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Abstract: The local buckling of stiffened panels is one of possible failure modes and concerned by engineers in the
preliminary design of lightweight structures. In practice，a simplified model，i.e.，a rectangular plate with elastically
restrained along its unloaded edges，is established and the Ritz method is usually employed for solutions. To use the
Ritz method，however，the loaded edges of the plate are usually assumed to be simply supported. An empirical
correction factor has to be used to account for clamped loaded edges. Here，a simple and efficient method，called the
quadrature element method（QEM），is presented for obtaining accurate buckling behavior of rectangular plates with
any combinations of boundary conditions， including the elastically restrained conditions. Different from the
conventional high order finite element method（FEM），non⁃uniformly distributed nodes are used，and thus the method
can achieve an exponential rate of convergence. Formulations are worked out in detail. A computer program is
developed. Improvement of solution accuracy can be easily achieved by changing the number of element nodes in the
computer program. Several numerical examples are given. Results are compared with either existing solutions or finite
element data for verifications. It is shown that high solution accuracy is achieved. In addition，the proposed method
and developed computer program can allow quick analysis of local buckling of stiffened panels and thus is suitable for
optimization routines in the preliminary design stage.
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0 Introduction

Stiffened plate is one of the structural elements
widely used in aeronautical and marine structures.
Due to its thin ⁃ walled in nature，stiffened plate is
susceptible to buckle. Thus the buckling behavior of
stiffened plate is one of the major concerns by the
structural designers［1⁃2］.

Depending on the geometry，the stiffened plate
exhibits several different buckling modes. One of
the common buckling modes in typical lightweight
structures is the local buckling，i. e.，the skin buck⁃
ling between stiffeners. In the preliminary design
stage，a simplified model，i. e.，a rectangular plate
with elastically restrained on its unloaded edges，is

used and the Ritz method is then employed to obtain
the local buckling load［3⁃6］. Either Saint Venant tor⁃
sion bar［3］ or infinite independent rotational
springs［4］ are employed to model the elastic con⁃
straint caused by the stiffeners. If only one unloaded
edge of the rectangular plate is rotationally re⁃
strained，the model can be also used to obtain the lo⁃
cal buckling load of the flange of H ⁃beams［5］. With
a properly selected plate width，the accuracy of the
local buckling load can be further improved［6］.

Although the local buckling problem can be
solved by conventional finite element method
（FEM）without any difficulty，however，it is incon⁃
venient to use the FEM during the preliminary de⁃
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sign stage， since the dimensions of the stiffened
plate and stiffeners are not finalized and to be deter⁃
mined by the optimization design. This is perhaps
the main reason why the Ritz method is widely used
in practice［1⁃6］. To employ the Ritz method，howev⁃
er，the loaded edges of the rectangular plate are usu⁃
ally assumed to be simply supported. In experi⁃
ment，the loaded edges are usually clamped. Thus a
case ⁃ by ⁃ case dependent correction factor has to be
used for comparisons between the Ritz solutions and
experimental results. Therefore， alternative effi⁃
cient methods should be resorted to solve the title
problem.

The weak form quadrature element method
（QEM） is one of the alternative efficient methods.
The QEM was originally proposed by Striz et
al. ［7⁃8］. After further developments by Zhong et
al. ［9⁃10］，Xing and Liu［11］，and present authors’re⁃
search group［12⁃13］，now the QEM has been projected
by its proponents as a potential alternative to the
conventional FEM［14⁃15］. QEM combines the general⁃
ity of the conventional FEM with the accuracy of
spectral techniques and thus can achieve an exponen⁃
tial rate of convergence［14］. The solution accuracy of
the QEM can be easily adjusted by increasing the
number of element nodes. Besides，performing a
parametric study by the QEM is an easy task. Thus
the method is especially suitable for local buckling
analysis of stiffened plate during the preliminarily de⁃
sign stage.

According to literature survey ［14⁃15］，the QEM
has not been used to solve the buckling problem of
thin rectangular plates with elastically restrained

edges. Therefore，the main objective of present in⁃
vestigation is to present a new and efficient ap⁃
proach for the local buckling analysis of stiffened
plates. To model the rotationally elastic constraint，
novel torsion bar element is proposed. Besides，a
rectangular thin plate element is developed. Formu⁃
lations and solution procedures are worked out in de⁃
tail. Numerical examples are given，and results are
compared with either existing solutions or finite ele⁃
ment data for verifications. Finally，some conclu⁃
sions are drawn based on the results reported herein.

1 Formulations of the Torsion Bar

and Thin Rectangular Plate Ele⁃

ments

1. 1 Energy expressions

A stiffened plate under uni⁃axial compression is
schematically shown in Fig. 1（a）. Fig. 1（b） shows
the simplified model for local buckling analysis of
the stiffened plate. The plate side lengths are denot⁃
ed by a and b. A uniform plate thickness t is consid⁃
ered. Elasticity modulus and Poisson’s ratio are de⁃
noted by E and μ. Cartesian coordinate system
（x，y，z）is set at the middle plane of the plate，thus
- t/2 ≤ z ≤ t/2. The origin of the coordinate sys⁃
tem is located at the plate center. The elastic con⁃
straints along unloaded edges，caused by the stiffen⁃
ers，are modeled by two torsion bars.

The strain energy of the thin rectangular plate is

U= 1
2 ∫-a/2

a/2 ∫-b/2
b/2

κTDκdydx (1)

where D is a 3×3 symmetric matrix，and κ the cur⁃

Fig. 1 Sketches of stiffened plate and simplified model
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vature vector defined as
κ=[ wxx wyy 2wxy ]T (2)

where subscripts“x”and“y”denote the partial de⁃
rivatives with respect to the Cartesian coordinates x
and y，i. e.，wxx= ∂2w/∂x2，wyy= ∂2w/∂y 2，wxy=
∂2w/∂x∂y，and w ( x，y ) is the deflection，respec⁃
tively.

For the isotropic homogeneous plate，elements
in matrix D are defined as

D 11 = D 22 = D 0 = Et 3/ [ 12( 1- μ2 ) ]
D 13 = D 31 = D 23 = D 32 = 0
D 12 = D 21 = μD 0

D 33 = D 0 (1- μ) /2

(3)

The work done by the axial compressive dis⁃
tributed force N x is given by

V= 1
2 ∫-a/2

a/2 ∫-b/2
b/2

N x ( )∂w
∂x

2

dydx (4)

Currently，two ways are available to model the
elastic constraint. One way is using the Saint Ve⁃
nant torsion bar to model the rotational elastic con⁃
straint［3］. The strain energy of the torsion bar is giv⁃
en by

Ub1 = 1
2 ∫-a/2

a/2
GJ ( ∂θ∂x ) 2 dx (5)

where G is the shear modulus，J the half of the tor⁃
sion constant of the stiffener about the x axis［3］，and
θ= ∂w/∂y at y= -b/2 or y=b/2.

The other way is using infinite rotational
springs to model the rotational elastic constraint ［4］.
The strain energy of the torsion bar is given by

Ub2 = 1
2 ∫-a/2

a/2
kr ( x )θ 2 dx (6)

where kr is the rotational spring constant， θ=
∂w/∂y at y= -b/2 or y=b/2. Note that the unit kr
is the same as the one of the force.

Since QEM is to be used，only essential bound⁃
ary conditions are required and given.

Simply supported edge（S）
w= 0 at x= ∓a/2 (7)

Clamped edge（C）

w= ∂w
∂x = 0 at x= ∓a/2 (8)

Rotationally elastic restrained edge（E）
w= 0 at y= ∓b/2 (9)

1. 2 Quadrature torsion bar element

Different from the conventional high order fi⁃
nite elements，non ⁃ uniformly distributed nodes are
used to achieve an exponential rate of convergence.
Several types of node are available ［14］ and Gauss ⁃
Lobatto⁃Legendre（GLL）nodes are used in this pa⁃
per. GLL nodes are roots of the following equation

(1- ξ 2 ) dPN- 1 ( ξ )
dξ = 0 (10)

where PN- 1 ( ξ ) is the（N-1）th ⁃ order Legendre
polynomial. Note that ξ i ∈ [-1，1 ] and thus xi=
aξ i/2 ( i= 1，2，…，N ).

The rotational angle θ of the N ⁃ node torsion
bar element is assumed as

θ ( x )= ∑
j= 1

N

l j ( x )θ ( xj )= ∑
j= 1

N

l j ( x )θj (11)

where l j ( x ) is the Lagrange interpolation function
defined as

l j ( x )= ∏ k= 1,k ≠ j

N x- xk
xj- xk

(12)

The stiffness matrix of the quadrature torsion
bar can be explicitly given by using GLL quadrature
and differential quadrature（DQ） law. If Eq.（5） is
used，the elements in the stiffness matrix denoted
by k b1ij are

k b1ij =
GJa
2 ∑k=1

N

H k Aki Akj

i,j=1,2,…,N (13)
where Hk is the weight of GLL quadrature，Aik and
Akj are the weighting coefficients of the first ⁃ order
derivative with respect to x. A short program is
available in Ref.［14］ to compute the abscissas and
weights in GLL quadrature.

In Eq.（13），Aij ( i，j= 1，2，…，N ) can be ex⁃
plicitly computed by using the differential quadra⁃
ture（DQ）law as［14⁃15］

Aij=

ì

í

î

ï

ï
ïï

ï

ï
ïï

∏
k= 1
k ≠ i,j

N

( xi- xk ) /∏
k= 1
k ≠ j

N

( xj- xk ) i ≠ j

∑
k= 1
k ≠ i

N 1
( xi- xk )

i= j
(14)

If Eq. （6） is used， the stiffness matrix of
quadrature torsion bar can be also explicitly given by
using GLL quadrature and the DQ law. Note that

19



Vol. 36Transactions of Nanjing University of Aeronautics and Astronautics

the stiffness matrix is a diagonal matrix and its diag⁃
onal terms denoted by k b2ii are given by

k b2ii =
a
2 H ikr ( xi ) i= 1,2,…,N (15)

1. 3 Quadrature rectangular plate element

Let N be the number of node in either x or y di⁃
rection. An N×N⁃node quadrature rectangular plate
element is formulated. For assemblage consider⁃
ations，GLL nodes are also used.

According to the criteria for the selection of dis⁃
placement functions ［16］ ， three different displace⁃
ment functions are assumed for formulating the rect⁃
angular plate element，which is novel and different
from the common way to formulate a C1 compatible
finite element. The three displacement functions are

w ( x,y )= ∑
i= 1

N

∑
j= 1

N

l i ( x ) l j ( y )wij (16)

w ( x,y )= ∑
i= 1

N+ 2

∑
j= 1

N

hi ( x ) l j ( y ) w̑ ij (17)

w ( x,y )= ∑
i= 1

N

∑
j= 1

N+ 2

l i ( x ) hj ( y ) w͂ ij (18)

where l i ( x ) and l j ( y ) are the Lagrange interpola⁃
tion functions and their definition is given by
Eq.（11）；and hi ( x ) and hj ( y ) the Hermite interpo⁃
lation functions and their definition can be found in
Ref.［17］.

In Eq.（17），w̑ ij contain the nodal deflection wij

（i，j=1，2，… ，N）as well as the first⁃order deriv⁃
ative with respect to x at nodes on edges
x= ∓a/2，i. e.，(wx )i1 and (wx )iN（i =1，2，…，

N）. In Eq.（18），w͂ ij contain the nodal deflection wij

（i，j=1，2，…，N）as well as the first⁃order deriva⁃
tive with respect to y at nodes on edges y= ∓b/2，
i.e.，(wy )1j and (wy )Nj（j=1，2，…，N）. Here wx=
∂w/∂x and wy= ∂w/∂y.

To satisfy the criteria for forming a C1 compati⁃
ble element ［16］，Eq.（16） is used to compute wx，

wy and wxy，Eq.（17）is used to compute wxx，and
Eq.（18） is used to compute wyy. In this way，the
quadrature thin plate element contains only ( N 2 +
4N ) degrees of freedom（DOFs），one DOF at all
inner nodes，two DOFs at all boundary nodes，and
three DOFs at four corner nodes.

With GLL quadrature and the DQ law， the

plate stiffness matrix k can be explicitly given by

k= ab
4 ∑i= 1

N

∑
j= 1

N

H iH jB ( xi,yj )T DB ( xi,yj ) (19)

where H i，H j are the weights of GLL quadrature.
In Eq.（19），the strain matrix at an integration

point ( xi，yj )（i，j=1，2，…，N）can be explicitly giv⁃
en by

B ( xi,yj ) w̄=

é

ë

ê

ê

ê

ê

ê

ê

ê
êê
ê

ê

ê

ù

û

ú

ú

ú

ú

ú

ú

ú
úú
ú

ú

ú

∑
l= 1

N+ 2

∑
k= 1

N

B̄x
il δ jk w̄ lk

∑
l= 1

N

∑
k= 1

N+ 2

δil B̄y
jk w̄ lk

2∑
l= 1

N

∑
k= 1

N

Ax
il Ay

jk w̄ lk

(20)

where δjk and δil are the Kronecker symbols，w̄ lk

contains wij（i， j=1，2，… ，N），(wx )l1，(wx )lN，
(wy )1k and (wy )Nk，( l，k= 1，2，…，N )；Ax

il and Ay
jk

the weighting coefficients of the first ⁃ order deriva⁃
tive with respect to x or y obtained by using
Eq.（16），and their explicit formula is given by
Eq.（14）；B̄x

il the weighting coefficients of the sec⁃
ond ⁃ order derivative with respect to x obtained by
using Eq.（17）；and B̄y

jk the weighting coefficients of
the second ⁃ order derivative with respect to y ob⁃
tained by using Eq.（18）. Explicit expressions for
computing B̄x

il and B̄y
jk are also available and can be

found in Refs.［15，17］. It is worth noting that three
different displacement equations are used to com⁃
pute Ax

il，Ay
jk，B̄x

il and B̄y
jk.

The geometric matrix g is also obtained by us⁃
ing the GLL quadrature. Its non⁃zero elements are

g ( kn )( lm ) =
abN x

4 ∑i= 1
N

∑
j= 1

N

H iH j Ax
il Ax

ik δjn δjm

k,l,m,n= 1,2,...,N
(21)

1. 4 Solution procedures

For the problem to be solved，one N×N ⁃node
rectangular plate element and two N ⁃ node torsion
bar elements are used. The assemblage procedures
are exactly the same as the conventional FEM.

After assemblage and applying essential bound⁃
ary conditions，following matrix equation is result⁃
ed.

é
ë
ê

ù
û
ú

k ee k er
k re k rr ( )δew r

= N x
é

ë
ê

ù

û
ú

0 0
0 g rr ( )δew r

(22)

where δ e contains non ⁃ zero derivative DOFs at
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boundary nodes and is to be eliminated，w r contains
non⁃zero displacement DOFs and is to be retained.

After eliminating δ e，Eq.（22）can be rewritten
as

k̄ rrw r = N x g rrw r (23)
where k̄ rr = k rr - k rekee -1 ker.

Solving Eq.（23）by a generalized eigen⁃solver
yields the eigen ⁃ values. The lowest eigen ⁃ value is
the local buckling load of the stiffened plate.

2 Numerical Results and Discussion

A FORTRAN computer program is devel⁃
oped. To verify the program and show the excellent
performance of the QEM，the buckling of rectangu⁃
lar plates（a/b=1 and 5）with all edges simply sup⁃
ported and subjected to uni⁃axial compression is ana⁃
lyzed first. Results with N varying from 5 to 13 are
listed in Table 1. Exact solution is also included for
comparisons.

In Table 1，λ= N xb2/ ( π2D 0 ). It is seen that
the rate of convergence of the proposed thin plate el⁃
ement is high. One 7 × 7⁃node element can yield ac⁃
curate buckling load up to three decimal places for
the square plate. For a rectangular plate with aspect
ratio of 5，one 13 × 13⁃node element can also yield
accurate buckling load up to three decimal places.
Due to a higher wave number in the buckling mode，
it is expected that larger number of node is required
for the rectangular plate than the square plate since
only one rectangular plate element is used in the
analysis.

For demonstrations and comparisons，two dif⁃
ferent stiffened panel geometries are considered.
One has four equally spaced stiffeners shown in
Fig.1（a），and the corresponding simplified model，

as the one shown in Fig. 1（b），has a dimension of
a =700 mm and b=280 mm. The other case has
five equally spaced stiffeners. The corresponding
simplified model，as the one shown in Fig. 1（b），

has a dimension of a=700 mm and b=140 mm.
The skin thickness t is 1 mm in both cases.

The cross section of the stiffener is a rectangu⁃
lar plate with height（hw）20 mm and thickness（tw）
3 mm. The material of both skin and stiffener is alu⁃
minum alloy. Elasticity modulus is 72 GPa and Pois⁃
son’s ratio is 0.33.

The half of the torsion constant of the stiffener
about the x axis is calculated as［18］

J= 0.5hw t 3w/3= 90 mm4 (24)
When the stiffened plate is in the state of local

buckling，the stiffeners do not buckle and thus the
unloaded edges can be treated as simply supported
（S），clamped（C），or rotationally elastic restrained
（E）ones depending on the cross ⁃ sectional shape of
the stiffeners. For comparisons with existing data，
the loaded edges are either simply supported or
clamped，and the unloaded edges are rotationally
elastic restrained. In other words，an SESE plate or
a CECE plate is analyzed.

Fig. 1（b） is modeled by one 13 × 13 ⁃ node
quadrature plate element and two 13 ⁃ node quadra⁃
ture torsion bar elements. The local buckling stress⁃
es of the stiffened plates with four and five stiffen⁃
ers，denoted by σ cr（σ cr= N cr

x /t），are listed in Ta⁃
ble 2. Both the entire stiffened panel and the simpli⁃
fied model are analyzed by using finite element
methods，and the corresponding results are denoted
by σ crFull and σ crStrip. Existing data obtained by Ritz
method are also included in Table 2 for compari⁃
sons. The percentage relative difference is calculat⁃
ed by

diff (% )= ( σ cr- σ crFull ) /σ crFull × 100% (25)
It is seen that present QEM yields the most ac⁃

curate local buckling stress. Ritz method with differ⁃
ent simplified model yields different results. Be⁃
sides，the data obtained by the QEM are in excel⁃
lent agreement with the ones obtained by the FEM
if the same simplified model is analyzed. A model
with 2 mm×2 mm mesh size is used in the finite ele⁃

Table 1 Comparison of buckling coefficient λ

Number of nodes

5 × 5
7 × 7
9 × 9
11 × 11
13 × 13

QEM
a/b=1
3.999
4.000
4.000
4.000
4.000

a/b=5
6.147
4.043
4.092
4.006
4.000

Exact
a/b=1, 5

4.000
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ment analysis to ensure the solution accuracy.
The local buckling mode is shown in Figs.2，3.

The 700 mm× 280 mm plate shown in Fig. 2 has
three half waves in x direction，and the 700 mm×
140 mm plate shown in Fig.3 has seven half waves
in x direction. They agree with the ones reported in
Refs.［3，4］.

Similar to the conventional FEM，one of the
advantages of the QEM can treat any boundary con⁃
dition easily. The local buckling of stiffened plates
with various boundary conditions is analyzed and the
buckling stresses are listed in Table 3. For valida⁃
tions，the finite element data are also included. The
edge numbers are shown in Fig.1（b）and the stress
ratio α is defined as

α= σ crC -C/σ crS - S (26)
where subscripts represent the boundary conditions
of the loading edges，i.e.，edges 1 and 3.

From data listed in Table 3，it is seen that the
smaller the spacing of the stiffeners，the closer the

local buckling stress to the one of the plate with un⁃
loaded edges clamped. It is also observed that α de⁃
pends not only on the boundary conditions of un ⁃
loaded edges but also on the aspect ratio of the rect⁃
angular plate.

Fig. 4 shows the side view of the buckling
mode shapes for the 700 mm×280 mm rectangular
plate. The boundary conditions of loading edges are
simply supported and clamped. Although both buck⁃
ling mode shapes have three half waves in x direc⁃
tion，the amplitude of the waves are different. For
the SESE plate，the amplitudes of two half waves
close to the boundary are larger than the middle one.
For the CECS plate，the amplitude of the middle
half wave is higher than the other two and just oppo⁃
site to the SESE plate.

Fig. 5 shows the side view of the buckling
mode shapes for the 700 mm×140 mm rectangular
plate. Although the amplitudes have similar distribu⁃
tions as the ones shown in Fig. 4，however，the
numbers of half waves in x direction are quite differ⁃

Table 2 Comparison of local buckling stress σ crof stiffened plates

a × b/
(mm×mm)
700×280
700×140

QEM
σ cr/MPa
4.982
21.61

diff /%
-0.36
3.10

Ritz[3]

σ cr/MPa
5.47
23.19

diff /%
9.40
10.64

Ritz[4]

σ cr/MPa
4.84
19.08

diff /%
-3.20
-8.97

FEM
σ crFull/MPa[3]

5.00
20.96

σ crStrip/MPa
4.997
21.25

Table 3 Local buckling stress σ crof stiffened plates with various boundary conditions

edge1-edge3

S-S (σ crS- S/MPa)
C-C (σ crC- C/MPa)

α

edge 2-edge4 (700 mm×280 mm)
S-S
3.505
3.833
1.094

E-E
4.982
5.594
1.123

E-E(FEM)
4.980
5.589
1.123

C-C
5.933
6.419
1.082

edge 2-edge4 (700 mm×140 mm)
S-S
13.562
14.089
1.039

E-E
21.611
22.740
1.052

E-E(FEM)
21.249
22.536
1.060

C-C
23.976
24.793
1.034

Fig. 2 Buckling mode shape ( 700 mm×280 mm)

Fig. 3 Buckling mode shape ( 700 mm×140 mm)

Fig. 4 Side view of buckling mode shapes ( 700 mm×280
mm)
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ent. The mode of the SESE plate contains seven
half waves and is symmetric about y axis，but the
mode of CECE plate contains only six half waves
and is anti⁃symmetric about y axis.

Since the boundary conditions in a real structur⁃
al can never be ideal，Figs.6，7 show the variations
of the local buckling stress with the torsion constant
J for the stiffened plates with four and five stiffen⁃
ers，respectively. It is worth noting that the scale of
horizontal axis in Figs.6，7 is in logarithm.

From Figs. 6，7，it is clearly seen that when J
is less than 0.1 mm4，the elastic restrained boundary
can be approximated as the simply supported bound⁃

ary. On the other hand，the elastic restrained bound⁃
ary can be approximated as the clamped boundary if
J is greater than 100 000 mm4. Therefore，by adjust⁃
ing the torsion constant J from 0 to infinity，it is
able to simulate the real boundary，from the simply
supported edges to the fully clamped edges. The
method can be also used for treating the boundary
conditions of loading edges if necessary. In summa⁃
ry，the presented method is suitable for analyzing lo⁃
cal buckling of stiffened plates containing stiffeners
with different cross ⁃ sectional shapes and with any
combinations of boundary conditions.

It is also observed that the stress ratio α de⁃
pends strongly on the aspect ratios of the rectangu⁃
lar plate and boundary conditions of the unloaded
edges. Therefore，the stress ratio α should be deter⁃
mined case by case to compare the Ritz data ob⁃
tained based on the simply supported loading edges
with experimental results obtained using clamped
loading edges. Since actual boundary conditions can
be easily applied by the QEM，thus a correction fac⁃
tor α is not needed to compare the QEM data with
experimental results. Besides，parametric study can
be easily performed by the QEM.

It is worth noting that initial imperfections evi⁃
dently exist in real structures and affect the buckling
behavior. Several ways［19］ to consider the initial im ⁃
perfections exist in the finite element analysis and a
static analysis，instead of an eigen⁃value analysis，is
then performed. The same procedures can be adopt⁃
ed by the QEM since it is essentially a high order
FEM. However，this is beyond the scope of the pa⁃
per.

To use the simple eigen ⁃ value method for the
buckling analysis，initial imperfections are not con⁃
sidered. The first or the second eigen ⁃ vector of the
perfect stiffened plate multiplying a small factor may
be used to introduce the initial imperfection for the
buckling and post ⁃ buckling analysis of the stiffened
panel［19］.

3 Conclusions

A new approach，called QEM，is presented for
local buckling analysis of stiffened panels. A simpli⁃

Fig. 5 Side view of buckling mode shapes ( 700 mm×140
mm)

Fig. 6 Variation of local buckling stress of the stiffened
plates with four stiffeners

Fig. 7 Variation of local buckling stress of the stiffened
plates with five stiffeners
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fied model，i. e.，a rectangular plate with elastically
restrained along its unloaded edges，is established
first and then analyzed by the QEM. Quadrature tor⁃
sion bar and thin rectangular plate elements are de⁃
veloped. Several numerical examples are given. Nu⁃
merical data are compared with either existing re⁃
sults or data obtained by FEM for verifications.
Fine mesh is used in the finite element analysis to
ensure the solution accuracy. A parametric study is
also performed by the quadrature element method.

Numerical results show that the convergence
rate of the QEM is high. One of the advantages of
presented approach is that the improvement of the
solution accuracy can be easily done by simply in⁃
creasing the number of element nodes in the comput⁃
er program. Besides，parametric studies can be also
easily carried out by the written program.

Based on the results reported herein，one may
conclude that the presented method can yield accu⁃
rate local buckling load of the stiffened plates with
minimum computation effort. The solution accuracy
is higher than the existing ones. Therefore， the
quadrature element method is suitable for optimiza⁃
tion routines in preliminary design besides for struc⁃
tural analysis.
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