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Abstract: A novel fiber temperature sensor based on multimode interference theory is proposed and experimentally
demonstrated. The sensing head is formed by a fiber bragg grating (FBG) connected with single-mode-no core-sin-
gle-mode fiber(SNS) fiber structure which consists of two sections of single mode fiber and no-core fiber . Using
such a structure, not only the reflective measurement can be realized, but also the need for a gold-plated film can
be avoided at the end of the fiber to enhance the reflected light signal. More importantly, the sensitivity is in-

creased by 4 times as compared with the conventional FBG temperature sensor according to the experimental re-
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sults, and it also provides the development space for multi-parameters monitoring.

Key words: fiber bragg grating; no-core fiber; multimode interference; temperature monitoring

CLC number: TN253 Document code: A

0 Introduction

As an extremely important kind of optical fi-
ber sensor, optical fiber interference sensor has
the advantages of high resolution, high precision
and high dynamic range "*, Compared to fiber
grating sensors, the fiber optic interference sen-
sor is more compact, smaller, and more accurate
to measure, which is suitable for applications
where the installation location is small or the sen-
sor integration requirements are high. In recent
years, a simple single-mode-multimode -single-
mode (SMS) optical fiber structure has attracted
a lot of attentions, and the transmission-type of
SMS fiber structure is used by most researchers
L], which has been widely used to monitor tem-
perature, strain, displacement, humidity and

197 The optical fiber sensing

other parameters
portion is placed in an environment to be meas-
ured for sensing, which makes it has some limita-

tions in many applications and it is inconvenient
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to operate. Moreover, the conventional SMS
structure needs to use hydrofluoric acid to chemi-
cally etch the cladding of the multimode fiber,
and even corrode the core of the multimode fiber.
It is not only dangerous, but also difficult to pre-
cisely control. So this paper uses the no-core fiber
(NCF) as the SMS structure of the multimode
And the reflection-type SMS

structure, since the optical signal reflected from

waveguide part.

the end of the untreated fiber is weak, a reflecting
device (a gold film or a reflective mirror, etc. ) is
usually designed on the end face of the fiber sens-
ing part, so that the cost is high and difficult to
operate %"

For the above problems, in this paper, a no-
vel and high sensitivity temperature sensor based
on a FBG connected to a section of NCF is dem-
onstrated. Additionally, NCF is used as the mul-
timode waveguide in SMS structure, the NCF
acts as the fiber core and the external medium

acts as the fiber cladding when it is in use, so that
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the external environment can be directly per-
ceived, which makes it more sensitive to the
changes of the ambient temperature.

Combining SNS fiber structure with fiber
Bragg grating, not only can improve the sensitivi-
ty, avoid the complexity of coating process, and
no need to corrode the fiber Bragg grating diame-
ter to the nanometer level which will reduce its
mechanical strength, but also can achieve reflec-
tion measurement, and is beneficial to miniaturize

and encapsulate the sensor.

1 Principle and Modeling of Sensor

The schematic diagram of the FBG embedded
in the SNS fiber structure is shown in Fig. 1.

Sensing part

NCF <----

Excited mog

Fig. 1. Schematic diagram of sensor

The basic principle is a number of higher or-
der modes will be excited when the light is cou-
pled into the NCF from the incident single-mode
fiber, these modes are coupled to each other and
transmitted to the output single-mode fiber,
when transmitted to the FBG embedded, the op-
tical signal which satisfies the Bragg condition "
will be reflected back to the NCF again. Due to
the interference phenomenon between low and
high modes., the reflection spectrum will appear
peaks or troughs, and both the mode interference
signal of the SNS structure and the reflected sig-
nal of the FBG are included in the reflection spec-
trum of the SNS-FBG structure which can be used
to realize the monitor of ambient temperature.

When the light propagates along the single-
mode fiber (SMF) into the NCF, different high
modes can be excited in the NCF and supported
by the NCF because of its large radius. Assuming
that SMF and the NCF have circular cross sec-
tions and step index distributions, only linear po-
larized radial modes LP,,, modes (m is a positive
integer) will be excited and transmitted in the

NCF 273 The mode field of LP,, mode can be

expressed as follows

E,(r) =c,Jo(u,r)exp(—if,z) D
Where J, is the Bessel function of the zero order,
B. is the longitudinal propagation constant, u,,is
the normalized transverse propagation constant of
the fiber core, ¢,, is the excited coefficient, which

can be written as
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Where E, () is the mode field of LP,; mode

in the SMF, it can be approximated as a Gaussian

beam.
When the length of NCF is L, the output e-
lectric filed distribution can be written as

N
EG) = >Ye, Jo(uurexp(—ig, L) (3)
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Thus the output power of the modal interference
is
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Since the FBG has been written in the output
single-mode fiber, when the Bragg reflection con-
dition is satisfied., high order modes and the fun-
damental core mode are partially reflected into the
NCF again and will output in the beginning SMF.
From the above formulas, it can be known
that the energy coupling coefficient determines
the magnitude of the excitation modes power. By
solving the coupling coefficient, the optical power
of each order mode can be calculated, and the in-
terference between modes can be established. The
bigger the optical energy at the end of the NCF,
the stronger the optical signal coupled to the out-
put SMF, and the greater the reflected light sig-
nal. When the input light wavelength and the fi-
ber structure are constant, the output intensity is
related to the length of the NCF M. Therefore,
in order to obtain the maximum output signal in-
tensity, the optical field distribution in the NCF
is simulated by Rsoft. In the simulation the inci-
dent wavelength is the center wavelength of the
FBG used in this study, which is 1 552. 05 nm,
and the refractive index of NCF is 1. 463 with a

diameter of 125 pm, the core radius of SMF is
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4.2 pm with a cladding diameter of 125 pym. The
simulation result is shown in Fig. 2.

According to Fig. 2 (a), the energy distribu-
tion of the optical field remains at 1 when the
light propagates in SMF, and there are multiple
excited modes in NCF, coupling between each
other which results in weakening or superposition
of energy along the NCF. And in Fig. 2 (b), the
energy of some transmission points in NCF is ver-
y large, and the energy at some transmission
points is very small, and the distribution of the
light field in the direction of the transmission dis-
tance occurs periodically, that is, namely the self-
image effect. According to Ref. [15], the fourth
self-imaging exhibits the lowest insertion loss
compared to the other imaging, so the optimum
length of the NCF can be chosen to improve the

sensitivity of the sensor.
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Fig. 2 Light field distribution of SNS structure

Based on the results of simulation, a NCF
with a length of 6 ¢m is used to make the sensor.
According to Ref. [16], when the ambient tem-
perature rises, the maximum or the minimum
wavelength of the interference of the reflection
spectrum will move toward the long wave, and
the wavelength changes linearly monotonically
with temperature. Thus temperature can be mo-
nitored by studying the change of interference

wavelength,

2 Experiment and Discussion

The reflection-type fiber temperature moni-
toring system based on SNS structure and FBG is

shown in Fig. 3.
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Fig. 3 Schematic diagram of experimental system

The system consists of ASE broadband light
source, AQ6317C spectrum analyzer (spectral
resolution 0. 0lnm), optical circulator, and Chal-
lenge-CH250C environmental test chamber and so
on. The role of the optical circulator is to make
light unidirectional transmission, the broadband
light source enters from the port 1 and transmit-
ted from the port 2 to the sensing probe, and
then the reflected light signal is transmitted to the
spectrometer from the port 3, thus the reflection
spectra of the sensor in different temperatures can
be obtained by the spectrometer, finally be pro-
cessed and analyzed by a computer.

During the experiment, the prepared sensor
was fixed straight on the plexiglass, and then the
encapsulated sensor was placed in the environ-
mental test chamber, the temperature range is
from 40 to 100°C, measured every 10°C. Atten-
tion, in order to prevent the structure from being
heated unevenly and cause negative effects on the
experimental results, each temperature monito-
ring point needs to be kept warm for a period of
time. The reflection spectrum obtained from the

spectrometer is shown in Fig. 4.
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Fig. 4  Reflection spectrum of the sensor to

temperature
From Fig. 4, it can be seen that both the
SNS structure and FBG undergo red shift with
the increase of temperature, which is consistent

with previous theoretical results. The interfer-
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ence fringes of the reflection spectrum are in good
shape, indicating that the SNS-FBG fiber sensor
has better temperature sensing characteristics, so
it can be used to measure the temperature accu-
rately. And there are two obvious interference
dips in the range of the entire wavelength that can
be chosen as the characteristic wavelengths,
which are labeled as dipl and dip2, respectively.
At last, the comparison and analysis between the
two dips and the FBG is carried out separately
about the temperature responses (Fig. 5,6).

Due to the thermal expansion effect and the
coupling effects of multimode interference, the
reflection peak of FBG changes from 1 552. 1 nm
to 1 552. 8 nm in the scope of temperature, and
the temperature sensitivity is 0. 011 7 nm/C.
And the wavelength at dipl shifts 2. 7 nm toward
the long wave direction, so the temperature sensi-
tivity is 0. 045 nm/°C, It's about 4 times as good
as FBG, and has a good linearity.

Similarly, the wavelength at dip2 moves to
the long wave direction of 2. 1 nm, which has a
temperature sensitivity of 0. 035 nm/°C, It's a-
bout 3 times as good as FBG, also has a good lin-
earity.

Above all, The experimental results show
that the SNS structure embedded with FBG can
effectively improve the sensitivity of temperature

measurement.
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Fig.5 Temperature response curves at FBG and Dipl

3 Conclusions

A reflective temperature sensor with fiber
Bragg grating (FBG) embedded in SNS fiber

structure is proposed, not only realizes the reflec-

011 4x+1 551.685 Dip 2

.988 02 FBG
Linear fit of dip2
Linear fit of FBG

y=0.038x+1 541.438
R’=0.963 05

40 50 60 70 80
Temperature / C

Fig. 6 Temperature response curves at FBG and Dip2

tive measurement, extends its application field,
but also avoids the trouble of coating process.
The feasibility of this method is proved by com-
paring the experimental results with the theoreti-
cal results. The experimental results show that
there are many interference dips in the whole re-
flection spectrum due to the influence of multi-
mode interference, and the wavelength at dips
shifts toward the long wave with the increase of
the ambient temperature.

Compared with the individual FBG tempera-
ture sensor, the temperature sensitivity of the
sensor is improved by about 4 times in the tem-
perature range of 40 ~100 “C. So the structure
can effectively improve the temperature sensitivi-
ty, and the sensor has the advantages of simple
manufacture, convenient operation, easy to im-
plant and easy to miniaturization, can be used for
temperature measurement and structural health
monitoring of large structures, and composite

materials in aircraft.
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