J, of 15. 2 mA -
em ™2, and fill factor FF of 0. 775,

In summary, ETMs and HTMs using all-in-
organic materials not only improve stability, but
also significantly reduce cost, making it even

closer to industrial production.

3 Conclusions

In summary, we reviewed the recent ad-
vances of PSCs based on IMH and a summary of
the PSCs based on IMH perovskites. PSCs based
on IMH shows a perfect stability and lower cost
than PSCs based on OMH. And in order to im-
prove the PCEs and stability, and reduce the band
gap and annealing temperature, we can adjust the
proportion of halide anions and incorporate other
ions. Despite of a lot of efforts on it recently,
there is a lot of room for improvement. And there
are three directions to improve the performance of
the PSCs based on IMH perovskites. Firstly, to
enhance the stability when exposed into the ambi-
ent atmosphere, which is the biggest enemy for
most kinds of perovskites. Then, to reduce the
bandgap as much as possible. And to replace lead
by other metal more environment-friendly. And
when we optimize the structure and condition, we
must take the IMH advantages into considera-
tion, including cost and stability. Meanwhile,
strengthening the basic theoretical research of
IMH perovskites is necessary as well. To date,
many experimental results on IMH perovskites
have been reported., however, systematic theoret-
ical simulations on them are not enough. In addi-
tion, currently produced high-PCE PSCs are all
small-area, unable to achieve large-scale industri-
al production, and there is still a considerable dis-

tance from real commercialization.
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Fig. S1  (a) Illustration of the deposition process on (1) FTO with (2) ¢-TiO;, (3) m-TiO,, and (4) PbBr,. (b) Mul-

tistep solution-processed deposition of CsBr. (¢) Top-view SEM images of the all-inorganic lead halide film. (d)

Cross-sectional SEM images of the FTO/c¢-TiO,/m-TiO, /cesium lead bromide structures™
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Jo/
Materials Structure Ve/V FF PCE/% Reference
(mA + cm ?)
CsPbBr; FTO/d-TiO,/m-TiO,/IMH/HTM/ Au 1.28 6.24 0.74 5.95 [4]
CsPbBr; FTO/d-TiO,/m-TiO,/IMH/HTM/Au 1. 25 6.7 0.73 6.2 [5]
CsPbBr; FTO/c-TiO,/m-TiO,/IMH/C 1. 24 7.4 0.73 6.7 [6]
CsPbBr; FTO/c-TiO,/m-TiO,/IMH/C 1. 308 7.46 0.773 7.54 [1]
CsPblBr, — 0. 96 8.7 0.56 4.7 [7]
FTO/c-TiO;/m-TiO, /IMH/spiro-
CsPblBr, 1.13 7.8 0.72 6.3 [8]
OMeTAD/Au
CsPbl, Br — 1. 06 10.9 — 6.8 [9]
CsPbl, Br FTO/c-TiO,/IMH/spiro-OMeTAD/ Au 1.11 11. 89 0.75 9. 84 [10]
CsPbl, Br ITO/c-TiO, /IMH/spiro-OMeTAD/Au 1. 10 13.99 0.67 10. 34 [11]
CsPbl, Br FTO/c-TiO,/IMH/spiro-OMeTAD/Ag 1.13 13.61 0.68 10. 56 [12]
CsPbl, Br FTO/NiO,/IMH/ZnO@Cs,/Ag 1.14 15.2 0.77 13.3 [3]
FTO/c-TiO;/m-TiO; /IMH/spiro-
CsPbl; 0.8 12 — 2.9 [13]
OMeTAD/Au
CsPbl; FTO/c-TiO,/IMH/spiro-OMeTAD/Ag 0. 66 11.92 0.52 4.13 [14]
ITO/PEDOT.PSS/IMH/PCBM/
CsPbl; 0.95 8.26 0.67 5.38 [15]
BCP/LiF/Al
CsPbl; — 1.23 13.47 0.65 10. 77 [16]
CsPbg ¢ Sng ;I Br FTO/c-TiO,/m-TiO,/IMH/C 1. 26 14. 30 0.63 11. 33 [17]
CsPby. 75 Sny, 55 IBr, ITO/SnO, /Cs /IMH/spiro-OMeTAD/Au 1. 21 12.57 0.76 11.53 [18]
FTO/c-TiO,/m-TiO, /IMH/spiro-
CsSnl; 0.24 22.7 0.37 2.02 [19]
OMeTAD/Au
CsSnl; ITO/NiO, /IMH/PCBM/ Al 0.52 10. 21 0.63 3.31 [20]
CsSnBr; FTO/c-TiO,/m-TiO, /IMH/PTAA/Au  0.37 13.96 0.59 3.04 [21]
FTO/c-TiO,/m-TiO, /IMH/spiro-
CsSnBr; 0.42 9.1 0. 57 2.17 [22]
OMeTAD/Au
Cso. 925 Ko, 075 PbI, Br FTO/bl-TiO, /IMH/spiro-OMeTAD/Au  1.18 11. 6 0.73 10. 0 [2]
CsPby. g5 St 02 I, Br FTO/c-TiO,/m-TiO, /IMH/P; HT/Au  1.043 15.3 0.69 11.2 [23]
CsPby. 995 Mg, 05 11 01 Bry_ g FTO/c-TiO,/m-TiO,/IMH/C 0.99 13. 15 0.57 7.36 [24]
Cs; AgBiBr; ITO/Cu-NiO /IMH/C,, /BCP/Ag 1.01 3.19 0.692 2.23 [25]
tant Is the Organic Part of Lead Halide Perovskite
Photovoltaic Cells? Efficient CsPbBr; Cells. Journal
References:
of Physical Chemistry Letters 6, 2452-2456, doi:10.

(1] Duan. J., Zhao. Y.. He. B. & Tang. Q. High- 1021/acs. jpelett. 5500968 (2015).

Purity Inorganic Perovskite Films for Solar Cells with [5] Kulbak, M. etal. Cesium Enhances Long-Term Sta-
9.72% Efficiency. Angewandte Chemie-International bility of Lead Bromide Perovskite-Based Solar Cells.
Edition 57, 3787-3791, doi:10. 1002/anie. 201800019 Journal of Physical Chemistry Letters 7, 167-172,
(2018). doi:10. 1021/acs. jpclett. 5b02597 (2016).

[2] Nam, J. K. et al. Potassium Incorporation for En- [6] Liang. J. et al. All-Inorganic Perovskite Solar Cells.
hanced Performance and Stability of Fully Inorganic Journal of the American Chemical Society 138,
Cesium Lead Halide Perovskite Solar Cells. Nano 15829-15832, doi:10. 1021 /jacs. 6b10227 (2016).
Lett. 17, 2028-2033, doi: 10. 1021/acs. nanolett. [7] Ma, Q., Huang, S., Wen, X., Green, M. A. &
7b00050 (2017). Ho-Baillie, A. W. Y. Hole Transport Layer Free

[3] Liu, C. etal. All-Inorganic CsPbI2Br Perovskite So- Inorganic CsPbIBr2 Perovskite Solar Cell by Dual
lar Cells with High Efficiency Exceeding 13%. Jour- Source Thermal Evaporation. Advanced Energy Ma-
nal of the American Chemical Society 140, 3825- terials 6, doi:10.1002/aenm. 201502202 (2016).
3828, doi:10.1021/jacs. 7b13229 (2018). [8] Lau, C. F. J. et al. CsPblBr(2) Perovskite Solar

[4] Kulbak, M., Cahen, D. & Hodes, G. How Impor- Cell by Spray-Assisted Deposition. Acs Energy Let-



Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 35

(9]

(10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

ters 1, 573-577, doi:10. 1021 /acsenergylett. 6b00341
(2016).
Beal, R. E. et al. Cesium Lead Halide Perovskites
with Improved Stability for Tandem Solar Cells.
Journal of Physical Chemistry Letters 7, 746-751,
doi:10. 1021 /acs. jpelett. 6600002 (2016).

Sutton, R. J. et al. Bandgap-Tunable Cesium Lead
Halide Perovskites with High Thermal Stability for
Efficient Solar Cells. Advanced Energy Materials 6,
doi:10. 1002/aenm. 201502458 (2016).

Niezgoda, J. S., Foley, B. J., Chen, A. Z. &
Choi, J. J.
Efficient CsPbBrI2 Solar Cells with Light-Induced
Dealloying. Acs Energy Letters 2, 1043-1049, doi:
10. 1021/ acsenergylett. 7b00258 (2017).

Wang, Y., Zhang, T., Xu, F., Li, Y. & Zhao,

Improved Charge Collection in Highly

Y. A Facile Low Temperature Fabrication of High
Performance CsPbI2Br All-Inorganic Perovskite Solar
Cells. Solar Rrl 2, doi: 10. 1002/solr. 201700180
(2018).

Eperon, G. E. et al. Inorganic caesium lead iodide
perovskite solar cells. Journal of Materials Chemistry
A 3, 19688-19695, doi:10. 1039/c5ta06398a (2015).
Luo, P. et al. Solvent Engineering for Ambient-Air-
Processed, Phase-Stable CsPbl; in Perovskite Solar
Cells. Journal of Physical Chemistry Letters 7, 3603-
3608, doi:10.1021/acs. jpclett. 6b01576 (2016).
Kim, Y. G. et al. Cesium lead iodide solar cells con-
trolled by annealing temperature. Physical Chemistry
Chemical Physics 19, 6257-6263, doi: 10. 1039/
c6cp08177k (2017).

Swarnkar, A. et al. Quantum dot-induced phase sta-
bilization of alpha-CsPbl; perovskite for high-efficien-
cy photovoltaics. Science 354, 92-95, doi: 10. 1126/
science, aag2700 (2016).

Liang, J. et al. CsPby ¢Sn, ;1Br, Based All-Inorganic
Perovskite Solar Cells with Exceptional Efficiency
and Stability. J. Am. Chem. Soc. 139, 14009-
14012, doi:10.1021/jacs. 7b07949 (2017).

(18]

[19]

[20]

[21]

[22]

(23]

(24]

[25]

Li, N., Zhu, Z., Li, J., Jen, A. K. Y. & Wang,
L. Inorganic CsPbi, Sn,IBr, for Efficient Wide-
Bandgap Perovskite Solar Cells. Adv.
ter. » Ahead of Print, doi:10. 1002/aenm. 201800525
(2018).

Kumar, M. H.
Solar  Cells

Energy Ma-

Lead-Free Halide Perovskite
with  High Photocurrents Realized
Through Vacancy Modulation. Advanced Materials
26, 7122-+, doi:10. 1002/adma. 201401991 (2014).
Wang, N.

et al.

et al. Heterojunction-Depleted Lead-Free
Perovskite Solar Cells with Coarse-Grained B-y-
CsSnl; Thin Films. Adv. 6, n/a,
doi:10. 1002/aenm. 201601130 (2016).

Energy Mater.

Song, T.-B. et al. Importance of Reducing Vapor
Atmosphere in the Fabrication of Tin-Based Perovs-
kite Solar Cells. Journal of the American Chemical
Society 139, 836-842, doi: 10. 1021/jacs. 6b10734
(2017).

Gupta, S. , Bendikov, T., Hodes, G. &. Cahen, D.
CsSnBr3, A Lead-Free Halide Perovskite for Long-
Term Solar Cell Application: Insights on SnF, Addi-
tion. 1028-1033, doi: 10.
1021/ acsenergylett. 6600402 (2016).

Acs Energy Letters 1,

Lau., C. F. ]J. et al. Strontium-Doped Low-Temper-
ature-Processed CsPbl, Br
Acs Energy Letters 2. 2319-2325, doi: 10. 1021/
acsenergylett, 7b00751 (2017).

Perovskite Solar Cells.

Liang, J. et al. Enhancing Optical, Electronic.
Crystalline, and Morphological Properties of Cesium
Lead Halide by Mn Substitution for High-Stability
All-Tnorganic Perovskite Solar Cells with Carbon E-
lectrodes. Adv.
doi:10.1002/aenm. 201800504 (2018).

Gao, W. High Quality Cs, AgBiBr; Double

Energy Mater. , Ahead of Print,

et al.
Perovskite Film for Lead-Free Inverted Planar Het-
erojunction Solar Cells with 2. 2% Efficiency. Chem-
a European journal of chemical physics

1002/ cphe.

physchem .
and physical chemistry, doi: 10.

201800346 (2018).



