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Abstract; Let R=GR (4,m) be a Galois ring with Teichmuller set T,, and Tr,, be the trace function from R to Z,.

In this paper, two classes of quaternary codes C; = {¢ (a, b): a € R, b € Tu }, where ¢ (a, b) =

m

(Tr, (af)JrTr%l (2227 1! Neer, and C; = {c(a,b):a € R, b€ T, }, where ¢cCa,b)=(Tr, (a«1‘+2/7,1‘2k+' Neer,
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and is even, are investigated, respectively.

m
ged(m, k)

The Lee weight distributions, Hamming weight distribu-

tions and complete weight distributions of the codes are completely given.
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0 Introduction

Codes over rings were first introduced by
Nechaevt? and later Hammons™ at the beginning
of the 1990’s. Since then, codes over rings have
been widely investigated™ ',

Now we recall the definition of quaternary
code over Z,.

Definition 0. 1 If C is an additive subgroup
of Z'1, we shall call C a quaternary code.

Let C be a quaternary code of length n, and
let A; be the number of codewords of weight i.
Then A(2):= E A;z' is called the weight enu-

i=0
merator of C. The sequence (A;)/—, is called the-
weight distribution of C.

Hamming distance and Lee distance are two
natural metrics for measuring errors for quaterna-
ry codes. Then we call (A))}—, Lee weight distri-
bution with respect to L.ee metric and Hamming
weight distribution with respect to Hamming
metric.
s0,) €

For a vector e=(cyscy 5

1, let N;,
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7=0,1,2,3, denote the number of components of
¢ that are equal to j. Clearly, we have N,+ N, +
N,+ N, =n. The composition of the vector ¢ is
defined to be comp(¢)=(N,,N,,N;,N;).
Definition 0. 2
over Z, and let ACN,,N,,N,,N;) be the number
of codewords ¢& C with comp(¢)=(N,,N,,N,.,

N,). Then the complete weight enumerator of C

Let C be a quaternary code

is the polynomial

.
W(*(Z()?Z]azz9z3): 2 ( ||Z{.’):
(Lly(z-'".Lu)EC i=1
A(Ny,N;, N, Ny zho gV 2o 2N
(s'\"“ "Nl .N,_) .;\"3 )EB

where B = {comp (¢): ¢ € C}, the sequence
(ACNo N1 N2 o NoD ) ov vy oNpen 18 called the-
complete weight distribution of C. As far as we
know, there are few papers which gave the com-
plete weight enumerators of linear codes over
rings.

Recently, some quaternary codes are con-
structed derived from Z,-valued quadratic forms.
In Ref.[117], Z,-valued quadratic form was intro-
Then

duced by Brown for the first time.
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Schmidt™?!*) gave the basic theories of Z,-valued
quadratic forms. He also constructed a class of
quaternary sequences based on Z,-valued quadrat-
ic forms. Let m, k& be positive integers with
ged(m,k)=d, a class of an interesting exponen-

tial sum over Galois ring is

ela,b) = Z W/—1)Tr, Cax + 2022t

c€T,
a€ R,bET,

where R=GR(4,m) is a Galois ring with Teich-

muller set T,, and Tr,, is the trace function from

R to Z,. This class of exponential sum is related

to a Z ,-valued quadratic for Q(x) = Tr,, (ax +

2627 "'). We have some well-known results
about p(a,b) as follows:

(1) For k=1, the distribution"” of p(a,b)
was studied to determine the correlation distribu-
tion of a quaternary sequence family.

(2) For odd m and ged(m,k) =1, codes with
the same weight distribution as the Goethals
codes and Delsarte-Goethals codes''") were ob-
tained based on p(a,b).

(3) For odd m and #=1, the theory of Z,-

5] was used to analyze the

valued quadratic forms
exponential sum p(a,b) and new sequence fami-

lies were obtained.
(4) For ged(m,k)=d and % being odd, sev-

eral classes of codes and sequences derived from
ela,b) were constructed™,

n

7
ged(m, k)

even, the distribution of p(a,b) was not given.

However, for the case that is

In this paper,two classes of exponential sums

m

pl(aab) — 2 (H)Tr,,1<a.,->\Tr%mu-z' ) L4 ER,

zeT,

b€ Tn, where m 1is an even integer, and

oy 2Kt

pe(a )= >, (/=D s 0 qeR,bET,,
I‘e'l‘ln
m . . .

where —————= is even, are investigated, re-

ged(m, k)

spectively. Through the discussions on the solu-
tions of certain equations derived from Z,-valued
quadratic forms, the distributions of the exponen-

tial sums are completely determined. We investi-

gate two classes of quaternary codes based on the

exponential sums C;, ={c(a,b): aER,bE T% b

m

where ¢ (a,b) = (TT,,,((LT)+TV%(2[)IZ7+1))‘,erm
and C,={c(a+b):a€ER,bE T, }, where c(a,b) =

is even.

o 2f —m
(Tr, (ax+2bx M.er, and ged(m, k)

The Lee weight distributions, Hamming weight
distributions and complete weight distributions of
the codes are given. Moreover, the complete
weight distributions of the codes in Ref. [3] can

also be determined by the method given in this

paper.
1 Preliminaries

Throughout this paper, we adopt the follow-
ing notation unless otherwise stated.

7, the residue class ring modulo n;

F, the finite field with g elements;

R,, the Galois ring GR(4,m) ;

T, the Teichmuller representative set of R, ;

tr,, the trace function from T,, to Z, ;

Tr,, the trace function from R,, to Z,;

1r,m the trace function from T, to Tz

Ne(x) the real part of x;

Im(x) the imaginary part of x.
1.1 Galois rings

Some preliminaries about Galois rings are
given below.

For positive integers m=—=1, let Z, be the ring
of integers modulo 4 and f a monic basic irreduci-
ble polynomial of degree m in Z,[ x]. The ring
R,=7Z,[x]/(f) is called the Galois ring, which
is a Galois extension of the ring Z, and denoted by
R,,=GR(4,m), where R,, is a finite chain ring of
length 3 and its unique maximal ideal is 2R,, , 1. e.
{0} =4R,<2R,<R,.

The group of units of the Galois ring contains
a unique cyclic multiplicative group T, of order
2"—1. I &, is a generator of this group, then
T, =<,> and the set T,,=T,, U{0}=1{0,1,
£, &4 %} is called the Teichmuller representa-
tive set of R,,.

For every * € R,,, it can be uniquely ex-
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pressed in the form of x=x+ 2y, =z, y&€ T,.
Clearly, the addition operation in the Teichmuller
set T,, is not closed. Specially, for arbitrary x,

y& T, , there exists a unique 2 & T,, such that x=

z+y+2+/xy. For convenience, a new operation
@ on T, is defined as x@y=x+vy+2+/xy.

Let F,» denote the Galois field GF(2™), then
(T, @D, Y=Fp.

The Frobenius automorphism ¢ on T,, is giv-
en by ¢(x)=x". The trace functions tr,,: T,,—>Z,

and Tr, :R,,—7Z, are defined as

m—1 _ 2’

tr,(x) =@ 50 (2) =P/

e T,
m—1

Tr,,,(1‘+2y)=2<1‘2j +2y%) x.y € T,
7=0

One can easily check that tr, (6(2)) =1tr, (2)
and 2Tr, (x2)=2tr, (x) hold for all z& T,,.

For more information about Galois rings,
readers can refer to Refs. [3,137].

One can easily deduce the following lemma.

Lemma 1.1 Let #r denote the trace function
from F,» to F, and Tr,, denote the trace function
from R,, to Z,. Let u be the reduction modulo 2.

Then Fig. 1 shows the communities.

R~ F,

F.
\Trm tr
z, Lo F,

Fig. 1 Schematic diagram of trace function

The proof is obvious,so we omit it here.
1.2 7Z,-valued quadratic forms

In the following, we present some results
about Z,-valued quadratic forms "1%15),

Let K:={z€EZ,.2* =2z} be the Teichmuller
representatives in Z,. Informally, we identify K
as Z,=1{0,1}, which is a subset of Z,, in this pa-
per.

Definition 1.2 A symmetric bilinear form
on T, is a mapping B: T,, X T,, > K with two
properties;

(1) Symmetry: B(x,y)=B(y,x);

(2) Bilinearity: for any a,8€ K, B(ax@y.,
) =aB(x,2)DBB(y,2).

We call B alternating if B(x,x) =0 for all

x& T,. Otherwise it is called nonalternating.
One can see that T, is an m-dimensional vector
space over Z,. Let {1ysA;s**»4,,.—1 ) be a basis for
T, over Z,. Then, relative to this basis, B is u-
niquely determined by its matrix of size m X m
given by B= (b )o<j1ems where by =B}, A,).
Letx=(xosa1s s x,—1) and y= Cyg, yi, ***s
Yu—1) be the Z ,-valued coordinate vectors of x
s Ame1 ) s
@~ Ax; and y =
Then it is easy to verify that

and y relative to the basis {A¢s A1, o+

respectively. Hence x =

SO ATE
B(x,y)=xBy".

Definition 1.3 A Z ,-valued quadratic form
on T, is a mapping Q"'": T,,—~Z, with two prop-
erties;

(1) Q(0)=0;

(2) QLa@y)=Q(x)+Q(y)+2B(x,y)
where B is a symmetric bilinear form defined as
above. Q is called alternating if its associated bi-
linear form B is alternating. The rank of B is de-
fined as

rank(B) =m — dimz2 (rad (B))
where rad(B) ={x &€ F.:B(x,y) =0 for all y&
T,}. The rank of Q is defined as rank(Q) =rank
(B).

Now let x=(xysx1**s2,,1) be the Z,-val-
ued coordinate vector of x relative to the basis
(o s Ay s oo
@7 Ajx;. And from Definitions 1. 2 and 1. 3,

sAn 1) for T, over Z,. Hence =

m—1

= > 5Q (A) +

j=0

2 Z l'j‘rkB(Aj,Ak): 2 qu‘kB(Aj,/\k)+

0<j k<<

Q)= Q (@) Ax,)

0= j<<h<m

m—1

D72 (Q) —BQsA). Q(a) —B(a.x) €2Z,

=0
cjan be easilydeduced from 2Q(x) = 2B (x, x).
Therefore, there exists vE Z% such that Q(x) =
xBx+2vx”.

It is known"* that every Z,-valued quadratic
form can be written uniquely in the following
form.

Lemma 1.4 Every Z,-valued quadratic form
Q:T,—~Z, can be written uniquely as

12
Qlx) :Tr,,,(aoI)JrZETr (ajJrZ,H)

S20 41
i=1
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where a; € T, and sy, is the size of the cy- butions of the quaternary codes are given, respec-
clotomic coset having coset leader 2/ + 1. Fur- tively.

thermore, if m=3, s, ., =m except for s,% ., :% 2.1 Distribution of the first exponential sums

when m is even.
For a Z ,-valued quadratic form Q:T,,—~7Z, .,

the distribution of the values of an interesting ex-

ponential sum yq (A1) = E (V=D (=D

JET,
was investigated'*'"! as follows, where A ranges
over T,,.
Lemma 1.5 If Q is an alternating Z ,-valued
quadratic form of rank r, then the distribution of
{xa(X) A€ T, } is given in Table 1.
Table 1 Value distribution of {y,(1).,A€ T, } for

alternating Q

Value Frequency
O 27” 721'
izznf% o1 4_‘,2%7I

Lemma 1.6 If Q is a nonalternating Z,-val-
ued quadratic form of rank r, then the distribu-
tions of {yq(1),A€ T, | are given in Tables 2 , 3,
respectively.

Table 2 Value distribution of {y,(1).A€ T, | for odd r

Value Frequency

O 2![!727’
(14 /=1)2" T 22 4277
+(1+ /=12 T 27 4075

Table 3 Value distribution of {y,(1),A€ T, } for even r

Value Frequency

0 2" =2
+2 7 272427
+2m 7/ —1 2" %*(each)

2 Codes Derived from the First 7 ,-
valued Quadratic Form

Throughout this section, let m be an even in-
teger. In this section, a class of quaternary codes
derived from a Z,-valued quadratic forms is inves-
tigated. The Lee weight distributions, Hamming

weight distributions and complete weight distri-

pi(a,b)

A class of exponential sum over the Galois

ring R is denoted by
o1 (asb) = E (/= 1) TratarrTrm ™"
J’ETI”
a € R,b e T%
Let a=c+2¢", where ¢,¢’ €T,,. Hence

/
{01 (aab) :S(bacyf ) -
m
3
E : (vV/—1 )Tz’m((LJrZ(',).x')‘FTr%(2/1.1")_ o
J‘E'I‘m

m

2 (V/—1 )'rrm(<:z~>+’1‘r%(2,”2Z 1y (— 1) =
€T,
2 ( /—1 )Q!m(‘r) (—1 r, (x)

z€T,

m
‘

where Q,.. () =Tr, (cx) + Tr%(z'“'22 DisaZ =
valued quadratic form from Lemma 1. 4.

To determine the distribution of the expo-
nential sum p; (a,b), it is sufficient to consider

the rank distribution of the quadratic form

m

Q.. ()=Tr,(cx)+Trz (262" 1), since
Q..(x @y =

m

T?",,,(C(I @ y)) + Tr%(Zb (I @ y)27\1) —
Tr, Ccx +cy + 2e/xy) +

Tre (202" 7 @ 20y*" " @ 2bwy” @ 2627 y) =
Tr, (cx +cy) + 2tr,, (Pxy) +

m m m m
2

Troe (202" 7+ 20y>" ") + 20ru (bry®” @ b y))

We have the associated bilinear form

m

B,..(x.y) =tr,(Fxy) @ tr%(/).zryzZ @ bz )

We need the following lemma later.

m

Let tr,2 (2) =@z be the

trace function from T, to T=. Then for every b€

Lemma 2.1

m

Tu, there exists d € T,, such that b:d@dﬁ.
Proof The proof is completed by noting that
trym:T,—T» is a surjection.
By Lemma 2. 1 and some techniques, we
have the following results.

Lemma 2.2 The bilinear form (2. 1) equals
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ISR TS )7
to tr, (¢** 2% 3y @bxy' ).

Proof From Lemma 2.1, we know that 6=
d®d*" for d€T,. Thus

z‘r,,,(dxyzz @drzz y) =

Zr%trm/%(dxyﬁ &) dxﬁy) =
tra (dxy27 @ dr?’ y® dv’ 2t S d* xyﬁ =
re((d@d )y @ y) =
z‘rg(/)(xy22 SERD))
It follows B,.. (x,y) =tr, (6‘21”3/@6113/22 @

)7 mi LT LT 7
da"" y) =tr, (" ¥ ¥y ) Dtr, (dxy* ) D

5t R 2 B
tr, (d* xy* ) = tr, (*7 0 2F yP D bxyt ),
which completes the proof.

By Lemma 2. 2, in order to determine the

rank of B, (x,y), it is sufficient to consider the

. S LT
roots of the equation ¢*° z?° @ bx = 0. Let

1

225 '@b, it becomes xg(x) =0.
Let T, =(&. ForbeTi, c€

g(x) =7
Lemma 2.3

m

. ) 3 b m )
T; . the equation x°° "= has 2° —1 solutions
.
in and no solution in T,, if ¢* € b(SZz . Let N;
denote the number of (b,c) € T X T, such that

the equation has exactly j roots in T,. Then

No=(2"—1)(2" —2) ,N,% ,=2"—1.

m

. 22 _ b
Proof Note that the equation 2*° ' =- has
.

2% —1 solutions or no solution. Let —=¢ for 0<C
C

t<2" — 1. Assume that £ is a solution of the
equation. Hence s (2% —1)=1¢ (mod2"—1)

which implies that 2 =1 |z. Then (L}Z et

which implies that ¢* € b<52771 >. Assume that

Ti ={bysbys+++,bx ). Note that T, =b, &’

2

U Ubgfl <$27 '), and the sets on the right are

disjoint from each other. Choose a fixed b in T ,

then the number of ¢ satisfying ¢* € b (&7 1)

equals to | b<€2771> | . The proof is completed.

Now we determine the rank distribution of
B,..(x.y). To achieve this goal, we define R; =
{(hye) € T XT,\{(0,0)}:rank (B, (z,y)) =
m—j}.

Theorem 2.4  When (b.¢) runs over Tz X
T,\{(0,0)}, the distribution of rank(B,..(z,y))

is given by

(IR, |=2"2" =)

1| Re |=27 —1
Proof It is sufficient to consider the follow-
ing cases of the roots of g(x).

Case 1 When ¢=0,b7#0, it is clear that
g(x) has no solution in T,. In this case,
rank(B,..(x,y)) =m.

Case 2 When b=0,c#0, it is clear that
g(x) has no nonzero solution in T,,. In this case,
rank(B,. . (x,y)) =m.

Case 3 When 6540,c#0, g(x)=0 becomes

b

()2t —1 —. From Lemma 2. 3, this equa-
-

tion has 2% —1 solutions in T,, if ¢* E/J<Sﬁﬂ> and
no solution in T, if ¢ € (’7(8277l y. In this case,
rank(B,. (x,y)) :% or rank(B,. (x,y))=m.

Then the conclusion follows.

From the discussions above, we get the dis-
tribution of the exponential sums p, (a,b) in the
following.

Theorem 2.5 When (a,b) runs through RX
Tz, the distribution of the exponential sums
o1 (asb) is given as follows.

If m=0 (mod 4), pi(a,b) has the following

distribution
2" once
0 (2" —1)(2" —27 +1)times
+27 (2F =D 428

(2" 242771)(2"—1)) times
2722 —1)(2% — 1) times(each)
P (2% 2427 1) (2" —1)times
irZ%H«/jl (2" —1)2% %times(each)

If m=2 (mod 4), p, (a,b) has the following

distribution
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2" once

0 (2" —1)(2"—27 +1)times

s (27 —1)(2n ot +
(277242571 (2" —1)) times

272 (2n—1)(2" —D)

times(each)

+2%/=1

m—=6

+(1+/—1D)2" (25 24+2"T)(2" —1)times
+(1—/—1)2"T (2% 24+2"T) (2" —1)times

Proof Let a=c+2¢", where ¢’ €T,,. The
proof of this theorem is divided into the following
cases.

Case 1 b=c=0. This is a trivial case, one
can verify that

/
E(0,0,c‘/)zz (— Ditr, (z) = 0 eF0
Z€T, 2" ¢=0

Case 2
that Q.0 (x) is alternating and rank (Q) = m

b7#0 and ¢=0. For c=0, we can see

where m is even. Hence by Lemma 1.5, we have

£b,0,c )= +27 which occurs (27 —1) (27! 4+
277") times when (b,¢’) runs through TiXT,.

Case 3 0 =0 and ¢ # 0. In this case,
Q.o (x) is nonalternating and rank (Q) = m.

Hence by Lemma 1.6,

, Jiz%’
&(0,c,c'H)= .
1i27«/—71 2"72 (2" —1)times(each)

when (¢,¢’) runs through T X T,.
Case 4 06540 and ¢~40. In this case, Q.o (2)
is nonalternating. For bc 7% 0, rank(Q)= m or

(2772 42771) (2" — D times

%. Note that % is even if m=0 (mod 4) and odd

if m=2 (mod 4). By Theorem 2. 4 and Lemma

1.6, when (b,¢) runs through R,\{(0.,¢),(b,0):

bcTi,ceT, | and ¢'runs through T, , we have
S(/J,C,C/):

12! (272425 1) (2" —1) (27 —2)times

+2°/=1 27%(2"—1)(2° —2)times(each)
When (b, ¢) runs through Rz, ¢ runs
through T,, and m=0 (mod 4), one can deduce
that
Ebocyc )=

0 (2,,,f2%)(2'~—1)times
+27 (27774271 (2" — 1) times
+2%/—1  2%72(2"—1)times(each)

from Theorem 2. 4 and Lemma 1. 6. When (b.¢)
runs through Rz, ¢ runs through T, and m=
2 (mod 4) , one can deduce that

5(/),(‘,('/) =

0 (27 —27)(2"—1) times

+(1+/— 12"

(277 242" ) (2" — 1) times

2

+(1—/—=1)2"

(2572 42"T") (2" — 1) times
from Theorem 2.4 and Lemma 1. 6.

Then the conclusion follows.

2.2 Lee weight distribution and Hamming weight
distribution of C,;

In this subsection, we investigate the Lee
weight distributions and Hamming weight distri-
butions of several classes of codes from p; (a,b),
respectively.

For an element &€ 7Z,, define its Lee weight
as w (2)=1—Re((V/—1)") where Re(z) denotes
the real part of a complex number ¢. For a code-
word ¢= (¢, s¢5 5+ »¢,) » the Lee weight of ¢ is de-

fined as

w (e) =n—Re( D) (V—1)¢)
i=1

Now we define a quaternary code as

C,={cla:b): a € R.b € Tz}

where ¢(a,b) = (Tr, (ax) +Trz (262" 11 M.er .
Due to the definition of Lee weight, we have

wl‘(C(a,b)) -

2+
27— Re( Z (V=1 )Tryn(é:‘l)‘FTr%(Zluzz )

€ Tm

Then from Theorem 2.5, we can determine the
Lee weight distribution of C, in the following.
Theorem 2.6 When (a,b) runs through RX
Tz, the Lee weight distributions of the quaterna-
ry code C, are given in Tables 4,5.
Table 4 Value distribution of Lee weight with

m=0 (mod 4)
Weight Frequency
0 1
2" (2" —1) » (2% =25 142 1)

2rF2T (2 —D(@r 28 (22 )@ — 1)
(2577421 )@ —1)
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Table S Value distribution of Lee weight with B
m=2 (mod 4) 0 (2"—27)(2" —1)times
Weight Frequency +27 (2772427727 —1)(27 — 1) times
0 1 5 2 b2 .
+2°/—1 27 *(2"—1)(2* —1)times(each)
om (2,171) . (25;71 2’;!,|+2m I+1) +2);/, (2/’;,77+2ﬂ71)(2”'*1)t1meg
2'"12% (2%*1)(2”'71i2%71+(2'”72i2%71)(2'”*1)> +2%\/j1 2%72(2”’*1)&1'1’185(6&61'1)
2n T2t @F 2 e -1

Define the Hamming weight of a codeword

se,) as wy(e)=H {1 j<<n:c;7#0j.

Now we determine the Hamming weight of the

For a codeword ¢(a,b) € C,

the Hamming weight of it can be expressed as

wy(cla,b)) =2"— | {x € T,:cla,b) =0} | =
2" — % Z Z V= Dacla,b) =

€T, 1€Z

C:(Cl sCo oyt

quaternary code C,.

m

om _%2 Z( [T ) T G T g, 22 41, —
€Z x

2" ——Ep (Aa s2b0) =

AEZ

om __ i R -

1 %pl(Za,Z/J) —

Ipl (a 9/)) -

Lo (3a.3b) =3+ 270 — LpiCas) —

o (20.26) — 5 o (@) =

302 — L ReCpr (@) — Ly (2a.26)

Assume that a=c+2¢ ¢, € T,,. It is easy
to verify that g, (2a,26) =2" if ¢=0 and p, (2a,
2b) =0 otherwise. Thus

wy (cla,b)) =

JZ”” *%%e(pl(a,b)) c=0

13 2 — %%e(pl (asb)) otherwise

From the proof of Theorem 2.5, it is easy to
get the distribution of the exponential sums &(b,
0,¢") as
JO (2" —1) times

2" once

£(b,0,c")=
liz% (27 —1) (2" + 2% ) times

For ¢7#0 and m=0 (mod 4), one can obtain
the distribution of the exponential sums &(b,c,c’)

as

Ebycyc’)=

For ¢#0 and m=2 (mod 4) , one can obtain

the distribution of the exponential sums &(b,c,c’)

as
Ebscyc )=
0 (27 —2%) (2" —1)times
+2° (27228 Hen—1) -
(2% — Dtimes
+25/=1 272 (2" —1) (2" —1)
times(each)
+ (14— 12" (258 242"T)(2" — Dtimes
+(1—/— 12" (25 242"T) (2" —Dtimes

Therefore, the Hamming weight distribution
of the quaternary codes is obtained.

Theorem 2.7 When (a,b) runs through R X
Tz, the Hamming weight distributions of C, are
given in Tables 6, 7.

Table 6 Value distribution of Hamming weight with

m=0 (mod 4)
Weight Frequency
0 1
om—1 2" —1
3.2 (2" —1) - 27 2nt =28
on—1 9% (2 ”ﬂ)(zw t27 )

m

3e2ntF2T @roD@ 2t ) 27— D

3m m_, m

3o (n—D(@F P2t )

Table 7 Value distribution of Hamming weight with

m=2 (mod 4)
Weight Frequency
0 1
g 2 —1
g2 (2—1) « 2% 2 —27)
P o 27— 2t
ge2n 2 (42t . 20— DET D)
3e2mtET (=1« (2% £2"T)
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Remark 2. 8
Z,, define
o(C)) ={¢plclasb)):a € R.b € T%}
where ¢ (a, b) is defined as above. From Ref.
(177, wy (pe(as b)) =w, (c(a, b)) =2" —
Re(pi (asb)). Thus the Hamming weight distri-

Let ¢ be the Gray map over

bution of ¢(C,) is the same as the Lee weight dis-
tribution of C,.

2.3 Complete weight distribution of C,

In this subsection, we investigate the com-
plete weight distribution of the quaternary code
Cy. Let N;4=N,.pns 1=0,1,2,3 denote the num-
ber of components of ¢(a,b) that are equal to i.

Define a function on Z , as f(z) =1 —
ImCG/—=1)D, 2€Z,.

Then for a codeword ¢= (¢;scy s *+e

1 fO=n—3mC D) (V/=1Dep.
=1
Consider the system of equations
fCela,b)) =N, + N, + 2N,
JwH(C(a,b)) =N, + N, + N,
lwll(c(a,b)) =N, + 2N, + Nj
2" =N, +N; + N, + N,

,C,) over

One can deduce that
N, =2" —wy(cla,b)) =

20 4 L ReCpr (@) =0

27+ LReCpr (aub)) e £ 0

0 c=0
N1:

2t L 3mpr (asb)

N, =w, (c(a,b)) —wy(cla,b)) =

c#=0

szl — L Re(pi @) =0

12’” 2 —%?Re(p] (a b)) ¢#0
JO c=0
Ny=49,.,., 1«
121” C— 5 S3mpn(ab)) e # 0

In the following, we give the distributions of
(NysN,.N;,N;) when (a,b) runs through R X
Ta.

Theorem 2.9 The complete weight enumer-
ator of the quaternary code C; is given in Table 8
if m=0 (mod 4) and Table 9 if m=2 (mod 4)
when (a.b) runs through RX Tz,

Table 8 Complete weight enumerator of C; with m=0 (mod 4)

N, N, N, N, Frequency
g 0 g1 0 2 —1
2m 0 0 0 1
VA 0 2 2% 0 @27 —1) @ tE2s )
A A 2 2 @ =27y @ —1)
AR A A 2 @2ty @n—1) @27 —1)
g2 gnt g% gm? e 2772 (2" —1) (2% —1) (each)
2m o om gt ¥ on @F 42t 1 @ —1)
g2 gn—2 4 g¥m—1 gt om o 2%72(2" —1) (each)

Table 9 Complete weight enumerator of C, with m=2 (mod 4)

N, N, N, N, Frequency
g1 0 2! 0 2 —1
2 0 0 0 1
RS T 0 2" 2 0 N DR G e
2 2 2 2 @ —2%) @ —1
ZEE S R 2 2ok 2 @rrEod Ty @n—1) 2% —1)
2 22y 2 2n T 2E 272 (27 —1) 2% —1) Ceach)
DAY AT 2 F 2T 2 ot 2% 242" ) (2" —1)
A A i N A A @F 242" @ —1)
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Proof We only give the proof for m =
0 (mod 4) since the case for m=2 (mod 4) can
be similarly proved. The proof is given in several
cases.

Case 1 ¢=0 and p, (a,b)=6(b,0,c")=0. In
this case, No=2"""', N,=2"—2"'=2""1, N, =
N;=0. From Theorem 2.5, (N;,N,,N,,N;)=

(2“,71 ,0, om—1 ’O) occurs 2" —1 times.

Case 2 ¢=0 and ‘01(0,,/)):5([7,0,(‘/):2’”.
In this case, N, =2""! +%§Re(‘o] Cas b)) =2",

N,=N,=N,=0. From Theorem 2.5, (N,,N;,
N,,N,)=(2",0,0,0) occurs one time.

Case3 ¢=0 and p, (a,b) =¢£(b,0,c) =
427, In this cases Ny=2"142% 1, N,=N, =
0, N,=2"'"F27 "', From Theorem 2.5, (N,,
Nl 9NZ? ]\]3 ) — (szl i 2%*1 , O, 2:»;*1 1 2%*1 , O)
occurs (2%*1)(2’”71412%71) times.

Case 4 (540 and pl(a,b):E(b,c,c,):O. In
this case, No=N, =N, =N, =2""%. From Theo-
rem 2. 69 (N(;s N1 D) Nzy Ng): (21”72’21”72,21”72,
2™7%) occurs (2’"*2%)(2’”*1) times.

Case 5 ¢#0 and p (a,0) =&(b,c,c) =
+2%. In this cases Ny =272 4281, N,=N, =
200, Ny =27 " = Re(p (asb)) =27 > F 2% !,

From Theorem 2.5, (N, sN;,N,,N,)=(2""*+
2% I’Zm Z,Zm 2 T’Z% ]72]” Z)OCCUrS (Zm 2 i,

m
2

2571)(2"—1)(27 —1) times.
Case 6 ¢7#0 and Pl(a»b):&'(b,c,c/):—_b—ﬁ .

V=T T this cases Ny =27 "+ Re(pr (1) =

200 N =27 Ly (asb)) =22 £2%
_, 1 m— — om—2

N2:2m ‘—?%e(pl(a,/}))ZZ 29 NL{_Z -

1 om
S Impr (ab)y =27 F2E

From Theorem 2. 5, each of (N,, N,, N,,
N;;)=(2’” Z,Zm ZiZ% ],Zm Z’Zm 2$2% 1) oc-

curs 2" 2(2"—1)(2% —1) times.

Case 7 ¢=#0 and pl(a,b)zg(b,c,c/):

3m

+2%+. In this case, N‘):Z’”’Z—F%%e(‘ol (a,b))=

3m
0

21:172 JL 2 —1 s Nl — ]\]3 — 2171727 ]\]2 — 2171*2 _

%?Re(pl (a,b))=2""2TF 2% ', From Theorem 2.5,

(N() , Nl , Z\]2 y ]\f3 ) — (2171*2 i 23%*1 R 2»1*2 s 2711*2 $

2771,2"2) occurs(2% 2 42971) (2" —1) times.
Case 8 70 and p, (a.0) =&(b.c.c)=+27F «

v —1. In this case, N,=2" ZJr%?Re(pl(a,b)):

200 N =20 L mp (ab)) =20 2
, 1 — om2

NZZZ”’ ‘7?%6({()1(0’,6)):2 29 N;—Z -

%Sm(fol (a,0))=2""2F 277!, From Theorem 2.5,

cach of (N2 Ny+Nyu Ny) = (277, 2m % £ 2871,

2m 2,2 2 2% 1) occurs 2% (2" —1) times.
Then the proof is completed by combining

Cases 1—S8.
Remark 2.10

Quaternary codes derived

from a class of exponential sums

plab) = > /=) Tr,(ax + 202”")

€T,
ac R,be T,

m

A being odd, were in-

where ged(m, k) =k and

vestigated®™ . The Hamming weight distributions
and the Lee weight distributions of the codes were
given. However, the complete weight distribu-
tions were not investigated. Using the same tech-
niques given by us, the complete weight distribu-

tions of the quaternary codes' can be easily de-

termined. We omit them here.

3 Codes Derived from the Second

Quadratic Form

Throughout this section, we always assume
that ged(m,k)=d and  Iseven, In this section,

we investigate quaternary codes derived from a

class of exponential

Tr Car o T ,
Z /=1 , where a=c+2¢ €R,

€ Tm

sum o, (a, b) =
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b,c.c' €T,. Hence
p2Casb) =& (b,c,c') =

'
E (V—1 )']‘rm(((‘\2('/)‘1'12/11'2 b

€T

m

E (ﬁ)'l‘r~l,l<(:z-»2bz-zk“) (— 1)rmén —
xeT,,
Z (V=1)%@ (—1

RS Tm

where Q,..(x)=Tr, (CI‘Fbezk*l ).

o (dx)
m

For the case

m

ged(m k) odd, the reader is referred to Ref. [3].

3.1 Distribution of exponential sums p, (a.b)

To determine the distribution of the expo-
nential sum p, (a,b), it is sufficient to consider
the rank distribution of the quadratic form
Q..(x)=Tr, (cx 2622 1) bycra € T,.

Note that Q,.. (x) is a Z ,-valued quadratic

form with associated bilinear form

B, (x.y) =tr,(Fxy @D b:czky @ bxyzk ) =
., " xzkyzk ) @ i, (bszzﬂyzk ) @ tr,, (bxyzk ) =
tr,, ( G @® b @ bx )yzk )

Hence it is sufficient to consider the roots of

the equation
9/+1

2 @ @b =0 (D
In the following, we discuss the roots of Eq.

(1) in several cases.

Let T, =<&). M b=0,c+#0,

the unique solution of Eq. (1) is x=0 in T,, and

Lemma 3.1

rank(B,. . (x,y))=m. If b& <&'2d+l >yc=0, then
Eq. (1) has 2* solutions in T,, and rank(B,.. (x.,

y)=m—2d. I b€ (&"*1),c=0,670, then Eq.
(1) has the unique solution x=0 in T,, and rank
(B, . (xyy))=m.
Proof If 6=0,c0, the proof is obvious.
Now we consider the case b%0,c=0. In this
@bx =0. Hence it

is sufficient to consider the roots of 6% 22 71@(7:

case, Eq. (1) becomes bz

0 which implies that 22 '=5""?". Since ged(2k,
m)degcd(Z — ﬂ) =2d, one can deduce that
ng(sz _ 1 , 2711 _ 1) — ngd(zlz,m) _ 1 — 22d _ 1. Hence
22 7'=p""%" has no solution or 22 —1 solutions in

T,. Assume that x=¢ is a solution of it and b=

&, then we have 5“(22“” :El(lfzk) which implies
that s(2** —1)=¢(1—2%) (mod2™—1). Then it is
equivalent to ged(2% —1,2" —1) [1(1—2%), i.e.
2% —1|t(1—2%). Since ged(2"—1,2" —1)=2¢—
1 and ged(2"—1,2*+1)=2*+1, we have 2+
1|z. Then 22"

k . . .
=5'"? has solutions in T,, if and

only if hE (&'

To consider the case bc%~0, we need the fol-

>. The proof is completed.

lowing lemmas.

Lemma 3.2%  Let h(x) =2 "'@ua@ with
€ T; and D=2%*"_ Then h(x)=0 has 0, 1, 2
or D+ 1 solutions in T,.
#{€T,* | h(x)=

Assume that n;: =

0 has j roots in T,,}.

o ™M o ven then n — 2 =D
Y ged(m, k) OOV ST
_ (D—2)(D"'—1)
n = D', n, = T aD—1) = Tn
1
%. Furthermore, if A(x) =0 has a unique

solution x, €T, , (10@1) b1 =1,

y@br y1+2< @b, where y=
%71, Then Eq. (1) is equivalent to xg(y)=0. If

bc#0, rewrite g(y) as g(y)=by ! (X Dy D

Let g(y) =

ﬁ\l(,;i'}l)

7) swhere y= %
[7

b
—rz. For each
2 2

and y=

fixed ¢ & T, , y runs through T, when b runs
through T, . We define a map ¢ as follows
T, XT, — T,
(bye) >y
Note that this map is asubjective homomor-
phism of two groups. Since | ker(s) | =2"—1,
there exist 2” —1 pairs of (b,¢) such that ¢(b,c) =7y
for each y&e T, .
that g(y) has 0, 1, 2, or 1+27 solutions in T,,.
Lemma 3.3 For 6740, let

g ="y DUy Db
where y=2% ', Then;

From Lemma 3. 2, we know

(1) If y, and y, are two different solutions of

gy =0, (313,71 =1.
(2) If g(y) =0 has at least three solutions

7—1

VisY2 ,yzGT,,,, yz '“1=1 for i= ,2,3.
(3) If g(y) =0 has a unique solution y, &



906 Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 35

o

Tm ’ y{[’l =1.
Proof (1)Since y,y, (yl@yz)Zk:y%k“yz@
L 17 . 1/ Sk L
.’ygk "y =( zk)H 2k ZZH (z Zéﬁﬂ @ Zzz?k ) =
C C

(L2 L (e e @) Dm (72 D)) =

C C

b ﬁl}’(zl@zz):%(zl@zz), we get

kA1
2/<+1 )2 2/
C C C

that y;y, = (y;@y,)1—2".
Note that ged(2” —1,2"—1)=2*—1. Then

the conclusion follows.

(

(2) Since yi = 7(%3}2)(%%), we have

Y2 Y3

(") =1 from (1). Note that ged(2,2"—1) =

m m
M 2" —1

1, we have y{’il =1. Similarly, we have y;Z" 1=1

for i=2,3.

(3) Since y, is the unique solution of g(y)=

.2/\*'1

C
0, we know that gz, =——

b
k'l@)/zo@}/zo. From

o et :'::1
Lemma 3. 2,1 = (z,P1)7 1 = (CTy)@l) o

vy, is the unique solu-

tion of the equation 2

2k+l

Since bzky(')“b @c'ZHI yo@b=0, we have CTyO@

ko k I ko 2r—l
1=0"""3"" . Hence 1 = (b* 'yi™" )i =

a+2Hem—1n

yo -1 . Since ged(1+2*,2"—1)=1 and 29—
1/2*—1, we have ged(1+2*,29—1)=1. Then

om

one can deduce that yg"j =1.

Denote R; as R;={(b,c) € T,, X T,\{(0,0}:
rank(Q, (x))=m—j}.

From Lemma 3. 1 and Lemma 3. 2, we can
get the rank distribution of B, (x,y) when (b,¢)
runs through T, X T,\{(0,0}.

Theorem 3. 4  When (b, ¢) runs through
T, XT,\{(0,0}, the distribution of rank(B,.. (x,
y)) is
| Ry |=(2" —1) »

(Z:n\dfl +3 . 24171 _|_1
2441

‘ Rd ‘:2,“7[1(2]” o 1)

Zm d _1
2% —1

4+ @7t =D — 1))

29 —1

| Ry |=(2" — 1)

Proof We know that +7 =y has 2¢—1 so-
lutions if and only if y is a (2¢—1)th power in T,
and no solution if and only if y is not a (2¢—1)th
power in T,,. Now we discuss the rank of B, (x.,
y) in several cases.

Casel b=0,c7#0. From Lemma 3.1, rank
(B, (xyy))=m.
Case2 HE (& ") ,c=0. From Lemma 3. 1.

rank (B,.. (x, y)) = m — 2d. This case occurs

2//171
2741
Case 3 bE (&), c=0. From Lemma 3. 1,

times.

rank(B,..(x,y)) =m. This case occurs 2" —1—
29+1
Case 4 bc#0 and g(y) =0 has no solution.

times.

In this case, rank(B,. . (x,y)) =m. From Lemma
3.2, This case occurs (2" —1)n, times.

Case 5 bc#0 and g(y) =0 has exactly one
solution. Then from Lemma 3. 3, this solution is
a (2—1)th power in T,,. This implies that Eq.
(1) has 2¢ solutions. Hence rank (B, (x,y)) =
m—d. From Lemma 3. 2, this case occurs (2" —
1)n, times.

Case 6 0Oc#0 and g(y) =0 has two solutions
in T,,. Then from Lemma 3. 3, these two solu-
tions are both (24 — 1) th powers or both not
(2—1)th powers in T,,.. If the former is true,
then Eq. (1) would have 2X (2¢—1)+1=2¢""—1
roots in T, , which is impossible. Hence both
roots are not (2—1)th powers and Eq. (1) has
the unique zero solution. Then rank(B,.. (x,y)) =m
and this case occurs (2” —1)n, times.

Case 7 bc7#0 and g(y) =0 has 2¢+1 solu-
tions. Then from Lemma 3. 3, all of them are
(2—1)th powers in T,. This implies that Eq.
(1) has 2* solutions. Hence rank (B, (z,y)) =
m—2d. From lLemma 3. 2, This case occurs

2" —=Dn,

2 1 times.

The proof is completed by combining Cases
1—7.

Now we determine the distribution of the ex-
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ponential sum p, (a,b).
Theorem 3.5 When (a,b) runs through RX
T, the distribution of the exponential sum p, (a,

b) is given as follows.

If d=gcdGm,k) is odd,

p2(a.b)=
2" once
0 A, times
iZ% A, times
iZ%«/ —1 A, times(each)
iZ’”JVZN A, times
+om T /1 A; times
+ (1+y/— 12" A, times
+(1—y/—1)2m "5 A, times
where
Al — (2711 . 1)(1 _'_ (2:{ . 1)(21:172«1 + 227/17241) +
2//:721/ (2//:7(1 _ 2d ) )
A =@ =D Bt
’ 29 +1 -
m 2d __ od ___ m
<1+(2 1)2(23712 1))(2,)172i27*1)>
, i , 2% — 24 —1
_ mo__ m—2 mo__
A= — D21+ D S )
N (21/7 . 1)(2;”72471 i 2"'72”71 )
A,l - Zd + 1 +
(2" — 1)(2/71741 o 2d ) (2;"72(172 _t 2”7 22‘171)
22d . 1
- . 211:72({72 (med o 2({)
A; = (2 i) SR
AG = (2" — 1)2;/:741(2/"7:172 _t 2'” E[ %)
A7 = (2" — 1)21/:741(2/:17:172 _t 2”' ;1 s)
If d=gcd(m,k) is even
2" once
0 B, times
427 B, times
—_‘—2%«/ —1 B, times(each)
pz(ayb): m—2d
+2m 2 B, times
+27 "7 /=1 B, times(each)
iZ’”J’;d B times
+om /=1 B; times(each)

where
By =2 — DA+ (2 — D@ 4277 +
Z/JI*ZJ (med o 2cl ) )

_ om 20 oo
B, =2 =D @ £28 ) +
mo__ 2d __ od __ B
(1+¢ 1)223_12 D) g 25
- 22:1 _ 241 —1
—(om __ m—2 mo__ 2 —=20—1
B, =" — D2 (14" — D o )
N gr2d—l 2"’*225’71
Bi= =D 5
(9md — 9dy (g L 2"’*225’71 ) )
22d —1
m—2d—2 (om—d __ od
B5:(2m_1)2 (2 2 )

22:1 _ 1
B6 — (Zm . 1)27:17(1 (med—z i 2%171 )
‘BT = (2" — 1)22fr172<172

Proof Since is even, we get that

. m
ged(m, k)
m is even. Then we have that m — 2d is even.
And m—d is odd if d is odd and even if d is even.
Here we only give the proof for odd d since the
case for even d can be similarly proved. The val-
ues of the exponential sum p, (a,b) =&(b,c, )
can be calculated as follows.

Case 1

can obtain that

b=c¢=0. This is a trivial case, we

, 0 S £
5(0909(3/) ESS Z (_ 1)[7"”([1) _ C i

Z€T, 2" =0
b=0,c+#0. Note that B,.(x.,y) is

nonalternating and rank (B, (x,y)) =m. Then

Case 2

by Lemma 1.6, when (¢.¢’) runs through T, X
T, we have

SQ(O’C,C/):

Jizg

liﬁ«/—l (2" —1)2""% times(each)
Case3 HE (&'71),c=0. Note that B,. (x»
y) is alternating and rank(B,.. (z,y)) =m— 2d.

(2" —1)(2" > £27 Htimes

Then by Lemma 1.5, when (¢,¢’) runs through
(&)X T, . we have

52(/),0’('/):
2" —1 m__om—2d\4:
JO 2[1_'_1(2 2 ) times
_'_21717"122‘1 2”1_1(2/”*2([*1 _'_2%2‘[*1 Ytimes
- 2941 -
Case 4 HE (£°7),b#0,c=0. Note that
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B,..(x,y) is alternating and rank (B, (x,y)) =
m. Then by Lemma 1. 5, when (¢, ¢’) runs
through (T — <§2d“ Y)XT, , we have

52(1)90ac/>:
0 0 times
+27 (2n—1-Z 1) (27 2% Htimes
- 29+1 o

Case 5 0%£0,c#0. For bc#0, rank(B, . (x,
y))=m,m—d or m—2d. In this case, B, (x,y)
is nonalternating. From Lemma 1. 5 and Theo-

0

& (hocrc ) =4+ (1+/—D2m "t
LT

rem 3.4, we have the following results. Firstly,
when (b,¢) runs through R\ {(0,¢),(6,0):c &
T,,0#0,b€ <$2‘Ivl >} and ¢’ runs through T,,,
we have

SZ(/)’C’('/):

427 (2" —1) (g +m,) (27 2425 V) times

IiZ%«/ —1 @2"—1)(n,+n,)2"" % times(each)
Secondly, when (b,¢) runs through R, and ¢’

runs through T, ., we have
(2" —=1)n, » (2" —2""9)times

2" —1n, » (2m4 242" Ytimes

m—d—3
2

2" —1Dn, « (2" 7£2 )times

Thirdly, when (b,¢) runs through R,,\{(b,0):c€T,, .b€E (52(]“ } and ¢ runs through T,,, we have

JO
izm %ﬁd

& (bscyc')=
\l+ 2,,17"132"ﬁ

3.2 Lee weight distribution and Hamming weight
distribution of C,

Now we define another class of quaternary
codes as

Cg :{c<(19b):a e va e Tm}
where ¢ (a, b) = (Tr,,,(aerZb:czk“))J.erm and

ﬁ is even. Using the same techniques
m,

with that in Section 2, we have
w (ela,b)) =2" — %e((og (a,sb))

Then we can determine the LLee Hamming
weight distribution of C, from Theorem 3. 5 in
the following.

Theorem 3.6 When (a,b) runs through RX
T, . the Lee weight distributions of the quaterna-
ry code C, are given in Tables 10, 11.

Table 10 Lee weight distribution of quaternary code

C, for odd d
Weight Frequency
0 0
2" Ay
2mF 27 A
gm gt A,

om gt A,

(2/71_1)n2[[+] . (2171_2171725[>times
. m—2d .
(2" —1D)nga iy » (2" 24277 times

(21:1 71)71211 i 2111*2«1*2 times(eaCh)

The proof is finished by combining Cases 1—75.

where
Ar=@ —D(1+27 @ — D+

Zm Zd(Zm d ___ 1) +2m 1 +
(22m 1 _2m l)(22d _2d _1) +2m 2d- l(zm d _2d)>

221171
24 o

, = (2" — nl 9%

Ay =@ = D( @ 28 +
m o __ 2d __ od __ B

<]+(2 1)2(23_12 1))(271172i27—1)>

- . 2/;172:/71 __'_ 2'”722‘[71
A, =@ =D T+

(2m d __ 2([)(2171 2d—2 + 2”’7,_,2‘1 l>>

22(171

m—d—3

A,1 — (Zm . 1)2'”76” 1 (medfz i 2 2 )

Table 11 Lee weight distribution of quaternary code

C, for even d

Weight Frequency
0 0
2" B,
2" F2t B,
om T gm—54 By
om o gm= B,
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where can easily deduce that
— m o___ 2m—2d d ___
B, =2 DA+2 (2 D+ 2”"71*%%6([02((170)) c=0
2171 Zd(zm d ___ 1) +2m 1 +22171 2d—1 + ’{,UH(C(a,/))) _
(22m 1 —om 1)(22d_2d_1)+2m 2d- l(zm d_zd)) 3. Qm—2 *%%e(pz(a,b)) Ci 0
24 —1
Lemma 3.7 When ¢=0, the distribution of
—(om __ m—1 2
B, = (2 1)(21,+1<2 +2%5 1) + o0 (s is
mo__ 2d __od " 0 2" —1) (1422 (2¢—1)) times
(]_'_(2 1)(2? 2 1)>(2"’72i2771)> imes
2 - 1 2/»1 once
o gm2d-1 | 2'”72([71 m " 2" —1 — m_ .
B, =2 71)<W+ +2° (2 _1_2a+1>(2 '+27 D times
(2 d __ 2cl>(2m 2d—2 + 2% 1 ) 4 mi,,,;zd om—1 —— T
- > 27 2(/_’_1(2 T2 7 ' )times
B, = (2" — 1)27 4 (2m 7 4 2541 When ¢7#0 and d is odd, the distribution of

By using the same method in Section 2, one

p:(a,b) is

O (Zm_1)(2m*d(2m_2m*d)+2m*2d(2m*d_2([))times
" N m__ 2d __od __
4o (2n =D @i+t (14 1)22371 T
m m__ 2d __od __
+27/—1 (2"'*1)2’”72<1+(2 1)2(2571 2 1))(times(ea‘tcl'l)
i(1+ﬁ)2711f”'7g+1 (2" —1)2m zl(zm d— z+2 )tlme%
+(17\/7)2”17 d+1 (271171)2111 (I(Zm d— Z+2 )tlm€S
—2a m—d d 2
_L_me'”zl (2m—1 )22 2 (27 2d— 2+2 5 1)t1me§
m—2d 2m*d — 2:1 )
om—*y \/_71 (2" —1) 22([_1 2/»1*&[*2 times

When ¢740 and d is even, the distribution of p; (a.b) is

Proof The proof is completed by the proof
of Theorem 3. 5.
Theorem 3.8 When (a,b) runs through RX

O (2771_1)(2/11*(1(2/11_2/11*d)+2m*2d(2/u*d_2d))times
" m__ 2d __od __

+2° (2n—1) (2t 28 ) 1+ Dz(fﬂ S times
m m o __ 2d __od __

JLZZN/TI (211171)2117*2(1_’_(2 1)2(2371 2 1))times(each)

izm*'”;d (21;:71)2717 d(2”7 d— 2+2 ’ l)tlmGS

Logm 7[«/*71 (2" —1)2% % *times(each)

L m—d __od 2

e (2m—1 )2221172(2”1 272 42" ) times
oy ’ 21/1*11 _ 2d PP

e/ (2'“—1)W2”’ times(each)

T,. the Hamming weight distributions of the

quaternary code C, are given in Tables 12, 13.
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Table 12 Hamming weight distribution of quaternary code

Table 13 Hamming weight distribution of quaternary code

C, for odd d C, for even d
Weight Frequency Weight Frequency
0 1 0 1
2m! (2" —1) « (142" 29—1)) 2m! (2" —1) « (142" % 29—1))
242425 ) 242" 425 )
m 1 m o__ m 2 1 m o __
2m N F 2y (2 1) - 271 2m ' F2 (2 1 - 2]
2 2" —1 Iy m—2d o sd 2" —1 o mzd
2 o STy @R gt gt @R
3e2m? A, 3e2m? B,
3.2 2T Ay 3e2m 225! B,
SR U Ay SR CaE B;
. 2/:1*2 12,,,7"1*221171 Al . 2”,,2 12”,7111*22(171 B,L
where
Al — (2”1 _ 1)(2/;1741 (2711 _ med) _'_ 27/17241 (27/17:/ _ 2«1) + 2”;71 +
(22»:71 . 2»:71 ) (2241 . 2d _ 1) + 2:»172:171 (med _ Zd)
2241 _ 1 )
m 2" —1)@2* —29—1)
__(om __ m 2
A= =D +2ihH(1+ S )
143 = (2" —1)2" d+ 1(2;7: d—2 + 2'” d {)
2m d __ i s — 7[
A =@ —1) 72 (e g gty
B] - (2171 _ 1) (2/11*:1 (Zm o 2;717:/) + 2»172(1 (2»17:/ _ 2d> + 2/;171 +
22,”7&’71 + (227:1 1 Zm 1 )(22([ _ 2d . 1) + Zm 2d—1 (21:1 d __ 2d)>
2% —1
- m_ 2" —1) 2" —2¢—1)
__(om __ m—2 n_
B, =2 — D@ +28)(1+ i )
]33 =(2" —1)2" d(Zm d + 2'" d )
21:1 d __ o2 — )(,
B1:(2m_1 27(2:” a +2 )
Proof The proof is completed by Lemma 3. 7. g1 %%e([oz (@) =0
3.3 Complete weight distribution of C, .
m—2 __ L
Let N;,:=0,1,2,3, denote the number of 2 Z%Q(pz(a’b)) ¢70
components of ¢(a,b) in C, that are equal to i. JO c=0
Note that 1 Isz %’\O’Sn](‘oz (a ,/))) c i 0
N, =2" —wy(c(a,b)) =

2m1 Jr%%e(({)z(a,b)) c=0

27t LReCps (aab)) ¢ 40

L

12’”* + Jnl(pz(a,b)) c#0

c=0
N,

Ng :'LL'I‘((/'(CL»/J)) *'T,UH<C(LL,/))) -

In the following, we give the distributions of
(N¢»N;+N;.N;) when (a,b) runs through R X
T,.

Theorem 3.9 The complete weight enumer-
ator of the quaternary code C, is given by Table
14 if d is odd and Table 15 if d is even when (a,
b) runs through RXT,,.
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Table 14 Complete weight enumerator of C, for odd d

N, N, N, N; Frequency
2m=! 2m=! 0 0 A
2" 0 0 0 A,
2n 25! 2r 2 0 0 As
gt gt A 0 0 A,
g 2 2 2 As
gn 4 of 2 Fo¥ gn g A
g 2 2 42t 2m -t g% A
R R N s e S IR 5 (e A Ag
e N ot Ut B O F P (s A
e e O 2 g Ay

where

. :(2/)1 _1)(1+2m 2@1(25[_1))
A, =1

P R—

e Gl 7

)2t £ 2%

:217:71
24941

m— )4[

A, @ret£277

; — (217!

(217!

— D221+

— 1@ —

Ay = (2" —
Ay — (2/1:

sz _

1

2"f1)>

(each)

m 1[ 3

1)2;”74(2;71 d—2 + 2 )

1 )2»17(1 (2/1: d—

m— d

PRI

m—d e
Ay =@ —DEmi@r —2m ) + Awm @D %(Z'Hd e
27 (2 — 21)) A= (2" — 1) 2;* f 9722 (aach)

Ag=@ —=D@ " +27 ") .
<1 L@ = 1)2(2521I 2¢ — 1))
Table 15 Complete weight enumerator of C, for even d
Ny N, N, N, Frequency
2m! 2m! 0 0 B,
2" 0 0 0 B,
g 2% 2n 2y 0 0 B;
gn=1 4 gm— gt gm—1 g gm— it 0 0 B,
=t =t mE e B
2m 2y 2n s 2m? 2m? Bs
e A 2m oy ! 2m iy B;
gm=2 4 gm=trd gm-2 g gm- gt A A By
e A P L gnz gty By
gm=2 4 gm—tgH gm=2 g gt 2n? A By
2m? 2m? gm—2 4 gm- 2 gm—t gt B

D)
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where
B, =2"—1
BZ:1
p o2 —D@E -2 D@2t
3 22d71
m __ 2d __ od __ m—2
B, =2 1><22Mi§ D272 b

B5 :Zm d(2m . 2m d) +2m Zd(zm d __ Zd)
m f] .5)
m—d—3

B(s — 2;117{1 (Zmﬂl—z i 2"
B7 — 2nm1 (med—z JL P )

m—d

B8 — (2/;1 _ 1)2m*zl(2mf(172 i 2 >4-1 )
g = (21/7 _ 1)227/1721172
m—d __ od y
Bl():(z'”_l) %(2”1 ZdziZT ])
m—d __ od
Bll = (2’" — 1) %Zm 2d—2 (each)

Proof The proof is completed by LLemma 3. 7.

4 Conclusions

Two classes of quaternary codes C, and C,
based on two exponential sums p; (a,b) and p;(a,
b) over Galois rings are investigated, respective-

ly. The ILee weight distributions, Hamming

weight distributions and complete weight distri-
butions of the codes are completely determined.
All the distributions in this paper have been veri-

fied by computer experiments.
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