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Abstract: Based on the transfer matrix method and Forman equation, a new method is proposed to conduct the mo-
dal and fatigue life analysis of a beam with multiple transverse cracks. In the modal analysis, the damping loss fac-
tor is introduced by the complex elastic modulus, bending springs without mass are used to replace the transverse
cracks, and the characteristic transfer matrix of the whole cracked beam can be derived. In the fatigue life analysis,
considering the interaction of the beam vibration and fatigue cracks growth, the fatigue life of the cracked beam is

predicted by the timing analysis method. Numerical calculation shows that cracks have a significant influence on
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the modal and fatigue life of the beam.
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0 Introduction

Beam structures have been widely applied in
engineering practice, including shipbuilding in-
dustry, machinery manufacturing, construction
industry, aerospace industry, and so on. During
the manufacturing and assembling procedures,
beams would suffer different degrees of structural
damages. The most common form of structural
damage is the crack, and the existence of cracks
will change the dynamic characteristics of the
beam, such as natural frequencies and mode
shapes. These changes depend on the number,
positions and depths of cracks. Many studies have
been conducted in this area, and several models
have been proposed to calculate the natural fre-
quency of the cracked beam, such as the finite el-
ement method™’, the transfer matrix method™’,
the dynamic stiffness method™ , the boundary el-
ement method™, ete.

For the beam subjected to the axial force,
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many researchers had investigated the free vibra-
tion of these beams. In Ref. [ 5], the modal anal-
ysis was conducted of a Rayleigh cantilever beam
with axial load and tip mass, and also the simple
fundamental frequency formula was derived. In
Ref. [ 6], the exact closed-form solution was used
to calculate the natural frequencies, the corre-
sponding natural modes and buckling load of the
beam-column. Considering the bending-torsion
coupling effect, the dynamic stiffness method was
used to derive the dynamic matrix of a cracked
beam, and the effect of the crack on the modal
characteristics of the beam was investigated in
Ref. [7]. The boundary conditions and recursive
formulas were used in Refs. [8-9] to reduce the
difficulty to find the roots of the second-order de-
terminant. Particularly, a model of massless ro-
tational spring was adopted to obtain the local
flexibility caused by cracks, and the free vibration
of a non-uniform beam with an arbitrary numbers

of cracks and the concentrated mass was analyzed
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in Ref.[8].

method was used to conduct the dynamic analysis

In Ref.[10], the finite element

by taking into account the effect of axial force.
However, these researches mentioned above only
investigated the free vibration, and did not con-
duct the fatigue life analysis of these cracked
beams, which would cause the vibration fatigue
failure of the structures.

Around 1960, Boeing found that the stress
intensity factor played a key role in the fatigue
crack extension firstly. In 1963, Paris and Er-
dogan''" contacted the crack growth data and the
stress intensity factor amplitude, and established
the theory of the fatigue fracture. With the devel-
opment of fracture mechanics, several meth-
ods"'*!'" have been proposed to predict the fatigue
life of cracked structures. However, these resear-
ches used the static method to calculate the
stress, with the assuming that the stress had
nothing to do with the external excitation fre-
quency and damping. Refs. [ 15-16 ] considered
the effect of excitation frequency on the fatigue
life of the cracked structure. Based on the S-N
curve, Ref. [17] proposed a fatigue assessment
method for composite wind turbine blade by the
finite element method. Ref. [ 18] used the finite
element method to investigate the stress distribu-
tion of the cantilever aluminum alloy beam.
Ref. [19] studied the effect of axial excitation fre-
quencies on the fatigue crack growth life of poly-
mer materials in resonance conditions. But these
researches neglected the influence of the number
of cracks and the axial force.

The objective of this paper is to propose a
theoretical method to calculate the natural fre-
quencies and predict the fatigue life of a beam
with multiple cracks. Based on the transfer ma-
trix method, a transfer matrix with the character-
istics of cracks and the axial force is derived, and
natural frequencies of the beam are obtained by
the implementation of the boundary conditions.
Considering the interaction of cracked beam vi-
bration and cracks growth, the fatigue life of the
beam is predicted by using the timing analysis

method and Forman equation, and the accuracy of

estimating the fatigue life is further improved.

1 Model

The model of beam with multiple cracks is
shown in Fig. 1. As shown in Fig. 1, an isotropic
and rectangular cross-section beam with n trans-
verse cracks is given, and each transverse crack is
modeled as the bending spring without mass. The
depths of cracks are a;.a;,,**,a,, and the posi-

tions of cracks are L,,L,,*,L,, respectively.

L L L, L,

Fig.1 Model of beam with multiple cracks

According to the theory of Dimarogonas and

L20J, the local flexibility caused by each

Paipeties
crack can be written as follows

(%)ﬂm 38

where i =1, 2, =+, n; a; is the local flexibility

a;, —

caused by crack No.i, and a; can also be consid-
ered as the flexibility of the bending spring No.i;
E* is the complex elastic modulus, E* = E(1+
iy), and E is the storage modulus; ¥ is the mate-
rial damping loss factor; I is the moment of iner-
tia of the cross section; r; = a;/h is the relative
depth of crack No.i; h is the height of the cross-
section of the beam; f(r;) is the local flexibility
function of the crack No.7, and can be obtained
through the strain energy density function
f(r;) =1.862 4rf — 3. 957 4+ 16.375r! —
37.2267) + 76. 810 —126. 97 +
172+F — 143. 977 4 66. 567"
(2)
Considering each transverse crack as a break-
point of the beam, the whole beam is divided into
n+1 intact sections by n cracks. The n+1 intact
beams are connected by n bending springs without
mass, and each intact beam has the length [, (i=

1,2,++,n+1). The vibration differential equation
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of Euler-Bernoulli beam can be expressed as 1 0 1 0
VPw, oI w 9’ s s
AT SSERFETIS =0 () g = 0 K ’ " (D
at dx; dx; —$E'T 0 ssE'T 0
where x;€[0,1,]; A is the area of the cross sec- 0 _YET 0 SET

tion of the beam; p is the density of the beam
structure material; and S is the axial force applied
on the cross-section of the beam.
The solution of Eq. (3) can be assumed as
w; (x;,t) =U,;(x;)q, (1) 4
Substituting Eq. (4) into Eq. (3) yields two
ordinary differential equations
E"IU"Y (x) — SU  (x) — pAw’U,(z2,) =0
(5
qﬂ-’—l—wzq,-:O (6)

o _ /S — : pA
Assume that a [T and ' =w E the

solution of Eq. (5) can be obtained as

U, (x;) =c; coss;x; + cpsins, x; + o

¢ coshs,x; + ¢y sinhs, x;

2 4
where s, = £+M and s, =
2 4
2 4
_a a_
\/ 2—9—,/4—0—,84.

2 Transfer Matrix Method

According to mechanics of materials, the an-
gle of deflection @, the bending moment M and
the shearing force Q can be obtained as follows

_du d*U L d'U
0 d=?"’ Q_Eld13

=4 M=E"] &

At the left end of each intact beam, the a-
bove formulas are used, and the deflection, the
angle of deflection, the bending moment and the
shearing force can be obtained as

U,(0) =cy + cs
J@, (0) =cyus, + cus,
11\4,‘(0) = —SE'Ieq + $SE Iey )
Q)= —$E e, + s$SE Iy,
Transforming these equations into the form

of the matrix

U, (0) ca
01(0) Cio
=R, (10)
M., (0) Cis
Q,(O) Ciy

where

Similarly, at the right end of each intact
beam, the above formulas are used and the de-
flection, the angle of deflection, the bending mo-
ment and the shearing force can be obtained
U.(l;) =cycoss l; + cpsins, L, +

ciscoshs,; + cusinhs,
0,(l;) = —cuysysins; L, + cps coss L; +
¢iy 8y sinhs, ; + ¢y 5. coshs, ;
—cnstE*Icoss;l; — cpsi E Isins, [; +
cnssE*Icoshs,l; + ¢,y s5 E*Isinhs, (;
Q, (L) =cysPE Isins;l; — cpsPE*Icoss, ; +
cuss E*Isinhs, l; + ¢, 53 E*Icoshs, [,
a2

Transforming these equations into the form

M. () =

of matrix
U, () Cit
0: (L) Ciz
M. (L) =S8, .. (13)
Q) Cat
where
S =
08§, /; sinsy /; coshs, /; sinhs, /;
— 5781081 /; §100881; sosinhs,/;  s.coshsy/;

— 2 E*Icoss,l; — sSE" Isins,l; s3E" Icoshs,/; s5E " Isinhs, /;
siExIsins l, —siE*Icoss [, s3 E*Isinhs,/; s3E* Icoshs, !,
(14)
Substituting Eq. (10) into Eq. (13) yields the

equation of each intact beam

U. (D U (0)
9 (L) 9;(0)
=SR;' (15
M; (1) M, (0)
Q: (L) Q; (0

where S:R; 'is the transfer matrix of the intact
beam No.:.

At the location of the crack No.i, the crack is
replaced by the bending spring without mass, the
angle of deflection, the bending moment and the
shearing force between the left and right sides of

the crack can be expressed as follows™
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U, (1) =U;, ()
Je,l<o> —0,(1) =a:M, (1)
IM,-(Z,-)M,-H(O)
Q (L) +24°0,(1) =Q,1 (0) + 240,, (0)
(16)

Then the transfer matrix of the crack No.:

can be obtained

U] 10 0o 0] [UD
b | o1« o [aw
M| oo 1 o M
Qi1 (0 0 0 —2da 1] Q)
an
10 0 0
0 1 a; 0
T, = (18)
o0 1 o0
0 0 —2%a 1

where T is the transfer matrix of the crack No.:.
So, for the whole beam with n transverse
cracks, the transfer relationship between the state

vectors of the right end and left end can be given
by

UU-I(Z”}I) Ul(o)
O (L) 0, (0)
S R (19)
M, (L) M, (0)
Qi1 (L) Q. (0)

where H = (S, . \R,} DT,-T, (SR ") (20)

Matrix H is called the transfer matrix of the
whole beam with n transverse cracks. In general
case, two of the boundary conditions are equal to
zero, as listed in Ref. [21], hence a 2X2 charac-
teristic matrix H is obtained.

Take the cantilever beam for example, the
deflection and angle of deflection of the clamped
end are equal to zero, and the bending moment
and shearing force of the free end are equal to zero

U,(0) =0, 6,(0) =0
M, (L) =0, Qu(L,)=0
Then a 2X 2 characteristic matrix of the can-

33 HSrl

2D

tilever beam H = { } can be derived,

s Hu
and the natural frequency of the whole cracked
cantilever beam can be calculated by

detHy =0 (22)

Use the storage modulus to replace the com-

plex elastic modulus when solving the natural fre-
quency of the cracked beam. From Eq. (22), each
order natural frequency of the whole beam can be
calculated and the corresponding inherent vibra-

tion mode can be obtained by Eq. (7).

3 Analysis on Fatigue Life
3.1 Dynamic stress analysis

Assume that the cracked beam is a cantilever
beam, and the free end of the beam is subjected
to a harmonic excitation in a vertical direction
F,e,

be written as

The corresponding bounding condition can

U,(0) =0, 6,(0) =0
M) =0, Q) =F,e” (23)
Substituting Eq. (23) into Eq. (19) yields the
deflection U, (0), the angle of deflection 6, (0),
the bending moment M, (0) and the shearing
force Q;(0).
Eq. (8) yields the coefficient of the vibration

Substituting these vectors into

mode function of the beam No. 1(c;1» ci25 i3
c,). By analogy, the vibration mode function of
each section of the beam can be obtained.

As shown in Fig. 1, transverse cracks on the
beam belong to the most common form of engi-
neering cracks (the open crack), which plays a
significant role on the structural damage. So this
paper takes the open cracks as the research key,
and neglects the influence of the shear stress.
The normal stress on the cross-section of the
beam is superposed by the normal stresses gener-
ated by the axial force S and the longitudinal force
F,.

The transverse cracks are the unilateral
cracks, and the axial force at the free end can be
transformed into the axial force S and the bending
moment M, = Sa,/2 at the cross-section of the
crack.

The normal stress at the crack tip on the
cross-section caused by the axial force can be ex-
pressed as

ois =S/(b(h—a;))
Oi,M_ :M.»Z/Iu’

According to Hooke’s law, the normal stress

24)

on the cross section caused by the bending mo-
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ment can be written as

oMy . U,
o: (x;) = i —Ezax?

(25)

For the intact beam No.7, the normal stress
response at the surface of the beam can be written
as

0, (x;) =E "2(— ¢, st coss,x; — cpsisins,x;) e +
E“z(cysicoshs, x; + cusisinhs, x;) el
(26)
where 2 is the distance from the surface to the

middle surface of the beam.
At the right end of the beam No.: (at the

h—a;
2

stress expression at the crack tip caused by the

crack tip: = = >, the maximum dynamic

bending moment can be written as
oir, =E 2(— ¢y sicoss;l; — cpsisins ;) +
E*z(c;ys5coshs,l; + ¢y sisinhs, ;)
27
The amplitude of the dynamic stress at the

crack tip can be obtained

Gimax = Ois + Gim, T 0OiE, (28)
3.2 Dynamic stress intensity factor

The dynamic stress intensity factor is the
physical quantity to characterize the crack tip
stress field distribution, and the dynamic stress
intensity factor at the crack tip can be expressed

as

AK; =Y (r) Aoy v/7a; 29
where AK; is the amplitude of the dynamic stress
intensity factor; Aoy is the amplitude of the dy-
namic normal stress at the crack tip; a; is the
depth of the crack; and Y (#,) is the shape func-
tion, which is tied to the depth and the location of
the crack, and Y(r;,)=1.12—0. 231r;,+ 10. 55/¢ —
21. 727+ 30. 391,

Under the harmonic excitation, the ampli-
tude of the dynamic stress intensity factor at each

crack tip can be expressed as
AKi = Kitnax =Y () imax v/ a1 30
3.3 Fatigue crack growth life

Due to the axial force, the stress ratio will

change during the vibration of the cracked beam.

Considering the influence of the stress ratio, the
Forman equation is used to simulate the propaga-

22]

tion of the fatigue crack’

da _ C(AK)"
AN~ (I-R K, —AK

where C, n are the crack propagation test con-

3D

stant; da/dN is the fatigue crack growth rate; R
is the stress ratio; and K is the fracture tough-
ness.
Substituting Eq. (30) into Eq. (31) yields the
fatigue crack growth rate of each crack
da, CY () Gima v/ )"
AN (1= R)K e — (Y () g /7,

Considering the interaction of cracked beam

(32)

vibration and cracks growth, this paper adopts
the timing analysis method, in which the vibra-
tion analysis and the fatigue life analysis of the
cracked beam are conducted at the same time.
Using Eq. (30), the fatigue crack growth in-
crement of each crack can be calculated when the

cracked beam has gone through AN, periodic vi-

bration
N N n
Aa, :J j CY (r;)0imax V/1a; ) AN
Niio (1 = RYK e — (YY) Oimax /@, )
(33)
Assume that AN;=N;—N,_;, =1, so di%
> J J J—1 ’ dN
Aa;
AN;’
Eq. (33) can be transformed as follows
Aa, = CY (ri)omu v/ ma; ) AN,
(1 _R)K,(j - (Y(r,')(f,'max A TTA; )
(34)

where Aa; is the fatigue crack growth increment
of the crack No.; when the cracked beam has gone
through the jth periodic vibration.

In the harmonic excitation with constant am-
plitude, the depth of the crack can be given by

the method of superposition

r
Ap — Ao + ZACI” (35)

where a, is the initial depth of the crack No.7; £
is the vibration cycles; a; is the depth of the
crack No.i; after the cracked beam has gone

through £ periodic vibration.
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3.4 Fatigue crack failure criterion

To determine the failure of the cracked

beam, this paper adopts the following criterions:

Criterion 1 If any crack extends to the mid-

dle surface of the cracked beam, it is considered
that the cracked beam has been destroyed.

a; = a, (36)
where a, is the critical crack length and in this pa-
per, a.=h/2.

Criterion 2 If the stress intensity factor at
any crack tip is greater than the material fracture
toughness, it is considered that the cracked beam
has been destroyed.

K. = K, (37)
where K., is the maximum stress intensity fac-
tor; and K. is the material fracture toughness.

Criterion 3 If the nominal stress at the loca-
tion of the crack is greater than the material ulti-
mate strength, it is considered that the cracked
beam has been destroyed.

Omax == O (38)
where o, i1s the maximum dynamic stress at the

location of the crack, and ¢, is the material ulti-

mate strength.

4 Results

According to the coordinate system of Fig. 1,
the geometric parameters of the beam are: L =
0.3 m, h=0.02 m, 6=0. 02 m. The structural
material is the alloy steel 30CrNidMoAM™, and
its material parameters are; E= 210 GPa, y=
0.05,v=0. 33, p=7 860 kg/m®, 6, =990 MPa,
n=1.272 47,C=7.76 X107, K- =177.7 MPa *

mO‘S.

4.1 Influence of axial force on natural frequency

Taking the cantilever beam for example, as-
sume that the axial force SE[0,500 N, and the
first order natural frequency of the cracked canti-
lever beam can be calculated by the analytical
method proposed in this paper. Assuming that
the axial force has the following values: S=0,
100, 200, 300, 400 and 500 N, and the first order
natural frequency of the cracked cantilever beam

can be obtained by the finite element method.

Consider the following four different cases:

(1) There is no transverse crack on the canti-
lever beam.

(2) There is only one transverse crack on the
cantilever beam, and the geometric parameters
are;: L,/L=0.1, a;/h=0.1.

(3) There are two transverse cracks on the
cantilever beam, and the geometric parameters of
cracks are: L,/L=0.1, a,/h=0.1; L,/L=0. 2,
a,/h=0.1.

(4) There are three transverse cracks on the
cantilever beam, and the geometric parameters of
cracks are: L,/L=0.1, a,/h=0.1; L,/L=0. 2,
a,/h=0.1; L,/L=0.3, a;/h=0.1.

The first order natural frequencies calculated
by the analytical method and the finite element
method are shown in Fig. 2.

As shown in Fig. 2, the first order natural
frequencies of the cracked beam obtained by two
methods are really close, and the biggest error is
about 0. 367%. So it can be concluded that the
analytical method proposed to calculate the natu-
ral frequency of the cracked beam subjected to the
axial force is correct and feasible. The first order
natural frequency gradually increases as the axial
force increases. The first order natural frequency
gradually decreases as the number of cracks in-

creases.
4.2 Influence on position of cracks

The free end of the beam is subjected to a

harmonic excitation in a vertical direction
(F,e“), and F, =100 N. Assume that the axial
force is the real constant (S=200 N), and there
are only two transverse cracks on the cantilever
beam. Consider that the geometric parameters of
cracks are; L,/L=0, a;,/h=0.1; L,/LE (0,1),
a,/h=0.1. Assume that the cracked beam keeps
in the resonance state, then the variation of fa-
tigue life and initial natural frequencies of the
beam at the resonance condition with different po-
sitions of the second crack is shown in Fig. 3.

As shown in Fig. 3, the fatigue life and the
natural frequency gradually increase as the rela-
tive position of the second crack increases, and

the increasing rate gradually decreases. At the
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Fig. 2 Variation of natural frequencies of beam with
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different axial force and crack parameters

resonance condition, the variation of the fatigue
life of the cracked beam is the same as the initial
natural frequency, and the influence of the second

crack on the natural frequency and the fatigue life
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(a) Fatigue life of the cracked beam
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Fig.3 Variation of fatigue life and initial natural fre-
quencies of beam with different positions of the

second crack

of the cracked beam gradually decreases as the

second crack is away from the fixed end.
4.3 Influence of damping on fatigue life

The free end of the beam is subjected to a
harmonic excitation in vertical direction (F, e ),
and F, =50 N. The axial force is a constant, and
S=0 N. If the damping loss factor has different
values y=0. 005, 0.01, 0.05, 0.1, there is only
one crack on the beam and the geometric parame-
ters of the crack are: L,/L=0.1, a;/h=0. 1.
Assume that the cracked beam keeps in the reso-
nance state, and the variation of the fatigue life of
the beam at the resonance condition with different
damping loss factors is shown in Fig. 4.

As shown in Fig. 4, when y=0. 005, 0. 01,
two fatigue life curves almost coincide because the
effect of small damping on the fatigue crack
growth rate is not obvious, but big damping has
large effect on the fatigue life of the cracked
beam. The fatigue life of the cracked beam gradu-
ally increases as the damping loss factor increa-

Ses.
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Fig. 4  Fatigue life of beam with different material

damping loss factors
4.4 Influence of axial force on fatigue life

The free end of the beam is subjected to a
harmonic excitation in vertical direction (F,e“ ),
and F, =50 N. If the axial force has different val-
ues S=0, 100,++,1 400 N and y=0. 05, consider
three different cases:

(1) There is only one transverse crack on the
cantilever beam, and the geometric parameters
are; L, /L=0.1, a;/h=0.1.

(2) There are two transverse cracks on the
cantilever beam, and the geometric parameters of
the cracks are; L,/L=0.1, a;/h=0.1; L,/L=
0.2, a,/h=0. 1.

(3) There are three transverse cracks on the
cantilever beam, and the geometric parameters of
the cracks are: L,/L=0.1,a,/h=0.1; L,/L=
0.2, a,/h=0.1; L;/L=0.3, a;/h=0. 1.

Assume that the cracked beam keeps in the
resonance state, and the fatigue lives of the
cracked beam in these three cases are shown in

Fig. 5.

9 500

o 9000r

S

9 gs00f

<

o L

% 8 000

=

o —o—One crack
7500 —o—Two cracks

——Three cracks

7 000

0 200 400 600 800 1000 12001400
Axial force S/ N

Fig.5 Fatigue lives of beam with different numbers of

cracks and axial forces

As shown in Fig. 5, when the axial force S€
[0,200 N, the fatigue life of the cracked beam

gradually decreases as the axial force increases,
because the increasing rate of the normal stress
caused by the axial force is larger than the decrea-
sing rate of the normal stress caused by the ben-
ding moment. When the axial force S==200 N,
the fatigue life of the cracked beam gradually in-
creases as the axial force increase, because the in-
creasing rate of the normal stress caused by the
axial force is smaller than the decreasing rate of
the normal stress caused by the bending moment.
The fatigue life of the cracked beam with the
same axial force gradually decreases as the num-

ber of cracks increases.

5 Conclusions

The bending springs without mass are used
to replace the transverse cracks, and the influence
of the axial force and cracks parameters on the
modal and fatigue life of the cracked beam is in-
vestigated based on the transfer matrix method
and Forman equation.

The suggested method can investigate the
free vibration of the beam subjected to axial force
with any arbitrary number of cracks effectively,
and can also predict the fatigue life of the cracked
beam more accurately. Compared with the finite
element method, the theoretical method proposed
to conduct the modal analysis can be proved in
this paper, and it can also be applied to the sim-
ply supported beam, double clamped beams and

other cracked beam structures.
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