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Abstract: Due to the complexity of strong metal interference and multiple occlusions in aircraft assembly work-
shop, the random “drift” phenomenon often happens in the ultra wide band (UWB) based positioning system. To
solve this, a fusion positioning optimization algorithm is proposed based on median filtering, hidden Markov model
(HMM) and Kalman filtering. Firstly, based on the three-dimensional (3D) median filtering, a queue optimization
method with weights is introduced to smooth the measurement data and eliminate the abnormal value. Secondly,
taking Singer model as a reference, a single-dimension acceleration distribution model is designed. In order to fur-
ther consider the spatial motion characteristics of objects in workshop, the distribution is extended from 1D to 3D,
and discretized into the state quantity of HMM. Subsequently, the data obtained by the two methods are fused by
taking Kalman filter as an iterator, and then the optimized location solution is obtained based on dynamic weights.
Finally, an experiment is conducted in an aircraft assembly workshop. Results show that 99. 3% of dynamic posi-
tioning errors are less than 15 cm after using the proposed algorithm. Even in the situation with large signal-fluctu-
ation, there are 71. 6% of positioning data whose errors are reduced. The random “drift” is greatly decreased.
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0 Introduction

In “industry 4. 0” plan, intelligent manufac-
turing has become a key development trend in to-
day’ s manufacturing industry. As a significant
component, real time positioning technology
plays an important role in constructing intelligent
and transparent manufacturing workshop'!. In
aircraft assembly workshop. real time positioning
can effectively solve the common problems that
tools are easy to forget, material management is
chaotic, and delivery vehicles are difficult to
track. Real time accurate location and status in-
formation are key factors in promoting manage-

ment level and assembly capacity®. The location
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information of manufacturing resources could

[3]

provide data support for resource schedule*’”, ma-

terial distribution™!, and other activities. The
manufacturing resources that need to be located
include work in process, materials, tools, vehi-
cles, workers, etc. By their accurate positioning,
it is convenient for real time searching, monito-
ring, and tracking.

At present, UWB-,

tification (RFID)!, Bluetooth! and Lidar™ are

radio frequency inden-

the main positioning methods in manufacturing
workshops. Due to its advantages of high securi-
ty, great capacity, strong anti-interference abili-
ty., low power dissipation., and low cost, UWB

technology has attracted more attention in recent
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years-?. Furthermore, UWB adopts the active
positioning method, which has high data trans-
mission rate and strong ability to track the tar-
get. Its positioning accuracy could achieve the
centimeter level, and the positioning requirement
of the manufacturing resources could be satisfied.
Therefore, many researchers have applied UWB
to manufacturing workshop. Huang et al. ' con-
structed a holographic workshop map to monitor
the whole workshop site in a visual way based on
UWB and RFID. Jiang et al."™ combined auto-
matic guided vehicle (AGV) with UWB-based re-
al time location platform to solve the problem of
poor flexibility and monitoring ability in tradi-
tional material delivery process. Zhou et al. '’ de-
veloped an UWB-based location system to moni-
tor and navigate the forklifts in real time. The ac-
curate material distribution of digital manufactur-
ing workshop was realized. He et al. """ and Le-
une et al. " applied UWB to AGV navigation and
tracking, respectively. Baboli et al. " optimized
and configured manufacturing systems by locating
manufacturing resources in real time. Zhang et

3] improved the management efficiency of

al.
manufacturing resources through an UWDB-based
location system.

The UWB-based positioning of static objects
in aircraft assembly workshop has high stability.
However, for AGV, material and many other
moving objects, the location data in workshop al-
ways have the phenomenon of irregular “drift”.
This is mainly caused by the following reasons.
On the one hand, the metal equipment and mate-
rials are densely distributed in workshop. These
metals have strong ability to absorb electromag-
netic waves. UWDB signal is a microwave with
shorter wavelengths, leading to its diffraction a-
bility weak. When the microwave is injected into
the metal, induction current could be produced on
the metal surface, which leads to the signal atten-
uation. On the other hand, there are many large
production and transportation equipments in the
workshop. Because of this complicated environ-
ment, an object is often accompanied by non-line

of sight and multipath propagation when it

moves. This causes the UWB positioning system
to “misjudge” the positioning data, so that it is
seriously deviated from the real position.
Considering the above problems, this paper
proposes an UWB-based target tracking model
and a fusion positioning optimization algorithm
(median filter and HMM based Kalman filter,
MH-K). Median filter is introduced to smooth
and denoise abnormal data. Then the Singer mod-
el is extended from a single dimension to a dis-
crete 3D model. Taking HMM™ as a speculating
method. the predicted value is output based on
the displacement and acceleration state. The
smoothed denoising value is combined with the
model output value by the Kalman filter. The so-
lution with the highest confidence degree is out-
put. An experiment is conducted to verify that
the proposed method could effectively solve the

random “drift” problem.

1 Positioning Data Preprocessing

Strong metal interference, frequent position
change of assembly resources and high dynamicity
of assembly process are typical characteristics in
aircraft assembly workshop, which have great in-
fluence on the stability and accuracy of the UWB
positioning results. Positioning data preprocess-
ing is designed to reduce the interference of these
complex factors as much as possible. By filte-
ring. the positioning data is smoothed to reduce
the noise of the elements’” movement path and the
burr amplitude. For tackling such problems, me-
dian filtering has the advantages of low complexi-
ty, small hardware requirements and fast pro-
cessing speed.

Median filtering is a sort of nonlinear signal
processing technology, which can effectively sup-
press noise based on sorting statistics theory. In a
number sequence, the value of a point is replaced
by the median of all points in its one neighbor-
hood. Median filtering is widely used in image
processing. For real time location data, there is
only preordering data without postorder data. In
order to achieve similar results, a slide window is

used as the data input mode. The purpose of slid-
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ing window is to record the location information
of the same label ID, and reduce the computation
cost.

The single dimension median filtering intro-
duces a sliding window to add or reject data. The
size of the sliding window is set as an odd number
(2n+1). The coordinates in three dimensions of
manufacturing resource need to be acquired sim-
ultaneously in UWB-based positioning system.
The single dimension median filtering cannot be
used directly., Therefore, median filtering proces-
ses of three dimensions are combined. On this ba-
sis, the priority queues (PQ) based data structure

is used to improve operation efficiency.

P,.x=sort(P ,.x,** ,?’1. ) . middle

P,.y=sort(P, z,.ys" ,;,. y) . middle (1)

P,.z=sort(P, .z, ,;‘,. z) . middle

As shown in Eq. (1), heap removes the most
advanced data while adding new data. Then all
data is sorted. Because the size of the window is
2n+1, the n-th value is output as the median. In-
dependent median filtering is performed in three
dimensions, and the coordinates obtained are con-

strained as

Pt+Vlimn (Pz+1 7Pr) Vlin]it> ‘ P1+1 7P/
PHrl 7Pz At
P[ = At
~ P, —P,
P/+1 Vlimit< ‘ HT
(2)

where P, and P,., denote the coordinates after

processing at time ¢ and t+1, ;7, and ;,Al the o-
riginal coordinates at time ¢ and t+1, respective-
ly. At is the time interval between two refreshes
of the positioning coordinate value and Vi, the

maximum threshold for moving speed.

2 HMM-Based
Model

Target  Tracking

UWB-based positioning platform could real-
ize accurate positioning with 15 cm for static posi-
tioning in the manufacturing workshopt™. Tt

could meet the real time positioning requirements

in workshop. However, the stability of the dy-
namic positioning error drops sharply when posi-
tioning the moving objects in the aircraft assem-
bly workshop. A section of trajectory of an AGV
is recorded and analyzed. The maximum deviation
from the real trajectory is almost 70 cm, and the
local area has the overall distortion of the trajec-
tory. Obviously, the positioning data directly
provided by UWDB positioning platform are diffi-
cult to meet the requirements of locating moving
objects accurately in aircraft assembly workshop.
In this regard, a HMM-based target tracking
method is proposed to predict the location of
manufacturing resources in aircraft assembly

workshop.
2.1 Hidden Markov model

Target tracking model describes the changing
process of the target with time, and it determines
the effect of the target tracking to a great extent.
In industry, the precise system model and the
statistical characteristics of noise are not easy to
be obtained, so it is difficult to describe them by
mathematics. In this paper, a target tracking
method based on HMM is used to predict the lo-
cation of manufacturing resources in assembly
workshop.

HMM is the simplest dynamic Bayesian net-
work, which has been widely applied in time se-
ries data modeling, speech recognition and natu-
ral language processing. HMM focuses on three
basic issues: (1) For the given model, how to ef-
fectively calculate the probability of producing the
observation sequence; (2) For the given model
and observation sequence, how to find the most
matched state sequence with the observation se-
quence; (3) For the given observation sequence,
how to adjust the model parameters to make the
sequence most likely to appear.

Fig. 1 shows a typical Markov process. Vari-
ables in HMM include state variables x and ob-
servation variables y. x={x,,x;,**,x,), where
x;, € X represents the system state at time 7. It is
assumed that the state variables are state and un-

observable. y={y/,y2s*"53,}, where y, €Y re-
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presents the observational value at time i. The
arrows in Fig. 1 indicate the dependence between
variables. At any time, the values of the ob-
served variables depend only on the state varia-
bles, and are independent of other state and ob-
servation variables. That is, y, is determined by
x,. At the same time, the state x, at time ¢ is on-
ly dependent of the state x,—, at time r—1 rather

than other states.

a]2 a23
bl Y Vs

Fig.1 Schematic diagram of HMM structure

2.2 Model of target motion

(1) Improved single-dimensional model of
acceleration distribution
In a single physical dimension, the motion e-
quation of mobile objects represented by AGV is
represented as
x(t) =Fx (1) +Ga (1) (3)
where
() = {target position at time ¢

target speed at time ¢

a(t) =target acceleration at time ¢

=l o[

The acceleration a(z) accounts for the target

deviations from a straight line trajectory, so it is
termed the target maneuver variable. In the Sing-

1“7, the probability is P, when the accel-

er mode
eration equals zero. However, the moving speed
of the manufacturing resources is relatively low
and is constrained by the measurement method.
The acceleration is almost impossible to be “ze-
ro”. Therefore, combined with the characteristics
of moving objects in manufacturing workshop,
the Singer model is altered. A single-dimensional
acceleration distribution model is given as shown
in Fig. 2, and the following assumptions are

made.

(1) Regarding the interval [ — a,, s a;, ] as

“no acceleration”, the target undergoes no accel-
eration with a probability P,.

(2) The target can accelerate at a maximum
rate amy(—amsy) and will do each with a probabil-
ity Poax.

(3) In other cases, the acceleration is aver-

agely distributed within (—a.» —au.) and (a,, »

Amax )«
P(a)
P P, P,
1-(P,;+2P,,,) 2a,,
2a,..
7amax amax

Fig. 2 Model of single-dimensional acceleration distri-

bution

(2) 3D model of acceleration distribution

In ordinary indoor environment, most tar-
gets move in the horizontal plane. However, ma-
terials and tools sometimes move in the vertical
direction in aircraft assembly workshop. Consid-
ering the spatial motion characteristics of objects
in aircraft assembly workshop, the single-dimen-
sional distribution is extended to three dimen-
sions. In order to apply HMM, the 3D accelera-
tion distribution sphere is divided into a great
many blocks with the thickness of &, as shown in
Fig. 3.

Fig.3 3D acceleration distribution

Taking one of the blocks, the original point

and the center point of the block is connected to
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be a connecting line. a is the coangle of the in-
cluded angle between the connecting line and the
z axis. k is the length of the connecting line, that
is, the intensity of acceleration. « is segmented
with ¥ as the basic unit. Based on the above de-
scription, the following contents are stipulated.

(1) Regarding the space range with radius
am, as “no acceleration”, the target undergoes no
acceleration with a probability P,.

(2) The target can accelerate at a maximum
rate a,., with a probability P ...

(3) In other cases, the acceleration is aver-
agely distributed within (a,, » amx)s the corre-
sponding acceleration probability P, is related to
the angle @ and the acceleration intensity k.

The cross-section of 3D acceleration distribu-

tion sphere is taken, as shown in Fig. 4.

o , x

Fig. 4 Cross-section of sphere

The corresponding formulas can be obtained
as
h, = rsina
hy =rsin(a+7)
Ly =rcos(at7)

4)
l, =rcosa
_ 1 2 2 " 2 2
‘U—gn(lghofllhl)—i— / n(r’ —z%)ds

where v is the volume of the space body formed
by 2x rotation of AOB around the z axis. Without
considering P, and P,.., the probability density
of acceleration distribution in interval (ay, » @)
could be calculated.

3(1_P0 _anx)

/171: (a:jnax - a?nin )

(5)

f=

The circumference is divided into 36 equal
parts (y==/18). Each part is divided into 10 lay-

ers in the direction of the center according to the

equal volume. The probability of a block can be
calculated as

sy
W%[Sin(aJr}/)—sina] (6)

By such a discretization method, the 3D ac-

P =

celeration sphere could be discretized into a lot of
blocks. Thus, the complete probability of any
point/block in the 3D acceleration distribution
sphere could be obtained after discretization.
P, k€ [Oram]
P=1<Piok *k € (au sqmax) 7
Puw k€ [@Gnuxs +°)
The hidden state is discretized 3D acceleratio-
na. It corresponds to the discretized block in the

3D acceleration sphere.
2.3 HMM parameters

A HMM could be concisely represented by a
three tuple A=[A,B,IT], where A represents the
hidden state transition probability matrix (HST-
PM), B the observation state transition probabili-
ty matrix (confusion matrix, CM), and IT the in-
itial state probability matrix (ISPM). Let N de-
note the number of hidden states and M the num-
ber of observable states. The details are as fol-
lows.

HSTPM describes the transition probability
between different hidden states in HMM, which
is expressed as A= (A; )xun» A; =P(S; |S),
1<Ci, j<CN. Tt represents the probability that the
state at time 41 is S; when the state at time ¢ is
S:. Here, HSTPM is subject to the 3D accelera-
tion distribution after discretization.

CM describes the transition probability be-
tween different observation states in HMM,
which is expressed as B= (B, )yxn, B; =P (O, |
S, 1<i<KM, 1<j<CN. It represents the proba-
bility that the observed value is O; when the state
at time ¢ is S;. Here, displacement is taken as the
observation state, and can be obtained by direct
observation.

ISPM represents the probability matrix of
the hidden state at time t=1. It is expressed as

IT:[PS1 Py, PSN], where Ps (1<<i<IN) is
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the probability of that the initial hidden state is
S;. The initial state is subject to the equal proba-

bility distribution.

3 MH-K Based Positioning Optimi-

zation

Kalman filter is utilized to fuse the pose of
moving objects acquired by HMM and the meas-
ured data after median filtering, making the out-
put result more consistent with the true position
trajectory'®. Kalman filter belongs to a posterio-
ri method™™, which is mainly composed of state

prediction stage and state update stage.
3.1 Kalman filter

(1) State prediction stage

From the kinematic formula, which is

P, 1 At [Py At /2
= + a, (8)
V., 0 1 ][V At
the acceleration a, can be obtained by HMM. And

D8] can be ob-

the first formula of Kalman filter
tained as

X1 =FX, . +Ba, 9
where F is the state transition matrix, B the con-

trol matrix, and X the state vector.

1 At
1 At
1 At
F= ) (10)
1
L 1]
X=([p, P, P. V., V, V.]' (D
[At/2 7
At/2
B A 1 At/2 (12)
1
L 1]

After updating the coordinates through the
motion model, the Kalman gain can be calculated
as

P, ,=FP, , F'+Q, (13)

where P, ||, is the posteriori covariance error

matrix based on motion model prediction at time

t—1, and Q, the process noise error which accords
with the Gauss distribution.
(2) State update stage

The coordinate updating in the measurement

system needs to be considered.

Z,=HX,,, +R, (14)

S, =HP,_,H' +R, (15)

where Z, is the observation result at time ¢, S, the

measurement covariance at time ¢, R, the meas-

urement noise at time ¢, and H the observation

vector.

H= 1 0 (16)
1 0

The noise formula is as follows.

cov(P,.,P,.) cov(P,,P,) cov(P,,P.)
R, = | cov(P,,P,) cov(P,,P,) cov(P,,P.,)
cov(P,,P.) cov(P,,P.) cov(P.,P.)

aan

At this point, the state observation results,
the respective error matrix of the prediction mod-
el, and the measurement system are obtained.
Then, the data of two independent systems are
fused.

K, =P,  H'S, (18)

X, =X, + K. (Z, —HX, ) 19

where K, is the error gain, and also a “balance co-

efficient” between the predicting values and the

measuring values. The larger its value is, the
lower the confidence level is, and vice versa.

Finally, the minimum mean square error ma-
trix of Kalman filter is modified to prepare for the
next iteration.

Pl\z:mel 7K1HP1 —1 20

3.2 Implementation process of MH-K algorithm

The proposed MH-K algorithm combines
HMM, median filtering and Kalman filtering. In
detail, it is mainly composed of the following
parts.

(1) The
(OMC) assigns label data to the corresponding

object management container

running container (RC).
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(2) 3D-median algorithm is used to stabilize
the fluctuation of data.

(3) HMM gives localization conjecture.

(4) Kalman filter is used to fuse the meas-
ured data processed by 3D-median filter and the
data predicted by HMM.

The implementation process of MH-K algo-
rithm is shown in Fig. 5. The detailed operations
are described as follows.

Step 1 UWB positioning platform is started
from the service application programming inter-
face (API). The downloading, burning and run-
ning of the binary function blocks of location base
station are completed.

Step 2 The OMC in Utag (location tag in
UWRB positioning platform) is initialized. Key and
value mapping based on the HashMap structure is
used to register, address mapping, and life cycle
control of an instantiated object under a set of
Utag objects {tagy }.

Step 3 When the update event from the
UWRB positioning platform is obtained, the object
storage space corresponding to the tag, is first
tried to obtain from the OMC. If the address is
successfully implemented, the data is directly
passed into the RC. If it does not exist, the RC
object that binds tag, value is instantiated and

registered to OMC.

| Start UWB positioning engine service I

!

| Initialize positioning OMC |

{

| Obtain location data l

Does the object $
ontainer exist? register an OMC
¥ !

| Transmit the data to RC |

Instantiate and

| Format to standard spatiotemporal data packet I

{

| Data cleaning and filtering (3D-median) l

)
| HMM |
!
I Kalman filtering |
!
| Output result |

Fig. 5 Implementation process of MH-K algorithm

Step 4 When RC accepts incoming data, it
formats it into a standard space-time packet
(SSTP), which is intended to be transferred to
other component instances in the form of a “mid-
dleware”.

Step 5 Data enters 3D-median components.
3D-median tries to discard an outdated SSTP ob-
ject from the smallest heap of PQ. At the initial-
ization stage, the number of PQ objects needs to
enter the climbing phase first, and the output will
seriously deviate from the real value, so the data
stream (Streamyqa.,) Will stop at this point. Dur-
ing the normal operation, 3D-median components
perform Sort and Correction operations after en-
queue and dequeue operations. Then the output is
packaged into Streamyq., and transfer to Steps 6,
7 respectively.

Step 6 SSTP
HMM, which outputs the displacement predic-

in  Streamyega., flows into
tion at time ¢+1 relative to time ¢. The output is
packaged into data stream ( Streampyy ) and
transferred to the next step.

Step 7 The corresponding SSTP objects in
Streamyeg,, and Streampyuy are extracted. Kalman
filtering is used to fuse the two results.

Step 8 The result is the output. The state

value at time ¢ is saved and RC is updated.

4 Experiment and Analysis

In order to verify the proposed target track-
ing model and location algorithm, an UWB-based
positioning platform (Ubisense7000) is construc-
ted in an assembly workshop. A real time positio-
ning data processing system is developed by using
Intellij IDEA 2017. 1 platform. Source data and
processing results are stored in text documents
intput. txt and output. txt, respectively.

The experiment is carried out by an AGV
with active UWB tags. The AGV walks around a
workstation in the workshop according to the de-
signed route. The sampling target is a total of
2 000 records. The sampling interval is 0. 1 s, the
maximum speed is 2 m/s, and the maximum ac-
celeration is 2 m*?/s. In order to facilitate the in-

spection, the AGV runs as straight as possible at



No. 6 Huang Shaohua, et al. Optimization Algorithm of UWB Positioning for Aircraft--+ 959

a constant speed except for turning.
By sampling 2 000 records of UWB tags in
static state, the noise of measurement system is

obtained as follows.

8.409 964 3.509 666 —1.230 04
R, =| 3.509 666 10.344 68 —0.7689
—1.23004 —0.7689 0.583 671

Classifing the collected data and extracting
the corresponding label location data of ID num-
ber “020-000-192-253”, data processing is imple-
mented by 3D-median and MH-K algorithm re-
spectively, whose trajectories are shown in
Fig. 6.

500

450

400[ 1+ 4
350
300

Y/cm

2501

Ubisense
200 3D-Median |
150 MH-K

100 1 1 1 1
110 210 310 410 510 610
X/cm

(a) Overall trajectories

500
480t
460F ]
440t
420t ‘
a0 b

380 ‘ Ubisense
3D-Median
MH-K

Y/cm

3601

340 : : :
100 150 200 250 300 350

X/cm
(b) Partial enlargement

Fig. 6 AGYV trajectories based on UWB positioning

Fig. 6(a) is the global graph of sampling traj-
ectory. The enlarged part of the upper left corner
is shown in Fig. 6(b). Through the observation
and analysis of the above experimental results, it
is found that

(1) After using the proposed algorithm,
UWRB positioning platform greatly reduces the lo-
cation instability caused by the complex environ-

ment of the workshop, and the location error is

less than 20 cm.

(2) From the left side of the partial enlarge-
ment graph, it can be seen that the electromag-
netic interference has an effect on the ultra wide
band signal transmitted by the UWB tag. The
trajectory before processing is obviously drifting,
and the maximum error in the sampling range is
produced. MH-K algorithm and 3D-median all
can effectively alleviate this phenomenon. And
the trajectory processed by MH-K is closer to the
actual uniform linear motion trajectory.

(3) 3D-median could play a good role in
smoothing the trajectory, and has strong process-
ing power for instantaneous “drift”. However, it
is affected by the window size. The larger the
window is, the better the smoothing effect is, but
the less sensitive it is for the direction change.
Through multiple adjustment attempts, the size
of the window is finally determined to be 9,
which can better balance trajectory smoothing and
directional response sensitivity.

In order to further analyze the influence of
proposed algorithm on location accuracy, the ex-
perimental data are statistically analyzed, and the
location error histogram is plotted, as shown in
Fig. 7. The following conclusions are drawn.

(1) Under the condition of great fluctuation,
the average location error of UWDB positioning
platform without MH-K algorithm is 8. 82 cm,
the maximum is 57. 89 c¢cm, and the variance is
76.79 cm?®. After using MH-K algorithm, the lo-
cation error is 4. 42 cm, which is 49. 89% lower
than that of before processing. The maximum is
16 cm, reduced by 72. 36%. The variance is
10.5 ecm?, reduced by 86. 32 percent.

(2) After using MH-K algorithm, 71.6% of
positioning error is less than that of before pro-
cessing, 98. 3% of positioning error is less than
10 em, and 99. 3% of positioning error is less
than 15 cm. It can be seen that the proposed algo-
rithm greatly improves the location stability of
UWB in aircraft assembly workshop, and effec-
tively solves the “drift” problem. In conclusion,

it is able to meet the positioning requirements in
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workshop.
60r mess Before processing
sol men A fter processing
a > Average (before
8 40k processing)
sg - Average (after
5 30t processing)
.g
g
-2
2
(=¥

Time /s

Fig. 7 Histogram of positioning error

5 Conclusions

UWB could effectively improve the intelli-
gent control and management ability for manufac-
turing resources in aircraft assembly workshop.
However, the complex environment brings the
problem of location instability, resulting in the
“drift” phenomenon. So this paper proposes an
optimization method which combines median fil-
tering, HMM and Kalman filtering. The 3D me-
dian filtering is used to smooth positioning data
and stabilize fluctuations. A discrete 3D accelera-
tion distribution model is constructed based on
HMM for location prediction. Data provided by
the first two methods are fused by Kalman filter,
and the final position coordinates are outputted.
The positioning data obtained in the real manufac-
turing environment show that the proposed algo-
rithm can effectively reduce the positioning error
and greatly alleviate the positioning “drift” prob-

lem.
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