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Abstract: An increment-dimensional scaled boundary finite element method (ID-SBFEM) is developed to solve the

transient temperature field. To improve the accuracy of SBFEM, the effect of high frequency factor on dynamic

stiffness is considered, and the first-order continued fraction technique is used. After the derivation, the SBFE e-

quations are obtained. and the dimensions of thermal conduction, the thermal capacity matrix and the vector of the

right side term in the equations are doubled. An example is presented to illustrate the feasibility and good accuracy

of the proposed method.
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0 Introduction

The heat conduction problem is frequently
encountered in the field of aerospace, that can be
investigated by analytical or numerical methods.
The analytical methods are limited to the prob-
lems of simple geometry and material properties.
In many cases of engineering practice, heat con-
duction problems have to be simulated by numeri-
cal methods, such as the finite element method
( FEM )™, the
(FDMD """, the finite volume method (FVM) "%
and the boundary element method (BEM)I"%) et
al. However, FEM, FDM and FVM need to dis-

cretize the whole computational domain, which

finite difference method

will lead to more discretization workload. In con-
trast to FEM and FDM, BEM only requires a
boundary mesh and significantly reduces the com-
puting times. Nevertheless, the traditional BEM
needs to find fundamental solutions. The scaled
boundary finite element method (SBFEM) [
has both the advantages of FEM and BEM. Sev-
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eral studies on heat conduction (or diffusion)
problems have been reported. Refs. [9-11] pres-
ented SBFEMs for steady-state heat conduction a-
nalysis. Birk and Song"* proposed a temporally
local method for the numerical solution of transi-
ent diffusion problems in unbounded domains. In
this method, SBFEM and a novel solution proce-
dure for fractional differential equations were
combined, but only the solution at the boundary
of SBFE can be obtained by this method, and the
inner temperature filed of SBFE was not dis-
cussed. Bazyar and Talebi™® used SBFEM to
solve non-homogeneous anisotropic heat conduc-
tion problems. In their studies, the heat conduc-
tion matrix determined from the eigenvalue prob-
lem and the mass capacity matrix determined
from the low frequency behavior formed a system
of the first-order ordinary differential equations,
from which the temperature at SBFE boundary
were solved by using the time finite difference
schemes. Meanwhile, the inner temperature in

SBFE was obtained by using the steady state for-
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mula based on the boundary temperatures, so the
effect of the thermal capacity on the inner tem-
perature was not taken into account. These disad-
vantages undoubtedly lead to some calculation er-
rors and even wrong results, especially when the
large size of SBFE was divided. To overcome the
disadvantages of previous work, Li and Ren'"
presented an extending SBFEM, in which the
effect of heat capacity on the inner temperature
field of SBFE was taken into account, and mean-
while, the algorithms were developed by combi-
ning SBFEM and precise integration method
(PIM) or finite difference scheme. The sub-do-
main method was used to improve the computa-
tional accuracy. However, the division of sub-do-
main also increased the discretization workload.
Summarizing the advantages of SBFEM in heat
conduction problem, we can found that: Firstly,
like BEM, it only discretizes the boundaries and has
no fundamental solutions, and the solution is analyti-
cal in radial direction for steady state problems; sec-
ondly, for the transient state problem, if we are only
interested in the boundary temperature values, we
can only solve it by SBFEM. Whereas, if we are also
interested in the inner temperature filed of the prob-
lem domain, we can transform the equation for de-
scribing SBFE interior temperature field to an initial
value problem. This problem can be solved by the fi-
nite difference scheme, in which the mesh can be
generated automatically, without discretization work-
load. Therefore, SBFEM is a very attractive algo-
rithm for the engineering and technical personnel.
The purpose of this paper is to seek a method
for solving transient heat conduction problem by
using SBFEM, which not only does not increase
the discretization workload. but also can improve
the calculation accuracy. An increment-dimen-
sional scaled boundary finite element method (ID-
SBFEM) is proposed to solve the transient heat

conduction problem.

1 SBFEM Equations of Transient

Heat Conduction Problem

In Ref. [14], the SBFEM equations have

been derived by transforming the governing dif-
ferential equations into the scaled boundary coor-
dinates, in which a weighted residual method and
Green theorem are applied. Full details of the for-
mulations can be found in Ref. [147]. Here some
key equations of SBFE for the analysis of transi-
ent heat conduction problem without sources in
frequency domain are given directly-*!,
E&a(®  + (E, +E " —

EH&a (o . — (E, +ioM &)a(&) =0 (1)
where E,, E,, E,, and M, are coefficient matri-
ces dependent on the geometry and materials of
the element,but they are independent on the nor-
malized radial coordinate & a(&) is nodal temper-
ature vector, and w is the frequency.

The heat flow rate on the boundary ( é=¢, =

1) can be expressed as'"

JN (5) " (—q, (& +s))Thds =
.

Eéa(&) .. +E"a(&) (2)
where s is the circumferential coordinate, N(s)
the shape function matrix, % the scaling factors
from scaled coordinate to the Cartesian coordinate
when é=¢6, =1, and (}n the outer normal heat flux
on the boundary.

In SBFEM, the internal normal flow rate
0 (&) through curved surface S(§) can be ex-
[14]
Q&) =EE.a(&) . +E "a(é) (3

The definition of the dynamic-stiffness matrix

pressed as

K(§,w) at & can be introduced as
Q) =K(&w)a () €]
Substituting Eq. (4) into Eq. (3) gives
K& w)a (&) =EE.a () . +
E . "a(%) (5)
From Egs. (1) and (5), the equation for K(§,w)
can be derived. After using the dimensionless a-
nalysis method, K(é.w) can be obtained as''"
(K(&,0) —E)E, " (K(&,w) —
E") —E, + 2Gf)K(E,w) ) —
iwE’M, =0 (6)
where K(§,w) must be a function of iw&’. By
changing the independent variable to x =iwé&* , and
dynamic stiffness S(x) = K(§,w) , the scaled

boundary finite-element equation in dynamic stiff-
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ness can be rewritten as
(S(x) —ED(E) ' (S(x) —
E") —E,+2x[S(x)].,—aM,=0 7

Eq. (7) represents a SBFE equation in dy-
namic stiffness formulated in the frequency do-
main for heat conduction. It is a nonlinear first-
order ordinary differential equation with x = iwé*
as independent variable. The dynamic stiffness
S(x) is usually not calculated. The static-heat
conduction matrix K and mass thermal capacity
matrix M are used, which follow from the low-
frequency expansion of §(x) “'*

S(x)=K-+aM ®

Substituting Eq. (8) into Eq. (7) will obtain
the expression of K and M, and then S(x) can be
calculated. Finally, substituting Eq. (8) into Eq.
(4) and utilizing the inverse Fourier’s transform,
we can obtain the SBFE equation in the time do-
main, which can be solved. Here, we call this
method as conventional method, which is devel-
oped in our previous work M4,

To improve the computational accuracy, the
low-frequency expansion is not enough, and the
high-frequency expansion needs to be considered.
The continued-fraction approach is an effective
method for the high-frequency expansion of the

dynamic stiffness. For example, Ch Song et

al''>"used a continued-fraction approach to solve
the diffusion problem in an unbounded domain
and the problem of structural dynamics. Here,
the same idea is used to solve the transient heat
conduction problem in the bounded domain.
However, the high-order continued fraction needs
to increase computational costs, and the ill-condi-
tioned matrix may occur. Considering both the
computational cost and accuracy factors, in this
paper, a first-order continued fraction solution is
used for the matrix equation as
Sx)=K+aM —2*[S" (x) ]! €D
where the fraction 2” [$"” (x) ] 7" is the residual
part of the low frequency expansion. And S (x)
can be written as
SV (x)=8,"" + 28,V (10)

P and S'V are coefficient matrices of the

where S

first-order terms. The second-order term in

Eq. (10) is ignored. Substituting Eq. (9) into Eq.
(7), and equating terms corresponding to x°and
' to zero, respectively, we can obtain the static
heat conduction matrix K and mass thermal ca-
pacity M. More detail information can be found in
Ref [14]. Considering term of x° and the zero co-
efficient matrix, the following equation can be es-
tablished.
S (2)e SV () — 8V (x) [b]T —
SV () — a8V () BV ] —
xbiV SV () + 228V () . +xfa” (1D
where
a’ =E,"'
O =g, (K—E,")+2I
b’ =E,'M
¢V =ME,'M
Substituting Eq. (10) into Eq. (11) leads to

equations for 85"

and §{". Setting the terms cor-
responding to 2’ equal to zero can obtain the equa-
tion for S§¥ , which is
— bV — S [bé“ ] T
SV e S =0 (12)
Eq. (12) can be transformed into a Lya-

—1

punov equation for [S¢”]" by pre-multiplying

', which is

and post-multiplying with [S(" ]~
[So V] "B + [b" 1T [So V] = (13)
After solving [S§”] ' from the Lyapunov
Eq. (13), 8§ can be calculated.
Equating terms corresponding to x' as zero
yields
(—bi"” + SV cHSY +
S (— (b )T +¢V8, ) 428, =
b,VS, " +8, " [b, " ]" ad
From the Lyapunov Eq. (14), S'"” can be ob-
tained.

T and 8§, we can estab-

After determining S
lish an increment-dimensional SBFE equation.
Using Egs. (4) and (9), the relationship between
the nodal flux Q (§) and nodal temperature vector
a(§) can be written as

Q&) =Ka (§) + xMa (&) —

2a (§) 15
Here, the auxiliary variable a®” (&) is defined in
xa (§)=S" (x)a" (&) (16)

After utilizing the inverse Fourier transform,
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Egs. (15) and (16) are combined into a matrix

expression for the first order continued fraction as

EM,y &)+ K,y(€)=F (&) an
where
K, =diag(K.S,") (18a)
M —1
Mh:|:_1 Sl(I):I (18b)
vy =1l[a);:;a”&]" (180)
F&)=[Q¢©); 0]" (18d)

From Eq. (17), we can see that the first-or-
der continued fraction method presented in this
paper is applied not only to the boundary, but al-
so to the inner domain. There is the obvious
difference between previous studies'>"*! and this
work. From Egs. (18a)—(18d), we also can see
that the dimensions of matrix and vector are
doubled, comparing to conventional low frequen-
cy expansion of the dynamic stiffness in Ref.
[14]. Therefore, the method presented in this
paper is called increment-dimensional SBFEM
(ID-SBFEM). To solve the first-order SBFE
Eq. (17), a two-step method was developed in
our previous work ", The first step is to solve
the time domain equation of heat conduction
problem at SBFE boundaries (i. e., € = 1) by
PIM, and the second step is to transform the e-
quation for describing SBFE interior temperature
field to an initial value problem, which is solved
by a finite difference scheme. Herein, the same
numerical scheme is used to obtain the solution of
Eq. (17).

2 Numerical Examples

For comparison, we chose the same example
as in Ref. [14]. As shown in Fig. 1, the left and
bottom boundaries are insulated, while the top
and right boundaries are located in a convection
environment, We assume thata =b =1 m, a =
izl m*/s, £:0.5 m ', T.. =0 C, and the
0oC, k
initial temperature T,is set to 100 C.

The SBFE divisions are shown in Fig. 2. As
seen from Fig. 2, there are two SBFE divisions

selected to calculate. The dividing whole domain
method is called DWD, as shown in Fig. 2(a),

2L (r-T.)
/
T k
b P
v X

I a I
I I

Fig.1 2-D transient heat conduction problem and bounda-

ry conditions

and the dividing sub-domain method is called
DSD, as shown in Fig. 2(b). During calculating
the interior temperature fields, 8 equal parts a-
long the direction & for both the DWD and DSD
methods are divided. In order to easily compare
with the computational results, 10 representative
points are selected as marked in Figs. 2(a), (b).
In computation, the time step size is chosen as

0.01 s.
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(b) SBFE division of sub-domain method (DSD)

Fig. 2 Geometry mesh model of 2-D transient heat conduc-

tion problem

To compare the results of conventional low
frequency expansion method with those of the dy-

namic stiffness and increment-dimensional meth-
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od conveniently, the conventional method (CM)
with DWD or DSD is denoted as CM-DWD or
CM-DSD, whereas the
method with DWD is denoted as IDM-DWD.

Fig. 3 shows the temperature distribution at
different time obtained by using IDM-DWD. It is

shown that the isothermal lines at different time

increment-dimensional

are perpendicular to the left and bottom bounda-
ries, which means that no heat flow crosses the
left and bottom boundaries. While the tempera-
ture gradient exists in normal direction at the top
and right boundary, meaning that the heat flow
crosses the top and right boundaries. The tem-
perature distribution results simulated by the
present IDM-DWD method are reasonable accord-
ing to the heat transfer theory.
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Fig. 3 Temperature distribution obtained by IDM-DWD at

different time

Fig. 4 shows a comparison of theoretical so-
lutions and results from the present IDM-DWD.
From Fig. 4, we can see that the temperature de-
creases with time variation due to the convection
heat exchange at the top and right boundaries.
And the proposed IDM-DWD has good consisten-
cy with the theoretical solution, which shows that
the method has high precision at both interior and

boundary points.
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Fig. 4  Comparison of theoretical solutions and results

from IDM-DWD

In order to compare the accuracy of the pro-
posed IDM-DWD and other numerical methods,
we calculated the theoretical solution (TS) of the
problem and numerical solution from CM-DWD,
CM-DSD and IDM-DWD for different points at
various time, which are listed in Table 1. And
the computational error is shown in Table 2. It is
shown that the results by the proposed IDM-
DWD method are more close to those by the theo-
retical solution. The maximum relative error of
the IDM-DWD method is 0. 282% , while the lar-
ger error occurs by other methods, especially the
maximum relative error by CM-DWD method is
2.208%, and it is about 0. 376% by CM-DSD
method. It is shown that the effect by dividing
sub-domain method and increment-dimensional
method to improve the SBFEM convergence is
obvious. The reason lies in that the dynamic stiff-
ness matrix in conventional method is dealt with
only a low-frequency approximation of dynamic
property, which causes the effect of high-frequen-
cy not to be simulated in the case of large domain

size. When the whole domain is subdivided into
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several sub-domains, the size of the element de-
creases, then the high-frequency responses can be
modeled. Whereas, IDM-DWD can improve the
accuracy by introducing high-frequency terms into
dynamic stiffness directly.

To investigate the effect of time step size on
the calculation results and its errors, we use the
IDM-DWD and select time step sizes t=0. 1 s,

and t=0. 01 s to simulate the temperatures, re-

spectively. The simulated temperatures at interi-
or points and errors at t = 0. 5 s are listed in
Table 3.

From Table 3, it can be seen that decreasing
the time step size can decrease obviously the cal-
culating errors. The maximum relative error with
t=0.1 s is 0. 259%, while that with t=0.01 s is
0.039%. The reason is that the influence of high-

frequency in small time step is more obvious.

Table 1 Result comparison of theoretical and numerical methods C
PCray) t=0.5s t=2s
TS CM-DWD  CM-DSD IDM-DWD TS CM-DWD  CM-DSD IDM-DWD
1(1/4,1/4) 72.714 74.073 72.855 72.718 20. 221 19. 782 20.169 20. 217
2(1/4, 1/2) 69. 821 71.136 69.970 69. 848 19. 410 18.995 19. 365 19. 412
3(1/4, 3/4) 65.070 66. 249 65. 187 65.073 18. 083 17. 687 18.036 18.079
4(1/2, 3/4) 62.482 63.623 62. 606 62.505 17. 358 16. 983 17.317 17. 359
5(3/4,3/4) 58.229 59. 251 58.326 58.233 16.171 15. 814 16.129 16. 167
6(0.0, 0.0) 74.667 76.279 74.948 74.870 20. 771 20,374 20.753 20. 821
7(0.0, 1/2) 70.753 72.094 70.938 70. 824 19.672 19. 251 19. 635 19. 686
8(0.0, 1.0) 59.352 60. 586 59.565 59.515 16. 494 16.175 16. 480 16. 534
9(1/2, 1.0 56. 240 57.254 56. 375 56.296 15.621 15. 282 15.592 15. 633
10(1.0, 1.0)  47.177 48.121 47.339 47.310 13.097 12. 841 13.087 13.130
Table 2 Relative error comparison of the results obtained by numerical methods %
PCray) t=0.5s t=2s
CM-DWD CM-DSD IDM-DWD CM-DWD CM-DSD IDM-DWD
1(1/4,1/4) 1. 869 0.194 0.006 2.171 0. 257 0.020
2(1/4, 1/2) 1. 883 0.213 0.039 2.138 0.232 0.010
3(1/4, 3/0 1.812 0. 180 0.005 2.190 0. 260 0.022
4(1/2, 3/4) 1. 826 0.198 0.037 2. 160 0. 236 0.006
5(3/4,3/4) 1. 755 0.167 0. 007 2.208 0. 260 0.025
6(0.0, 0.0) 2.159 0.376 0.272 1.911 0.087 0. 241
7€0.0, 1/2) 1. 895 0.261 0.100 2. 140 0.188 0.071
8(0.0, 1.0) 2.079 0. 359 0.275 1. 934 0.085 0. 243
9(1/2, 1.0 1. 803 0. 240 0. 100 2.170 0.186 0.077
10(1.0, 1.0 2.001 0.343 0.282 1. 955 0.076 0.252
Table 3 Effect of time step size on calculation results ant its errors
Methods and Time step P(x,y)
error size 11/4.1/0 2(1/4, 1/2) 3(1/4, 3/4) 4(1/2, 3/4) 5 (3/4,3/0
TS /°C 72.714 69. 821 65.070 62.482 58.229
ID-DWD /°C =0.1s 72.812 69.975 65.177 62. 644 58. 344
(relative error) /% (0. 135) (0. 22D (0.164) 0.259 (0.197)
=0.01 s 72.718 69. 848 65.073 62.505 58.233
(0. 006) (0.039) (0. 005) (0.037) (0.007)
3  Conclusions conduction problems. The first-order continued
fraction technique is used to consider the effect of
An increment-dimensional SBFEM ( ID- high-frequency, and the dimension of the SBFE e-

SBFEM) is developed to solve the transient heat

quation is doubled. From the analysis of an exam-
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ple, we can conclude that in contrast to CM-DSD,
IDM-DWD not only does not require dividing the
sub-domain mesh, but also has a higher accuracy.
When the smaller computational time step is

taken, the accuracy of the solution will be higher.
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