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Abstract: Many industrial products are normally processed through multiple manufacturing process stages before it
becomes a final product. Statistical process control techniques often utilize standard Shewhart control charts to mo-
nitor these process stages. If the process stages are independent, this is a meaningful procedure. However, they
are not independent in many manufacturing scenarios. The standard Shewhart control charts can not provide the in-
formation to determine which process stage or group of process stages has caused the problems (i. e. , standard Sh-
ewhart control charts could not diagnose dependent manufacturing process stages). This study proposes a selective
neural network ensemble-based cause-selecting system of control charts to monitor these process stages and distin-
guish incoming quality problems and problems in the current stage of a manufacturing process. Numerical results
show that the proposed method is an improvement over the use of separate Shewhart control chart for each of de-
pendent process stages, and even ordinary quality practitioners who lack of expertise in theoretical analysis can im-
plement regression estimation and neural computing readily.
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0 Introduction

Most of the products produced today are the
accumulated results of several different process
stages. With the emphasis on improved quality,
Shewhart control charts are widely used for moni-
toring these process stages. In multistage proces-
ses, a Shewhart control chart is often used. If the
process stages are independent, this is meaning-
ful. However, in many manufacturing scenarios,
The

standard Shewhart control charts can not provide

the process stages are not independent.

the information to determine which process stage
or group of process stages has caused the prob-

lems (i. e., standard Shewhart control charts

could not diagnose dependent manufacturing

process stages). Therefore, an alternative ap-
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proach is to use multivariate control charts such
as the Hotelling T control chart to monitor all
process stages simultaneously. Unfortunately,
the process quality characteristics are assumed to

[ As
pointed out by Asadzadeh'®, this assumption

be multivariate normal random variables

may not hold in some manufacturing scenarios. In
addition, although most multivariate quality con-
trol charts appear to be effective in detecting out-
of-control signals based upon an overall statistic,
they can not indicate which stage of the process is
out-of-control. In order to overcome these draw-
backs, a great deal of research efforts have been
devoted to the development of new methods for
monitoring dependent process stages. Most nota-
bly, an effective and efficient method originally

developed by Zhang!®!, called cause-selecting con-
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trol chart, is constructed for values of the outgo-
ing quality Y that is adjusted for the effect of in-
coming quality X. The advantage of this method
is that once an out-of-control signal is given, it is
easy to identify the corresponding stage. There-
fore, it is more reasonable and beneficial for mo-
nitoring multiple dependent processes by taking
into consideration the cascade property of multi-
stage process'™®. Wade and Woodall" discussed
that the cause-selecting control chart outper-
formed the Hotelling T” chart.

In the implementation of cause-selecting con-
trol charts, the most critical issue is how to es-
tablish a sound relationship between the incoming
and outgoing quality characteristics. However,
the relationship between the incoming and outgo-
ing quality characteristics is heavily nonlinear,
and it is not easy to directly describe the relation-
ship using a function. Although theoretical deri-
vation or regression analysis may be able to deter-
mine the mapping relationship, requirements of
adequate understanding of underlying manufac-
turing processes and strong expertise in mathe-
matical modeling on quality practitioners are far
to meet. Moreover, it is even impossible to deri-
vate the relationship between the quality charac-
teristics through the theoretical derivation. May-
be for this reason, all published literature on
cause-selecting control charts mainly turn to
mathematical regression method, especially the

L610J - However, this pro-

least-squares regression
cedure has to use historical data that often contain
outliers. Outliers are observations that deviate
markedly from others, which arise from heavy-
tailed distribution, mixture of distributions, or
the errors in collection and recording™. Regard-
lessly, they express the process changes because
of the occurrences of assignable causes, or other
periods of poor process and workforce perform-
ance. The presence of outliers in the data can
have a deleterious effect on the method of least
squares, resulting in a model that does not ade-

quately fit bulk of the data. Unfortunately, on-

site quality practitioners are technical personnel

who always are just able to apply it, but not to
see why it should not be applied. Hence, these
problems have seriously hampered the populariza-
tion of cause-selecting control charts in manufac-
turing industry.

Unlike regression-based models, artificial
neural network ( ANN) provides an efficient al-
ternative to map complex nonlinear relationships
between an input and an output datasets without
requiring a detailed knowledge of underlying
physical relationships. Little attention has been
given to the use of ANNSs for identifying the rela-
tionship between the incoming and outgoing qual-
ity characteristics. This study tries to take the
advantage of ANN ensemble (e. g.., excellent
noise tolerance and strong self-learning capabili-
ty) to develop an easy-to-deploy, simple-to-im-
plementation and universal model-fitting method
for identifying the relationship between the in-
coming and outgoing quality characteristics.
Based on such recognition, a discrete particle
swarm optimization-based selective ANN ensem-
ble (PSOSEN) is developed. Utilization of the
selective ANN ensemble technique aims to en-
hance the generalization capability of ANN en-
semble in comparison to single ANN learners.
Moreover, it can make an overall selective neural
network ensemble-based cause-selecting system
of control charts easier to be understood and mod-
ified, and perform more complex tasks than any
of its components (i. e. , individual ANNs in the
ensemble). Numerical results show that the pro-
posed selective neural network ensemble-based
cause-selecting system of control charts may be a
promising tool for monitoring dependent process
stages without the need for any expertise in theo-
retical derivation, regression analysis and even
ANN as well, which is critical to ordinary quality
practitioners to implement cause-selecting control

charts.

1 Overview of Cause-Selecting Con-
trol Chart
1.1 Definitions

At any process stage there are always two

kinds of product quality: Overall quality and spe-
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L1 Overall quality is defined as a

cific quality
quality depending on the current subprocess and
any previous subprocesses. Specific quality is the
one which relies on the current process step. The
overall quality consists of two parts: The specific
quality and the influence of previous operations on
it. The specific quality is a part of the overall
quality.

Shewhart control charts are used to discrimi-
nate between chance and assignable causes. How-
ever, the cause-selecting control chart divides the
assignable cause further into the controllable part
and the uncontrollable part. Controllable assign-
able causes are those assignable causes that affect
current subprocess but not the previous process
stages. The uncontrollable assignable causes are
those that affect the previous process stages but
cannot be controlled at the current process stage

level.
1.2 Basic concepts of cause-selecting control chart

In reviewing the basic principles of cause-se-
lecting control chart, a simple case with two
process stages will be used. Let X represent the
quality measurement for the first process stage,
which follows normal distribution; and Y repre-
sents the quality measurement for the second
process stage, which follows normal distribution
given X. The cause-selecting control chart is then
based on values of the outgoing quality Y that
have been adjusted for the value of the incoming
quality X.

The model relating the two variables X and
Y can take many forms. One of the most useful
models is the simple linear regression model.

Y, =B +BX +e i=1.2,+n (D
where 8,and f3are constants and ¢; is the normally
distributed error with mean zero and variance ¢°.

In practice, the model parameters §8,, 8 and ¢ are

unknown and need to be estimated. The ordinary
least squares method is often used for parameter
estimation due to its simplicity. In practice, the
relationship between X and Y is often unknown
and the parameters need to be estimated from an
initial sample of n observations.

The cause-selecting control chart is a She-
whart or other type of control chart for the cause-
selecting values (donated by Z;) that can be ex-

pressed as follows
Z, =Y, Y, (2)

where Y, denotes the fitted value of Y, given the
observation of X,. The center line and control
limits for the cause-selecting control chart can be
determined in a similar way with the standard Sh-
ewhart chart using an initial sample of n observa-
tions. Thus, the center line for the cause-selec-
ting control chart can be calculated as follows

S I (3)

i=1
The upper and lower control limits for the
cause-selecting control chart can then calculated

as follows

UCL =7+ 2.66R,, €]
LCL=Z—2.66R,, (5)
where
R,——L Sk (6)
s PR
where
R, = ‘ZH — 7, 7

Once the center line and control limits for the
cause-selecting control chart for the current stage
have been determined, the chart can be used in
conjunction with a Shewhart control chart for the
previous stage for two subprocesses. Only ac-
cording to the diagnosis rules in Table 1, quality
practitioners can readily judge their quality re-

sponsibility.

Table 1 Decision rules
. Preceding process stage Current process stage .
Case ) Interpretation
(Shewhart control chart) (Cause-selecting control chart)
1 Signal Signal Both process stages are out-of-control
2 Signal No Signal Proceding process stage is out-of-control
3 No Signal Signal Current process stage is out-of-control
4 No Signal No Signal Both process stages are in-control
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2 Selective Neural Network Ensem-
ble-Enabled Regression Estima-

tion method

In implementing the cause-selecting control
chart, the key step is to establish the complex
mapping relationship between the preceding stage
and the current stage. This section proposes a ro-
bust neuro regression estimation method PSOS-
EN for modeling the relationship between the in-
coming and outgoing quality characteristics.

ANN ensemble firstly presented by Hansen

[ is a learning paradigm where sev-

and Salamon
eral ANNSs are jointly used to solve a same task.
The learning paradigm indicates that the generali-
zation performance of an ANN ensemble can be
remarkably improved by selecting an optimal sub-
set of individual ANNs in comparison to those of
single ANN"2131 " In constructing an ANN en-
semble, two issues have aroused researchers’
concern; How to train component ANNs and how
to combine their predictions in some way. In gen-
eral, the most prevailing methods of training the
component ANNs are Bagging and Boosting. The
former, presented by Breiman™?' based on boot-

L4 generates several training sets

strap sampling
from the original training set and then trains a
component ANN from each of those training sets.
The latter, presented by Schapire'® and further
improved by Freund"™ and Freund and Scha-

L7 generates a series of component ANNs

pire
whose training sets are determined by the per-

formance of former ones.

2.1 Generalization error of neural network en-

semble

Combining the predictions of component
ANNSs is meaningful only there is diversity among
all component ANNSs. It is evident that no further
improvement can be obtained when combining
ANNSs with identical performance. Consequently,
in order to pursue the effective ensemble goal,
the individual ANNs must be as accurate and di-

[18]

verse as possible The predication of an en-

semble can thus be obtained according to the fol-

lowing expression

T
() =D wy (x) (8)

i=1

subjective to

T
Dlw =1 €))
l<w <1 10)
where T is the population size of available candi-
date networks, y,(x) the actual output of the ith
component neural network when the input vector
x is given, and w,; a weight assigned to the ith
component neural network.

The generalization error E;(x) of the ith in-
dividual network on input vector x can be ex-
pressed as

E(x)=[y:(x)—d(x)] 1D
where d(x) is the desired output when the input
vector x is given.

The weighted average of the generalization
errors E(x) of the individual component ANNs on
input vector x can be expressed as

.,
E(x) = D> wE (x) (12)

i=1

The weighted average of the ambiguities of
the selected component ANNSs on the input x can
be expressed as

T
Alx) =D wA, (x) (13)

i=1
with
A (x) =[y;(x) —y(x) ] a4
where A;(x) is the ambiguity of the ith individual
network on the input x.
Thus the generalization error for the ensem-

ble can be expressed as

E=E—A (15)

From examination of the above equation, it

can be easily concluded that the increase in the
ambiguity will induce decrease in the generaliza-
tion, it generalization error of individual compo-
nent network is not increased. This inspires the
authors to adopt two strategies to enhance the
overall generalization of the ensemble: One is to
utilize component ANNs with different architec-
ture, instead of identical numbers of hidden layer

nodes; another is to train individual networks on
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different training data.

2.2 Particle swarm optimization based selective

neural network ensemble

In PSOSEN, instead of attempting to design
an ensemble of independent networks directly,
several accurate and error-independent networks
are initially created by using modified Bagging
method. Given such some networks, PSOSEN
aims to select the subset formed accurate and di-
verse networks by using discrete PSO algo-
In PSOSEN, three main steps have

been considered: (1) Creation of candidate com-

rithmt*,

ponent ANNs; (2) selection of an optimal subset
from a group of promising component ANNs; and
(3) combining the predictions of component
ANNSs in the ensemble.

2.2.1

For the effective ensemble, the candidate

Creation of component ANNs

component ANNs in the ensemble must be as ac-
curate and diverse as possible. Therefore, this
study uses Bagging method on the training set to
generate a group of ANNs. During the training
process, the generalization error of each ANN is
estimated in each epoch on a testing set. If the er-
ror does not change in consecutive five epochs,
the training of the ANN is terminated in order to
avoid overfitting. Moreover, this study proposes
an automatic design scheme, in which each candi-
date ANN with two hidden-layers is defined over
a wide architecture space: The number of neurons
in each hidden layer is evolutionarily determined
from 5 to 30. These disposals may help escape
the tedious process of searching for the optimal
ANN architectures by trial and error, while main-
taining the diversity of candidate ANNs.
2.2.2 Selection method of PSOSEN
Recent research conducted by Zhou et al. 2"
indicated that it may be better to ensemble some
instead of all of the ANNs. When the number of
candidate ANNs is small, one can theoretically
investigate the generalization capability of every
possible subset of individual ANNs and then se-
lect the best subset to constitute an ensemble.

However, it is very difficult, if not possible, to

use exhaustive search to find an optimal subset
since the space of possible subsets is very large
(2T —1) if T is a big number. In this study, after
several individual ANNs being trained, PSOSEN
employs discrete particle swarm optimization
(PSO) to select an optimum subset of individual
ANNSs to constitute an ensemble. Each dimension
of a particle in the swarm is encoded by binary bit
“v,”7 (=1, 2,++,T). Thus, PSOSEN can se-
lect the component ANNSs according to a selection

vector v= (v, vy, **, vr) that can achieve the

minimum generalization error (i. e. , E). where
each element v; € {0,1} of “1” donates a compo-
nent ANN appearing in the ensemble while “0”
donates its absence.

In order to evaluate the performance of the
individuals in the evolving population, the gener-
alization error of the ensemble on the validation
set is used as the fitness function of PSOSEN.
2.2.3 Combining method of PSOSEN

After a set of component ANNs has been
created and selected, an efficient and effective
way of combining their predictions should be
taken into consideration. The most commonly
used combining rules are majority voting, weigh-
ted voting, simple averaging., weighted averaging
and Bayesian rules. In this study, the component
predictions for real-valued ANNs are combined
via simple averaging rule. The proposed PSOSEN
model is outlined as follows.

Step 1 Specify training set S, validation set
V', learner L, trials T, parameters of PSOSEN.

Step 2 While the maximum number of trials
has not been reached, do

Fort =1to T
(i) S,=bootstrap sample from S
(i) N,=L(S)

End For

Step 3  Generate a population of selection
vectors.

Step 4 Utilize discrete PSO to evolve the se-
lection population on the validation set V where
the fitness of a selection vector w is measured as
fw) =E.

Step 5 Obtain the evolved best selection
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vector w” .

Step 6 Output the final selective ensemble

N* (x) =Ave >) N, (x)

*
w, =1

where T bootstrap samples S;, S,, -, S; are
generated from the original training set and a
component network N, is trained from each S,, a
selective ensemble N is built from N;, N;, ==,
Ny whose output is the average output of the

component networks with real-valued output.

3 Performance Evaluation of PSOS-
EN

In order to demonstrate the generalization ca-
pability of the PSOSEN, four benchmark regres-
sion problems are first tested and its performance

is compared with other commonly used methods.
3.1 Benchmark regression problems

Four benchmark regression problems taken
from the literature are used for the performance
evaluation. The first regression problem is 2 —d
Mexican Hat proposed by Weston et al. " in in-
vestigating the performance of support vector ma-
chines. There is one continuous attribute. The
dataset is generated according to the following
equation

y =

ﬂ“‘ﬂﬁ (16)

e
where x follows a uniform distribution between
— 27 and 27, and e represents the noise item that
follows a normal distribution with mean 0 and va-
riance 1. In our experiments, the training dataset
contains 400 instances, the validation dataset con-
tains 200 instances that are randomly selected
from the training dataset, and the testing dataset
contains 600 instances.

The second regression problem is SinC pro-
posed by Hansen"**! in comparing several ensem-
ble approaches. There is one continuous attrib-
ute. The dataset is generated according to the fol-

lowing equation

y="0 e an
X

where x follows a uniform distribution between 0

and 27, and e represents the noise item that fol-

lows a normal distribution with mean 0 and vari-
ance 1. In our experiments, the training dataset
contains 400 instances, the validation dataset con-
tains 200 instances that are randomly selected
from the training dataset, and the testing dataset
contains 600 instances.

The third regression problem is Plane pro-
posed by Ridgeway et al. "*! in exploring the per-
formance of boosted naive Bayesian regressors.
There are two continuous attributes. The dataset
is generated according to the following equation

y=0.6x;, +0.3x;, +¢ (18)
where x; (i =1,2) follows a uniform distribution
between 0 and 1, and e represents the noise item
that follows a normal distribution with mean 0
and variance 1. In our experiments, the training
dataset contains 400 instances, the validation
dataset contains 200 instances that are randomly
selected from the training dataset, and the testing
dataset contains 600 instances.

The fourth regression problem is Friedman

(240 in testing the per-

# 1 proposed by Breiman
formance of Bagging. There are five continuous
attributes. The dataset is generated according to
the following equation
y=10sin(xay2,) +20(x; —0.5)* +

102, + 525 +¢ (19)
where z; (i =1,2,++,5) follows a uniform distri-
bution between 0 and 1, ande represents the noise
item that follows a normal distribution with mean
0 and variance 1. In our experiments, the training
dataset contains 400 instances, the validation
dataset contains 200 instances that are randomly
selected from the training dataset, and the testing
dataset contains 600 instances.

It should be noted that the training dataset
was employed to train component BPNs of PSOS-
EN, the validation dataset was employed to select
the optimized subset of component BPNs, and

testing dataset was employed to evaluate the re-

gression performance of PSOSEN.
3.2 Setup of experimental parameters

3. 2.1 Standardization

Before the training dataset is input into
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BPNs, the dataset preprocessing (i. e. , standard-
ization) must be implemented. Standardization is
to make input training data into a constant range
through a linear transformation process. The
standardization is needed, because BPNs can be
trained on a certain range of data. In this study,
the normalization is used for preprocessing data-
set, which makes the input data to be between 0.
1 and 0.9 by using the following equation

x; — min(x)
max(x) — min(x)

x,:o.1+o.8( ) (20)

where x; is the input vector, x the vectors in the
training dataset, and x,; the normalized value cor-
responding to x; .

3.2.2 Parameter setting of component BPN

Parameters of component BPN in PSOSEN
are summarized as follows.

(1) Input layer: The number of input layer
neurons is equal to the number of input attributes
of the problem to be addressed.

(2) Output layer: The number of output lay-
er neurons is equal to the number of output at-
tributes of the problem to be addressed.

(3) Hidden layer: The double-hidden-layered
BPNs are used. The number of hidden layer neu-
rons is evolutionary obtained from 5 to 30.

(4) Activation function: The hyper tangent
(tansig) and sigmoid (purelin) functions are used
as activation function for the hidden and the out-
put layers, respectively.

(5) Error function: The mean square error
(MSE) is used.

(6) Initial connective weight: The initial
connective weights are randomly set between
[—0.01, 0.01].

(7) Learning rate and momentum factor:
The learning rate and momentum factor are set to
be 0. 1 and 0. 4, respectively. The ratio to in-
crease learning rate and ratio to decrease learning
rate are set to be 1. 05 and 0. 7, respectively.

(8) Training algorithm: The trainlm is
adopted here for training of the BPNs,

(9) Learning termination conditions: The
training of the BPN is terminated when they reach

a pre-determined learning number or if the error

does not change in consecutive 10 epochs. In this
study, the maximum learning number of BPN is
set at 1 000.

(10) Tries of candidate BPNs: In the first
step of constructing PSOSEN, the number of
candidate BPNs is considered as 20 in this study.
3.2.3 Parameter setting of PSO

Parameters of discrete PSO are set as fol-
lows:

(1) Number of particles in discrete PSO;
When discrete PSO algorithm is employed to se-
lect an optimum subset of individual ANNs to
constitute an ensemble, the number of particles is
considered as 40 in this study.

(2) Fitness function of discrete PSO. Fitness
function of discrete PSO plays a key role in selec-
ting the optimal subset from candidate BPNs. In
this study, the generalization error of PSOSEN is

used (i. e. . fitness = E ).

(3) Acceleration coefficient: Acceleration co-
efficients ¢, and ¢, are set as 1. 0 and 0. 5, respec-
tively (i.e. s ¢;=1.0, ¢,=0.5).

(4) Iteration number: Maximum number of
iterations is set as 100.

(5) Inertia weight: For the balance between
the global exploration and local exploitation of the
swarm, the inertia weight w is set to decrease as
the generation number increases from 0. 8 to 0. 2.

(6) Inertia velocity: The inertia velocity v is
also set to decrease as the generation number in-
creases during the optimization run from 4 to

—4.,
3.3 Experimental results

The training dataset was used to train com-
ponent BPNs of PSOSEN. The validation set was
used to select the optimized subset of component
BPNs. And testing set was used to evaluate the
regression performance of PSOSEN. For the pur-
pose of restricting the random effects, the experi-
ments of three approaches were compared on each
benchmark problem independently in 20 runs.
Comparisons of the proposed PSOSEN with The
Best BPN (i. e. , the component BPN showing the

best training performance among all component
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BPNs), and Ensemble All (i. e. ., the average of
the outputs of all component BPNs) are presented
in Table 2 in terms of the average mean squared
error (donated by AMSE) on the testing dataset
during the whole 20 independent runs. In order to
demonstrate the stability of PSOSEN, the stand-
ard deviation of the AMSE (donated by STD) is
also provided in Table 2. It is worth noting that
each ensemble generated by Ensemble All con-
tains twenty component BPNs. The average
number of component BPNs used by PSOSEN in
constituting an ensemble is also shown in Table
2. With respect to the AMSE in the training and
testing procedure, the results obtained demon-
strate that the AMSE of PSOSEN is significantly
better than the best BPN and Ensemble All on al-

most all the regression problems. This indicates

that PSOSEN has better generalization perform-
ance compared with those of single BPN and the
commonly used Ensemble All. Moreover, PSOS-
EN generated ANN ensembles with far smaller
sizes. For these four regression problems, name-
ly 2-d Mexican Hat, SinC, Plane and Friedman
# 1, the size of the ensembles generated by PSO-
SEN is about only 38% (7.53/20.0), 30% (6.
08/20.0), 41% (8.14/20.0) and 36 % (7.13/20.
0) of the size of the ensembles generated by En-
semble All. Thus, the second step (i. e., selec-
tion of an optimal subset from a group of promis-
ing component ANNs) for constructing PSOSEN
plays a crucial role in improving the regression
performance of PSOSEN. From the given re-
sults, the proposed PSOSEN may be a promising

tool for the regression problems.

Table 2 Experiment results of The Best BPN. Ensemble All and DPSOSEN

Regression The Best BPN Ensemble All PSOSEN Num. of BPNs used
problem AMSE STD AMSE STD AMSE STD by PSOSEN
2-d Mexican Hat 0. 64 0. 381 0.72 0. 334 0.47 0.141 7.53
SinC 0. 45 0. 180 0.68 0. 157 0.42 0.096 6.08
Plane 0. 05 0. 149 0.05 0.125 0. 04 0.067 8. 14
Friedman #1 0.49 0.192 1.12 0.118 0.43 0. 086 7.13

4 Case Study

In this section, an example of producing roll-
er workpieces is used to demonstrate how the de-
veloped selective neural network ensemble based
cause-selecting control charts can play a role in
monitoring dependent process stages. The struc-
ture and size of the roller part is shown in Fig. 1.
The procedure of process planning consists of
casting, drilling, inspection, rust proof, and
semi-finished products. To simplify the demon-
stration, this case study focuses on the first two
stages of the roller manufacturing process, name-

ly casting and drilling. At the first process stage,

s 3~2V/61_—65HRC [OT0.03]

_______________________ = 017
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Fig. 1 Structure and size of the roller part

machining operation of casting is to produce the
rough metal castings. At the second process
stage, semi-automatic machines specifically de-
veloped for the manufacturing of roller parts are
employed to machine both the inner hole and the
end face simultaneously from both ends of the
roller using the specifically developed combined
drills. In addition, the inner diameters were in-
spected with the help of special gauges. All ma-
chining operations were based on the outer cylin-
drical surface that was placed and clamped on jigs
and fixtures to serve as a benchmark location.
Apparently, the larger the cylindricity error on a
roller surface is, the larger the concentricity error
between the outer diameter and inner diameter of
the roller becomes, and vice versa. Hence, it can
be concluded that the amount of cylindricity error
of the roller surface have a statistically significant
effect on the occurrences of the concentricity error
between the outer diameter and inner diameter of

the roller.
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The 48 data points of two quality measure-
ments of interest (i. e., cylindricity and concen-
tricity) are collected and given in Table 3, where
X represents the quality measurement of interest
(i. e. , cylindricity) for the first operation and Y
the quality measurement of interest (i. e., con-
centricity) for the second operation. The first 18
of these data points are used for training dataset
and validation dataset of PSOSEN to establish the
relationship between the two quality measure-
ments and to calculate the control limits since
these points are obtained when the process is in
control, and the last 30 of these data points are
used as the testing dataset. The relationship be-
tween the cylindricity and the concentricity is
found using PSOSEN with Y as the dependent
quality variable and X as the independent quality
variable,

Table 3 Cylindricity and concentricity of roller workpiece

pm
No. X; Y, |No. X; Y,|No. X; Y.|No. X; Y,|No. X; Y,
1 1.5 0,711 2.0 0.7|21 3.2 2.2|31 2.6 0.3|[41 2.6 0.0
2 1.2 0.5|112 1.1 0.6|[22 1.6 1.6(32 3.3 0.7||42 2.8 0.2
3 1.5 0.8[13 1.0 0.4(123 1.9 0.3|[33 2.5 0.8[43 2.9 0.1
4 2.2 1.0)14 1.0 0.5(|24 4.1 2.2|[34 2.2 0.3]44 1.6 1.3
5 1.5 0.8)15 1.1 0.6(125 1.7 2.4|[35 1.7 0.5//45 2.0 0.4
6 2.3 1.1)16 1.6 0.8[|26 2.1 0.4[{36 1.5 0.2]/46 1.1 0.9
7 1.8 0.9)17 1.8 0.7(|27 2.4 0.3|[37 1.3 0.2/47 1.0 0.1
§ 2.9 1.3||18 2.0 1.3|28 3.5 1.1)138 2.3 1.0//48 1.5 0.5
9 2.7 1.1)19 1.3 2.5(29 2.8 0.7|[39 1.9 0.4

10 1.6 1.0{[20 1.0 0.3|130 2.9 0.1{{40 2.6 0.7

Fig. 2 show a comparison between the esti-
mated regression concentricity by PSOSEN and
the measured concentricity from the last 30 obser-
The result

vations of the experimental dataset.

indicates that the concentricity estimated by PSO

Measured concentricity
Estimated regression concentricity
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Fig. 2 Measured and predicted concentricity for testing

dataset

SEN in general agrees with the values of meas-
ured concentricity, which further approves the
good regression performance of PSOSEN, al-
though there is potential for further improvement
in generalization of PSOSEN. The case study has
identified two major reasons for the fact that the
estimated regression concentricity failed to closely
agree with the values of measured concentricity:
(1) The residuals between the estimated regres-
sion concentricity and the measured concentricity
are the cause-selecting values, which partially re-
flecting the effect of incoming quality measure-
ments on the outgoing quality measurements; (2)
less in-control data points are available for train-
ing of component BPNs, which to some extent
restricts the the generalization capability of com-
ponent BPNs in PSOSEN,

The next step is to calculate the estimated

and the

cause-selecting values Z; for the last 30 observa-

regression values for the cylindricity

tions. The cause-selecting values Z, are given in

Table 4.

Table 4 Cause-selecting values pm
No. Z, No. Z, No. Z, No. Z, No. Z, No. Z,
19 0. 040 24 —0. 289 29 —0.022 34 0.135 39 —0.099 44 —0.237
20 0.027 25 0.319 30 —0.575 35 0.315 40 0.095 45 0.133
21 —0.562 26 —0.121 31 0.089 36 —0.175 41 —0.102 46 —0.061
22 —0.128 27 —0.088 32 —0.022 37 0. 040 42 —0.123 47 0.093
23 0.097 28 —0.414 33 0.145 38 —0.309 43 0.028 48 —0.077

JCL =Z7=0.009
UCL =7+ 2.66R,, =0. 448
ILCL =7 —2.66R,, =—0.430

By examining the Shewhart control chart for
the cylindricity given in Fig. 3, it can be seen that
four points, namely points 21, 24, 28 and 32, are
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out of control. Nevertheless, points 24 and 28 are
out of control only on the Shewhart control chart
for the cylindricity and they are in control on the
cause-selecting control chart. The cause-selecting
control chart shown in Fig. 4 detects points 21,
and 30 out of control but point 30 in control on
the Shewhart control chart for the cylindricity, as
shown in Fig. 2. Hence, according to the decision
rules in Table 1, one would draw the following
conclusions: (1) Point 21 gives signal on all of the
control charts, indicating both processes are out
of control; (2) points 24, 28 and 32 give signal
only on the Shewhart control chart for the cylin-
dricity, indicating the first process is out of con-
trol; (3) point 30 gives signal only on the cause-
selecting control chart for the concentricity, indi-

cating the second process is out of control.

UCL=2.979

CL=1.711
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Fig. 3 Shewhart control chart for the cylindricity
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Fig.4 Cause-selecting control chart for the concentricity

However, the Shewhart control chart for the
concentricity is shown in Fig. 5, and the cause-se-
lecting control chart give different conclusions at
points 24, 28, and 32. At these points, the She-
whart control chart for the concentricity gives a
signal while the cause-selecting control chart does

not. This may be explained by the fact that the
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Fig.5 Shewhart control chart for the concentricity
cause-selecting control chart takes into account
the relationship between the two dependent
process stages that the Shewhart control chart
does not.

This case study indicates that the cause-selec-
ting system of control charts is an improvement o-
ver the use of separate Shewhart control chart for
each of dependent process stages, and even ordi-
nary quality practitioners who lack of expertise in
regression estimation and

theoretical analysis,

neural computing can implement it.

5 Conclusions

Availability of cause-selecting control charts
will aid the use of incoming quality measurements
and outgoing quality measurements to monitor
multiple dependent process stages. A selective

neural network ensemble-based cause-selecting
system of control charts is developed to distin-
guish incoming quality problems and problems in
the current stage of a manufacturing process. Nu-
meric results show that the proposed scheme is an
improvement over the use of separate Shewhart
charts for each of dependent process stages, and
even ordinary technical personnel who lack of ex-
pertise in theoretical analysis, regression estima-
tion and neural computing can implement it. The
proposed scheme may be a promising tool for the
rapid monitoring of multiple dependent process
stages.

The developed selective neural network en-
semble-based cause-selecting system of control
charts is employed for the case when there is only
one single assignable cause. If the quality charac-

teristic at current process stage is the function of

multiple assignable causes, this is the cause-selec-
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ting system with multiple causes where multiple
cause-selecting control charts needs to be imple-
mented. In our future research, it is interesting to
extend the proposed scheme to handle the manu-
facturing processes with multiple assignable cau-
ses and multivariate inputs from the previous

stage.
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