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Abstract: A propagator ⁃ based algorithm for direction of arrival（DOA）estimation of noncoherent one ⁃ dimensional
（1 ⁃ D） non ⁃ circular sources is presented such as binary phase shift keying（BPSK） and amplitude modulation
（AM）. The algorithm achieves DOA estimation through searching a 1⁃D spectrum，which is newly formed on the
basis of the rank reduction criterion，and works well without knowledge of the non⁃circular phases. And then，a search⁃
free implementation of the algorithm is also developed by using the polynomial rooting technique. According to the non⁃
circular property，the algorithm can virtually enlarge the array aperture，thus significantly improving its estimation
accuracy and enabling it to handle more sources than the number of sensors. Moreover，the algorithm requires no
rotational invariance，so it can be applied to arbitrary array geometry and dispense with the high⁃complexity procedure
of the eigen⁃decomposition of the correlation sample matrix. Finally，numerical simulations verify the performance
and effectiveness of the proposed algorithm.
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0 Introduction

With regard to the direction ⁃of ⁃arrival（DOA）
estimation using sensor arrays，much work has been
developed for decades，among which the subspace ⁃
based algorithms，e.g.，multiple signal classification
（MUSIC）［1］，estimation of signal parameters via ro⁃
tational invariance techniques（ESPRIT）［2］ and pro⁃
pagator method（PM）［3⁃4］ are popular due to the su⁃
per resolution capability they can provide. MU⁃
SIC［1］ exploits the orthogonality between the array
manifold and the noise subspace，and can be applied
in the arbitrary array geometry. In MUSIC， the
DOA estimation is carried out in form of a spectral
search. Based on MUSIC，root ⁃MUSIC was pro⁃
posed in Ref.［5］with the benefits of lower complex⁃
ity and improved accuracy since it estimates DOAs
through a polynomial rooting technique instead of

the spectral search. The ESPRIT algorithm exploits
a different subspace，called as the signal subspace，
and can reduce the complexity significantly as it ex⁃
ploits the rotational invariance property for closed ⁃
form solutions by limiting the sensor array to be
shift invariant. Based on ESPRIT， some vari⁃
ants［6⁃9］ have been proposed. For example，the gen⁃
eralized ESPRIT（GESPRIT）［6］ extends the origi⁃
nal ESPRIT to the arbitrary array case，and the uni⁃
tary ESPRIT［7］ and beamspace ESPRIT［9］ reduce
the computational complexity further. However，
these algorithms require the eigen ⁃decomposition of
the array covariance matrix to compute the sub⁃
space. The complexity of calculating the eigen ⁃ de⁃
composition for array covariance matrix with an M ⁃
element array and L snapshots is in the order of
O (M 3 +M 2L ). Consequently，when the number
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of sensors is large，the computational complexity of
these algorithms becomes rather extensive.

PM［3⁃4］ can dispense with the high⁃complexi⁃
ty eigen⁃decomposition since it exploits the prop⁃
agator，which is a linear operator that can be easily
estimated from the received data，to compute the
subspace. As shown in Ref.［3］，the computational
complexity for estimating the propagator was
O (MLK )，where K is the number of incident sourc⁃
es. The low⁃complexity characteristic of PM makes
it potential for real ⁃ time and large ⁃ scale signal pro⁃
cessing，e. g.，the upcoming massive multi ⁃ input ⁃
multi⁃output（MIMO）system［10⁃14］. Till now，many
variants［15⁃22］ of the developed PM can generally be
categorized into two types. The first type［15⁃17］ is
based on the OPM algorithm［3］，which utilizes the
propagator to obtain the noise subspace and esti⁃
mates DOAs through a similar spectrum search like
MUSIC［1］. The other one［18⁃22］ is based on the meth⁃
od called as Tayem’s PM［4］，which limits the array
to be shift invariant，utilizes the propagator to com⁃
pute the signal subspace and obtains DOA estimates
in a same manner as ESPRIT［2］.

For enhancement of DOA estimation accura⁃
cy，the utilization of the inherent characteristics of
the incoming signals for the estimation accuracy en⁃
hancement has aroused considerable attention.
Among much work of this type［23⁃27］，researches［25⁃27］

based on non⁃circularity became popular since the
non⁃circular signals have been extensively used in
actual communication systems，e. g.，binary phase
shift keying （BPSK） and amplitude modulation
（AM） signals［25⁃28］. The notion of circularity stems
from the geometrical interpretation of complex ran⁃
dom variables. Non ⁃circular signal refers to the sig⁃
nal whose elliptic covariance matrix is not equal to
zero. The extension of conventional algorithms for
non ⁃ circular source has drawn considerable atten⁃
tions. For example，Refs.［25⁃27］ extended MU⁃
SIC［1］，root⁃MUSIC［5］ and ESPRIT［2］，respective⁃
ly. In Ref.［29］，a sparse representation⁃based algo⁃
rithm was proposed，while its main weakness is the
high complexity. In addition to various DOA estima⁃
tion algorithms， the corresponding performance

analysis problem has also been addressed. In Refs.
［30 ⁃ 31］，the deterministic and stochastic Cramer ⁃
Rao lower bounds （CRLB） were proposed for
DOA estimation of non⁃circular sources，respective⁃
ly.

This paper proposes a PM ⁃based algorithm for
DOA estimation of non ⁃circular signals using an ar⁃
bitrary array. We firstly reconstruct the received sig⁃
nal by considering the signal and its conjugate simul⁃
taneously. Then the proposed algorithm computes
the signal subspace using the propagator and esti⁃
mates the DOAs through searching a 1⁃D spectrum.
Moreover，a computationally ⁃ efficient search ⁃ free
method is also designed using the polynomial root⁃
ing technique. The main contributions of the pro⁃
posed algorithm can be summarized as follows：

（1） The proposed algorithm develops a new
variant of PM unlike the two conventional vari⁃
ants［3］. It exploits the propagator to compute the
same signal subspace as Tayem’s PM［4］. However，
the algorithm achieves DOA estimates by introduc⁃
ing the rank reduction criterion newly. The rank re⁃
duction has been considered in several work［6，32⁃35］

for expanding the application scope of conventional
algorithms. For example，Ref.［32］ extended the
conventional MUSIC to the partly calibrated array
case，and Ref.［33］extended OPM［3］ to DOA esti⁃
mation in the presence of the mutual coupling. With
the rank reduction criterion，the proposed algorithm
removes the limitation in Tayem’s PM［4］ and can be
applied to arbitrary array geometry.

（2）When compared to conventional methods，e.
g.，ESPRIT［2］，GESPRIT［6］，OPM［3］，and Tayem’s
PM［4］，the proposed algorithm can achieve much bet⁃
ter estimation accuracy and can handle more sources
than the number of sensors due to the utilization of the
non⁃circular information in the elliptic covariance.

（3）The proposed algorithm can dispense with
the high ⁃complexity eigen ⁃decomposition procedure
of the correlation sample matrix.

（4） The proposed algorithm can work well
without knowledge of the non⁃circular phase.

Notations： Lower⁃case（upper⁃case）boldface
symbols denote vectors（matrix）；the transpose，
complex conjugate，Hermitian transpose，inverse of
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the matrix A are denoted by AT，A*，AH，A-1，re⁃
spectively；☉ is the Schur ⁃Hadamard product，re⁃
spectively； j = -1 represents the imaginary
unit；det { A } is the determinant of A；ë û⋅ returns the
maximum integer that is not bigger than the inside
argument；diag { ⋅ } returns a square matrix with the
input arguments on the main diagonal；E { ⋅ } de⁃
notes the statistical expectation operator；[ a ] m and
[ A ] m，n are the mth and the（m，n）th elements of a
and A，respectively；Im denotes the m × m identity
matrix；O ( a ) means that the complexity of the
arithmetic is linear in a ∈ R+.min { ⋅ } is to take the
minimum.

1 Data Model

1. 1 Definition of non⁃circular signal

As depicted in Refs.［25 ⁃ 36］，circularity is an
important property of random variables，whose con⁃
cept stems from the geometrical interpretation of
complex random variables. To be more specific，for
a complex random signals，if both its mean E { s }
and elliptic covariance E { ss } equal zero，s is circu⁃
lar. Otherwise，if E { s }= 0 and E { ss } ≠ 0，s is a
non ⁃circular signal. The non ⁃circular rate is defined
as ρ= |E { ss } |/E { ss* }，where E { ss* } is the covari⁃
ance. When ρ= 1，the signal，e. g.，the AM and
BPSK signals，is characterized as the maximal non⁃
circularity rated signal. Meanwhile，signal with 0 <
ρ< 1 is called as the common non ⁃circularity rated
signal. The classical DOA estimators［37⁃38］，e. g.，
MUSIC［1］，ESPRIT［2］ and PMs［3⁃4］，do not consid⁃
er the non ⁃circular property. When they are applied
in the non ⁃circular signal scenario，the non ⁃circular
information in the elliptic covariance E { ss } will not
be fully utilized.

Throughout this work，we consider the maxi⁃
mal non ⁃ circularity rated signal only as some popu⁃
lar work［25⁃27］. In order to facilitate the analysis，we
will re ⁃write the non ⁃ circular signals s (t) according
to the non⁃circularity［25⁃27］ as follows

s (t) = Ωr (t) (1)
where r (t) =[ s1 ( t )，⋯，sK ( t ) ]T ∈ RK × 1， Ω=
diag { e-jψ1，e-jψ2，⋯，e-jψK } with ψk being the non⁃cir⁃

cular phase of the kth signal.

1. 2 Model formulation

As shown in Fig.1，we consider an arbitrary
linear array consisting of M omnidirectional ele⁃
ments. The coordinates of sensors are denoted by

{dm}
M

m= 1
and the first sensor is selected as the refer⁃

ence one，i.e.，d 1 = 0. Suppose K far⁃field，narrow⁃
band，non ⁃ circular source signals are impinging on

the array from distinct DOAs {θk}
K

k= 1
. The received

signals can be written in a vector form as［6］

x (t) = A ( θ ) s (t) + n (t) (2)
where t is the time index，θ=[ θ1，⋯，θK ]，A ( θ ) de⁃
notes the unknown M × K array manifold matrix，
s (t) denotes the signals transmitted by non ⁃ circular
sources，n (t) is the additive white Gaussian noise
with zero mean and variance σ 2n . Moreover，the ar⁃
ray manifold A ( θ ) is given by A ( θ )=
[ a ( θ1 )，…，a ( θK ) ]，and a ( θk ) is the steering vector
with the structure，shown as

a ( θk )=[ 1，e-j2πd2 sinθk/λ，⋯，e-j2πdM sinθk/λ ]T （3）
where λ is the wavelength.

2 Generalized Propagator Algo⁃

rithm

2. 1 Data construction

Under the assumption of non ⁃ circular sources，
we can extend the observed array output by comb⁃
ing the original array output and its conjugate as

y ( )t =
é

ë
êê

ù

û
úú

x ( )t
x* ( )t

= é

ë
êê

ù

û
úú

A ( θ )Ψ
A* ( θ )Ψ*

r ( )t +
é

ë
êê

ù

û
úú

n ( )t
n* ( )t

=

B ( θ,Ψ ) r ( )t +
é

ë
êê

ù

û
úú

n ( )t
n* ( )t

(4)

Fig.1 Array geometry
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where Ψ=[ ψ 1，⋯，ψK ]， B ( θ，Ψ )= é

ë
êê

ù

û
úú

A ( θ )Ψ
A* ( θ )Ψ * ∈

C2M × K is defined as the extended array manifold ma⁃
trix with the kth column shown as

b k ( θk,ψk ) =[ ejϕk,1,…,ejϕk,M,e-jϕk,1,…,e-jϕk,M ] (5)
ϕk,m=-(2πdm sinθk/λ+ ψk )  m= 1,…,M (6)
From Eqs.（5），（6），it could be readily checked

that additional (M-1 ) degrees of freedom（DOFs）
can be provided for DOA estimation by considering
the non⁃circular property，which will facilitate the esti⁃
mation accuracy. However，due to the coupling of the
non ⁃ circular phase，direct applying some classical al⁃
gorithms，e.g.，MUSIC［1］and OPM［3］，will require a
2⁃D search over the DOAs and non⁃circular phas⁃
es，which creates a heavy computational burden.

2. 2 Construction of signal subspace by propa⁃

gator

As aforementioned，the proposed algorithm ex⁃
ploits the propagator to compute the signal sub⁃
space，instead of the eigen⁃decomposition procedure
in MUSIC［1］ and ESPRIT［2］. It is necessary to
make a common assumption like much previous
work［3⁃4］ that the extended array manifold B is of full
rank and the K rows of B are linearly independent.
Then the other ( 2M- K ) rows of B can be ex⁃
pressed as a linear combination of the former K
rows. This paper assumes the first K rows of B are
linearly independent. Then we partition the extend⁃
ed array manifold matrix B as

B= é
ë
ê

ù
û
ú

B 1

B 2

} K rows
} ( 2M- K ) rows

(7)

where B 1 is a nonsingular K × K matrix containing
the first K rows of B and B 2 is an ( 2M- K )×K
matrix containing the last ( 2M- K ) rows.

Define an M × K matrix Q=[ IK，P ]H，where
P is the so⁃called propagator and IK is a K × K iden⁃
tity matrix. According to Eq.（7），it is easy to ob⁃
tain that［1］

QB 1 = é
ë
ê

ù
û
ú

IK
P H

B 1 = B (8)

Since B 1 is nonsingular， it holds that
Q= BB-1

1 . It follows that Q spans the same column
space as B， i. e.，span { Q }= span { B }， which
means we have computed the signal subspace with

the aid of the propagator P.

2. 3 DOA estimation via rank reduction criterion

Partition the entire array into two different sub⁃
arrays with the same number of sensors. With re⁃
gard to the choice of the sensors in each subarray，it
could be arbitrary and the number of sensors in each
subarray could take value from 2 to (M- 1 ). In this
paper，we select (M- 1 ) sensors for the two differ⁃
ent subarrays in order to fully utilize the received in⁃
formation and ensure the best accuracy. Without
loss of generality，we make the first subarray con⁃
tain the sensors with coordinates { d 1，⋯，dM- 1 } and
the other subarray contain the sensors with coordi⁃
nates { d 2，⋯，dM }. The two selection matrices for
two subarrays are respectively defined as

T 1 ≜ [ IM- 1,0 ],T 2 ≜ [ 0,IM- 1] (9)
where IM- 1 is an (M- 1 )×(M- 1 ) identity ma⁃
trix and 0 denotes a zero vector of dimension (M-
1 )× 1. After data constructing in Ref.［4］，the ex⁃
tended array manifold matrices of these two subar⁃
rays，namely U and V，are given by

U ≜ L 1B,V ≜ L 2B (10)
where L 1 ≜ blkdiag{ }T 1,T 1 ∈ R ( 2M- 2)× 2M， L 2 ≜

blkdiag{T 2，T 2} ∈ R ( 2M- 2)× 2M. To be more specific，
the kth column of U and V，denoted by u k and v k，
are given by

u k=[ ejϕk,1,…,ejϕk,M- 1,e-jϕk,1,…,e-jϕk,M- 1 ] (11)
v k=[ ejϕk,2,…,ejϕk,M,e-jϕk,2,…,e-jϕk,M ] (12)

Eu= L 1Q= UB-1
1 ,Ev= L 2Q= VB-1

1 (13)
According to Eqs.（11），（12），we could find a

shift relationship between them，which is given by
v k= Γ ku k (14)

where Γ k= diag { e-j2πΔ1 sinθk/λ, ⋯, e-j2πΔM- 1sinθk/λ，
ej2πΔ1 sinθk/λ，⋯，ej2πΔM- 1sinθk/λ } and Δi= di+ 1- di，i=
1，⋯，M- 1. By introducing a new ( 2M- 2 )×
( 2M- 2 ) diagonal matrix Θ (θ) as

Θ (θ) = diag { e-j2πΔ1 sinθ/λ,⋯,e-j2πΔM- 1sinθ/λ,
ej2πΔ1 sinθ/λ,⋯,ej2πΔM- 1sinθ/λ } (15)

we can form a new matrix W ( θ )=Ev- Θ (θ) Eu.
It can be found that

W ( θ )= Ev- Θ (θ) Eu= L 2Q- Θ (θ) L 1Q=
[V- Θ ( θ )U ] B-1

1 = CB-1
1 (16)
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where C= [V- Θ ( θ )U ] =[( Γ 1 - Θ (θ) ) u 1，⋯，

( ΓK- Θ ( )θ ) uK ].
According to Eq.（16），when θ= θk，the kth

column of C，i.e.，( Γ k- Θ (θ) ) u k，will become ze⁃
ro. In this case，if K ≤ (2M- 2 )，since B 1 is nons⁃
ingular，the matrix W ( θ ) will drop rank. It follows
that the determinant of G HW ( θ ) will equal to zero，
where G is an arbitrary ( 2M- 2 )× K full⁃rank ma⁃
trix. The choice of G has been discussed in Refs.［6，
8］. In this work，we adopt the choice in Ref.［8］
and let G=W H ( θ ). Hence，the following spectral
function can be utilized for DOA estimation

f (θ) = 1
det { }W H ( θ )W ( θ )

(17)

Remark 1 From Eq.（17），it can be seen that
the proposed algorithm can estimate DOAs with no
estimation nor prior knowledge of the non⁃circular
phases.

Remark 2 The proposed algorithm can esti⁃
mate up to ( 2M- 2 ) sources due to the extension of
the virtual array aperture，whereas the classical
MUSIC［1⁃2］ and PM［3⁃4］ can only estimate (M- 1 )
sources.

2. 4 Search ⁃ free implementation of the proposed

algorithm using polynomial rooting

The proposed algorithm has advantage of
rather low complexity when compared with some
conventional non ⁃ circular estimators，e. g. NC ⁃MU⁃
SIC［25］，by using the propagator instead of the eigen⁃
decomposition procedure. However，when the array
configuration satisfies certain conditions，the compu⁃
tational complexity can be further reduced by using
the polynomial rooting technique.

Without loss of generality，we assume 0 <
Δ 1 ≤ ⋯ ≤ ΔM- 1. Define z ≜ e-j2πΔ1 sinθ/λ and pi=
Δi/Δ 1，i= 1，⋯，M- 1. Then Eq.（15） can be re⁃
written as
Θ (z) = diag { zp1,zp2,⋯,zpM- 1,z-p1,⋯,z-pM- 1 } (18)

If the array geometry satisfies
∀pi  pi ∈ Z, i= 1,⋯,M- 1 (19)

DOAs can be estimated by rooting the polynomial
P ( z )= det {F ( z )W ( z ) } (20)

where W ( z )= Ev- Θ (z) Eu and F ( z )= E H
v -

ΘT (z-1 ) E H
u .

Although there may exist more than K roots
for polynomial，we can simply take K roots that are
closest to the unit circle as our final results，simi⁃
larly to root⁃MUSIC［5］. Then the DOA estimates
can be obtained from the phases of these roots.
The highest order of Eq.（20） is proved to be

2 ∑
n=2M-K-1

2M-2

qn，where qn= p ê
ë
ê

ú
û
ú

n+1
2
,n=1,⋯,2M-2，

ë û· returns the maximum integer that is not bigger
than the inside argument. The proof is shown in
Appendix A for detail. The complexity of finding

roots of Eq.（20） is O ( )( )2 ∑
n= 2M- K- 1

2M- 2

qn
3
［39］，which

is much smaller than searching the 1 ⁃D spectrum
Eq.（17）. The specific complexity analysis will be
given in Section 3.

The array geometry for the proposed rooting

method should satisfy that all {pi}
M- 1

i= 1
are integers，

however， it still applies to a much more general
class of array geometries than some classical algo⁃
rithm based on the rotational invariance property，e.
g.，ESPRIT［2］，NC⁃ESPRIT［7］and Tayem’s PM［4］.

2. 5 Actual implementation

The propagator P in practice could be estimat⁃
ed directly from the received data or from the sam⁃
ple covariance matrix［4］. Both two estimation meth⁃
ods of P need to collect a series of snapshots of the
received signal as

Y=[ y ( t1 ),⋯,y ( tL ) ] (21)
where L denotes the number of snapshots.

The sample covariance matrix R̂ is given by

R̂= 1
L
YY H (22)

According to Ref.［3］，by introducing the fol⁃
lowing partition of the received data and the sample
covariance matrix as

Y= é
ë
ê

ù
û
ú

Y 1

Y 2

} K rows
} ( 2M- K ) rows

(23)

R̂=[ R̂ 1,R̂ 2 ] (24)
where Y 1 ∈ CK × L and Y 2 ∈ C( 2M- K )× L contain the
first K rows and the last ( 2M- K ) rows of Y，

R̂ 1 ∈ C2M × K and R̂ 2 ∈ C2M ×(2M- K ) contain the left⁃
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most K and rightmost ( 2M- K ) columns of R̂，we
could estimate the propagator P̂ via

P̂ data = (Y 1Y H
1 )-1Y 1Y H

2 (25)
P̂ cov = ( R̂H

1 R̂ 1 )-1 R̂H
1 R̂ 2 (26)

Using Eq.（22） and Eq.（25）（or Eq.（26）），

the actual version of the proposed algorithm is given
by

f (θ) = 1
det{ }Ŵ H ( θ )Ŵ ( θ )

(27)

P ( z )= det{F̂ ( z )Ŵ ( z )} (28)

where Ŵ ( θ )= Êv- Θ (θ) Êu， Ŵ ( z )= Êv-
Θ ( )z Êu， F̂ ( z )= Ê H

v - ΘT (z-1 ) Ê H
u ， Eu= L 1Q̂，

Ev= L 2Q̂ and Q̂=[ IK，P̂ ]H.
The major steps of the proposed estimator are

concluded as follows：
（1）Rearrange the received signal as Eq.（4）

and select two subarrays.
（2） Estimate the propagator from the re⁃

ceived data via Eq.（25）or via the covariance matrix
Eq.（22）as shown in Eq.（26）. Compute the corre⁃
sponding signal subspaces as Eq.（13）.

（3） Estimate the DOAs through the spectral
peak search over Eq.（27）or rooting Eq.（28）when
the array geometry satisfies the condition Eq.（19）.

3 Complexity Analysis

This paper mainly considers the complex multi⁃
plication operation，which costs the most complexity.

In the proposed algorithm，if we choose to esti⁃
mate the propagator directly from the received da⁃
ta Eq.（25），it will cost complexity of O ( ( 2MK+
K 2 ) L+ K 3 )，whereas if we estimate from the sam⁃
ple covariance，it will cost complexity of O ( ( 4L+
4K )M 2 + 2K 2M+ K 3 ). In contrast， for comput⁃
ing the same subspace，the eigen ⁃ decomposition
procedure will require complexity of O ( 8M 3 +
4LM 2 )，which is typically larger than the complexi⁃
ty of the propagator ⁃ based works，especially when
we directly estimate the propagator from the re⁃
ceived data. Let α denote the number of search time
for DOA estimation. In the proposed 1⁃D search al⁃
gorithm，the complexity of finding the DOA esti⁃

mates is O ( α ( ( 2M- 2 )K 2，( 2M- 2 )K+ K 3 ) )，

whereas it is O ( )( )2 ∑
n= 2M- K- 1

2M- 2

qn
3

in the proposed

rooting algorithm.
Table 1 concisely lists the complexity of the

proposed algorithm，ESPRIT［2］，NC ⁃ESPRIT［7］，

GESPRIT［6］ and OPM［3］. The reason we choose
GESPRIT and OPM for comparison is that they
can also be applied to arbitrary array geometry，
whereas the reason for ESPRIT［2］ and NC ⁃ ES⁃
PRIT［7］ is they are classical low ⁃ complexity DOA
estimators. For intuitive illustration，we consider
K= 3 non⁃circular source signals impinge on a uni⁃
form linear array（ULA） of M= 12 sensors. In
such a case，the highest order of Eq.（28）is 6. The
other parameters are set as L= 200，α= 1 800.

The corresponding complexity of each algo⁃
rithm is plotted in Fig. 2，where the notation“Pro⁃
posed ⁃ search（data）”represents the complexity of
the proposed 1⁃D search algorithm in which the
propagator is directly estimated from the received
data as Eq.（25），whereas the notation“Proposed ⁃
search（covariance）”denotes the complexity of the
proposed 1 ⁃D search algorithm with the propagator
estimated from the sample covariance as Eq.（26）.
The notation rule is similar to the proposed rooting
algorithm and OPM［3］. It can be clearly seen from
Fig. 2 that because of avoiding the spectral search，
the proposed rooting algorithm has an obvious ad⁃
vantage of low complexity especially when the prop⁃
agator is directly from the received data，and its
complexity could be even close to ESPRIT and NC⁃
ESPRIT，which also have low complex because
they can provide closed⁃form solutions. With regard
to the complexity of the algorithms that can be ap⁃
plied to arbitrary array geometry，the proposed 1⁃D
search algorithm has close computation cost com⁃
pared with GESPRIT［6］ and the conventional
OPM［3］ has the lowest computational efficiency.
However，the proposed algorithm enlarges the virtu⁃
al array aperture by considering the non ⁃ circular
property and exhibits better estimation accuracy，
which will be proven in the following simulations in
Section 4.
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4 Simulations

This section provides numerical simulations to
demonstrate the performance of the proposed algo⁃
rithm. Root mean square error（RMSE） is adopted
as a measurement of numerous estimators，shown as

RMSE= 1
K ∑k= 1

K 1
P ∑p= 1

P

( β̂ k,p- βk )2 (29)

where P is the number of Monte⁃Carlo simulations，
β̂ k，p the estimate of a parameter β of the pth trial cor⁃
responding to the kth source. The signal⁃to⁃noise ra⁃
tio（SNR） is defined as SNR= σ 2s /σ 2n，where σ 2s is
the power of incoming signals. Totally 500 Monte ⁃
Carlo runs are used for average. Unless otherwise
stated，the number of snapshots is 200，the pro⁃
posed searching algorithm is adopted and the propa⁃

gator is estimated from the sample covariance ma⁃
trix as Eq.（26）in all simulations. The search region
for DOA estimation is（-90°，90°）.

4. 1 Arbitrary array case

We firstly examine the performance of the pro⁃
posed algorithm when applied to an arbitrary array.
Herein we consider a 9 ⁃ element array with coordi⁃
nates being（0，0.45λ，0.93λ，1.43λ，1.92λ，2.42λ，
29λ）throughout all simulations in this subsection.
Note that this array is sufficiently arbitrary and im ⁃
poses no shift invariance property，which means ES⁃
PRIT［2］，NC ⁃ESPRIT［7］ and Tayem’s PM［4］ can⁃
not be applied here.

In the first example，we assume there are K=
12 non⁃circular sources from［-60°，-45°，-35°，
-20°，-10°，0°，10°，25°，35°，45°，60°，75°］. The
corresponding non ⁃ circular phases are［0°，5°，10°，
15°，20°，25°，30°，35°，40°，45°，50°，55°］. The spec⁃
trum of the proposed algorithm is shown in Fig. 3，
where SNR is set as 15 dB. It could be seen that
clear peaks are formed around the theoretical direc⁃
tions. Fig. 4 shows the 100 estimation results of
SNR=15 dB and 25 dB，respectively，for compre⁃
hensive presentation. From Fig.4，we can find that
the proposed algorithm can obtain efficient DOA es⁃
timates of 12 non ⁃ circular sources in the 7 ⁃ element

Table 1 Complexity comparison

Algorithm

Proposed⁃search

Proposed⁃rooting

ESPRIT[2]

NC⁃ESPRIT[27]

GESPRIT[6]

OPM[3]

Complexity
Using received data for propagator estimation

O (( 2MK+ K 2 )L+ K 3 + α (( 2M- 2 )K 2 +( 2M- 2 )K+ K 3 ) )
Using sample covariance for propagator estimation

O (( 4L+ 4K )M 2 + 2K 2M+ K 3 + α (( 2M- 2 )K 2 +( 2M- 2 )K+ K 3 ) )
Using received data for propagator estimation

O (( 2MK+ K 2 )L+ K 3 + α (( 2M- 2 )K 2 +( 2M- 2 )K+ K 3 ) )
Using sample covariance for propagator estimation

O (( 4L+ 4K )M 2 + 2K 2M+ K 3 + α (( 2M- 2 )K 2 +( 2M- 2 )K+ K 3 ) )
O (M 3 + LM 2 + 3(M- 1)K 2 + 2K 3 ) )

O ( 8M 3 + 4LM 2 + 6(M- 1)K 2 + 2K 3 ) )

O (M 3 + LM 2 + α ( 2M- 2 )K 2 + 2(M- 2 )K+ K 3 ) )

Using received data for propagator estimation
O (( 2MK+ K 2 )L+ K 3 +( 2M- K )3 + 2M ( 2M- K )2 + 4M 2 ( 2M- K )+
α ( 4M 2 - 2( K- 1)M- K ) )

Using sample covariance for propagator estimation
O (( 4L+ 4K )M 2 + 2K 2M+ K 3 +( 2M- K )3 + 2M ( 2M- K )2 + 4M 2 ( 2M- K )+
α ( 4M 2 - 2( K- 1)M- K ) )

Fig. 2 Complexity comparison when M= 12,K= 3,L=
200,α= 1 800
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arbitrary array case. With the increase of SNR，the
estimation results become more accurate. From
Figs. 3，4，it is confirmed that the maximum num⁃
ber of sources the proposed algorithm can estimate
is ( 2M- 2 )，which is twice than that of convention⁃
al algorithms without utilization of the non ⁃ circular
property［1⁃4］.

In the second example，we compare the estima⁃
tion accuracy of the proposed algorithm with
GESPRIT［6］ and OPM［3］. It is herein assumed that
there are K= 3 non⁃circular sources from［10°，30°，
50°］ with non⁃circular sources of［10°，25°，40°］.
RMSEs versus SNR for each algorithm are illustrat⁃
ed in Fig.5. The CRLB for DOA estimation of non⁃
circular sources［30］ is also displayed as a benchmark.
It is seen that the proposed algorithm significantly
outperforms GESPRIT［6］ and OPM［3］ since the pro⁃
posed algorithm fully exploits the non⁃circular infor⁃
mation in the elliptic covariance.

In the third example，we illustrate the perfor⁃
mance of the proposed algorithm，GESPRIT［6］ and
OPM［3］ with various number of snapshots. It is as⁃
sumed that the number of snapshots increases from
100 to 500，whereas the other parameters are the
same as that in the former example. Fig. 6 displays
RMSEs of the three algorithms versus various num⁃
ber of snapshots as well as CRLB at SNR=10 dB
and 20 dB，respectively. It can be seen that the in⁃Fig.3 Spectrum of the proposed 1⁃D search

Fig. 4 Estimation results of 100 Monte ⁃ Carlo trials of the
proposed 1⁃D search algorithm

Fig. 5 RMSEs versus SNR of the proposed algorithm,
GESPRIT[6] and OPM[3]
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crease of the number of snapshots improves the esti⁃
mation accuracy of all the three algorithms since
more sample information can be utilized. Moreover，
the proposed algorithm has better estimation perfor⁃
mance than both GESPRIT［6］ and OPM［3］.
4. 2 ULA case

ULA scenario is considered in the section to
demonstrate the performance of the proposed algo⁃
rithm，especially the performance of the proposed
rooting algorithm. We consider a ULA of M= 8
sensors on which there are K= 3 non ⁃ circular
source from［10°，23°，35°］impinging. The non⁃cir⁃
cular phases are［10°，30°，50°］ correspondingly.
The inter⁃element spacing of ULA is half of the
wavelength.

In the first example，we compare the RMSE
performance of the proposed 1⁃D search algorithm
and rooting algorithm with ESPRIT［2］，Tayem’s
PM［4］，and NC⁃ESPRIT［7］. RMSEs versus SNR of
the proposed 1 ⁃D search algorithm，the proposed
rooting algorithm and the other algorithms are dis⁃
played in Fig. 7 as well as CRLB. It can be found
that the proposed algorithm performs slightly better
than the proposed 1⁃D search algorithm since it max⁃
imizes the same cost（Eq.（27））as the 1 ⁃D search
algorithm in a search ⁃ free way，while the accuracy
of the 1 ⁃D search algorithm depends on the size of
the search grid. Meanwhile， the proposed algo⁃
rithms have better estimation performance than
Tayem’s PM［4］ and ESPRIT［2］. When compared
with the NC⁃ESPRIT algorithm，the proposed algo⁃
rithm performs rather worse in low SNRs and has
close performance under high SNRs. This phenome⁃

non can be explained with the analysis in Ref.［40］
that using propagator to compute the signal sub⁃
space is less robust than the eigen ⁃decomposition of
the sample covariance matrix in Ref.［7］. However，
the eigen ⁃decomposition procedure is less computa⁃
tionally efficient and the NC ⁃ ESPRIT［7］ could not
be applied to arbitrary array geometry.

In the second example，we vary the number of
sensors and compare the estimation performance of
several algorithms，similarly as the former example.
We make the number of sensors increase from 7 to 11
and the inter ⁃ element spacing is always half of the
wavelength. RMSEs versus the number of sensors for
each algorithm at SNR=10 dB and 20 dB are plotted
in Fig.8 as well as CRLB. It is demonstrated that RM ⁃
SEs of all the algorithms degrade with the increase of
the number of sensors. This is reasonable since the di⁃
versity gain can be achieved with the increase of M. In
a relatively low SNR condition of 10 dB，Tayem’s
PM still performs worse than ESPRIT［2］，whereas
the proposed algorithm can perform close to the NC ⁃
ESPRIT［7］ due to the utilization of the non ⁃ circular
property. In a relatively high SNR condition of 20 dB，
all the PM⁃based algorithms have close estimation ac⁃
curacy to the ESPRIT algorithms［2，27］. Meanwhile，
the proposed rooting algorithm always performs
slightly better than the proposed 1⁃D search algorithm
when the number of sensors varies.

In the third example，we vary the number of
non⁃circular sources and plot RMSEs of the pro⁃
posed algorithm versus SNR in Fig.9. In the single
source case，DOA is set as 10°. In the two⁃source

Fig.6 RMSEs versus the number of snapshots of the pro⁃
posed algorithm, GESPRIT[6] and OPM[3]

Fig. 7 RMSEs versus SNR of the proposed algorithm, ES⁃
PRIT[2], Tayem’s PM[4] and NC⁃ESPRIT[27]
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case，DOAs are［10°，30°］. And in the three⁃source

case，DOAs are［10°，30°，50°］. From Fig. 9，it
could be observed that the estimation results of the
proposed algorithm are more accurate with the in⁃
crease of the number of the non ⁃ circular sources. It
is reasonable since the more sources exist，the more
unknowns the proposed algorithm will handle.

5 Conclusions

In this paper，we propose a propagator ⁃based al⁃
gorithm for DOA estimation of non ⁃ circular sources
using arbitrary array geometry. The proposed algo⁃
rithm exploits the propagator for computing the signal
subspace and estimates DOA through a newly ⁃
formed 1⁃D spectral search by introducing the rank re⁃
duction criterion. To further reduce the complexity，
we also propose a polynomial rooting⁃based algorithm
which avoids the spectral search. So，it avoids the
high ⁃ complexity eigen ⁃decomposition procedure and
works well without information of the non⁃circular
sources. By considering the non⁃circular property，the
proposed algorithm can estimate twice more sources
than the conventional subspace ⁃ based algorithms，
e. g.，MUSIC［1］ ，ESPRIT［2］ ，GESPRIT［6］ and
OPM［3］，and have much better estimation accuracy.
Appendix

Prove that the highest polynomial order of the poly⁃

nomial Eq.（20） is 2 ∑
n= 2M- K- 1

2M- 2
qn，where qn = p ê
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ê
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n+ 1
2

，n=

1，⋯，2M- 2 and [ p1，⋯，pM- 1] is in ascending order.
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(A1)

where ηi，k and ϵ i，k( i= 1，⋯，M- 1，k= 1，⋯，K ) are com⁃
plex constants.

Perform row exchange operation on W ( z ) and obtain
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-pM- 1 + ϵ*M- 1,K

(A2)

Fig.8 RMSEs versus the number of snapshots

Fig.9 RMSEs versus SNR of the proposed algorithm
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Similarly，F ( z ) and -F ( z ) can be written as

F ( z )=
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It should be noted that-W ( z ) and -F ( z ) are obtained by
performing an even number of row exchange operations on
W ( z ) and F ( z ). Hence，it follows that

det { F ( z )W ( z ) }= det { -F ( z ) -W ( z ) } (A5)
We then partition-W ( z ) and -F ( z ) as

-
W ( z )=

é

ë

ê
ê

ù

û

ú
ú

-
W 1 ( z )
-
W 2 ( z )

,-F ( z )=[ -F 1 ( z )
-
F 2 ( z ) ] (A6)

where -W 1 ( z ) ∈ C(2M- 2- K )× K and -W 2 ( z ) ∈ CK × K contain

the top ( 2M- 2- K ) and the upper K rows of -W ( z ).
Meanwhile，-F 1 ( z ) ∈ CK ×(2M- 2- K ) and -F 2 ( z ) ∈ CK × K con⁃
tain the right ( 2M- 2- K ) columns and the left K columns
of -F ( z )，respectively.

The following equation holds

-
F ( z ) -W ( z )=[ -F 1 ( z )  

-
F 2 ( z ) ]
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-
W 1 ( z )
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W 2 ( z )

=

-
F 1 ( z )

-
W 1 ( z )+

-
F 2 ( z )

-
W 2 ( z ) (A7)

Let ℛ { ⋅ } denote an operator that returns the highest or⁃
der of the input polynomial. For each entry in -F 1 ( z )

-
W 1 ( z )

and -F 2 ( z )
-
W 2 ( z )，it can be observed that

ℛ { [ -F 1 ( z )
-
W 1 ( z ) ] u,v }= 2q2M- 1- K

ℛ { [ -F 2 ( z )
-
W 2 ( z ) ] u,v }= 2q2M- 2

(A8)

where u，v= 1，⋯，K.
Note that { pi }M- 1i= 1 is in ascending order，hence q2M- 2 is

not less than q2M- 1- K. It then follows that
ℛ { [ -F ( z ) -W ( z ) ] u,v }= ℛ { [

-
F 2 ( z )

-
W 2 ( z ) ] u,v } (A9)

Hence， when we compute the determinant of
-
F ( z ) -W ( z )，the entries in -F 2 ( z )

-
W 2 ( z ) will play a major

role and the following equation holds
ℛ { det { -F ( z ) -W ( z ) } }= ℛ { det { -F 2 ( z )

-
W 2 ( z ) } } (A10)

From the expression of-W 2 ( z )，we can find that

ℛ {det { -W 2 ( z ) } }= ∑ n= 2M- K+ 1
2M- 2 qn (A11)

Since-W 2 ( z ) is a square matrix det {
-
F 2 ( z )

-
W 2 ( z ) }=

det { -F 2 ( z ) } det {
-
W 2 ( z ) } .As

-
F 2 ( z ) is the conjugate trans⁃

pose of-W 2 ( z )，the highest order of
-
F 2 ( z )

-
W 2 ( z ) is

ℛ { det { -F 2 ( z )
-
W 2 ( z ) } }= 2 ∑

n= 2M- K+ 1

2M- 2
qn (A12)

Thus according to Eqs.（A5，A11），the highest order of
det {W ( z ) -W ( z ) } is

ℛ { det { -F ( z ) -W ( z ) } }= 2 ∑
n= 2M- K+ 1

2M- 2
qn (A13)

The proof is completed.
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