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Abstract: A method is proposed to improve the accuracy of remaining useful life prediction for rolling element
bearings，based on a state space model（SSM）with different degradation stages and a particle filter. The model is
improved by a method based on the Paris formula and the Foreman formula allowing the establishment of different
degradation stages. The remaining useful life of rolling element bearings can be predicted by the adjusted model with
inputs of physical data and operating status information. The late operating trend is predicted by the use of the particle
filter algorithm. The rolling bearing full life experimental data validate the proposed method. Further，the prediction
result is compared with the single SSM and the Gamma model，and the results indicate that the predicted accuracy of
the proposed method is higher with better practicability.
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0 Introduction

Rolling element bearings are widely used as
components of rotating machinery， determining
working fluency of the equipment. Equipment main‑
tenance should be conducted at an appropriate peri‑
od to avoid instrument breakdown or damage that
may result from improper shut down，However，de‑
termination of when this maintenance should be per‑
formed requires accurate analysis.

The remaining useful life of rolling element
bearings can be determined using the statistic‑ based
model method， the mechanics‑of‑fracture‑based
model method， and the data‑drive‑based model
method［1‑7］. The remaining useful life of rolling ele‑
ment bearings is analyzed by the bearing failure
mechanism coupled with mathematical statistics in
the statistics‑based approach. A reliability‑based for‑
mula is established using observation data and fail‑

ure mechanism to allow the description of parame‑
ters. In addition，Kalman filter has been applied to
the research of remaining useful life［8］. Although the
discrete result and the fixed model cannot be adjust‑
ed，they are widely used in real applications.

The model of crack growth was established to
forecast the remaining useful life of rolling bearings
with the assumption that the failure process is the
same as the mechanics of crack growth described in
the fracture‑based model method. Significant expert
experience and complex knowledge of fault mecha‑
nisms are needed for that method，and this approach
is not suitable for monitoring working equipment in
actual time with changeable parameters.

The remaining useful life of rolling element
bearings can be analyzed using the status informa‑
tion in the data‑drive‑based model method. The
physical complexity and the uncertainty can be re‑
solved using this method，and online adjustment can

*Corresponding author，E‑mail address：mabo@mail.buct.edu.cn.
How to cite this article: LI Qing，MA Bo，LIU Jiameng. Remaining Useful Life Prediction of Rolling Element Bearings
Based on Different Degradation Stages and Particle Filter［J］. Transactions of Nanjing University of Aeronautics and Astro‑
nautics，2019，36（3）：432‑441.
http：//dx.doi.org/10.16356/j.1005‑1120.2019.03.007



No. 3 LI Qing, et al. Remaining Useful Life Prediction of Rolling Element Bearings Based on Different…

be performed in the real process in consideration of
the status of rolling elements. However，the attenu‑
ation pattern is not clear and there can be significant
effects of individual parameters due to the neglect of
basic principles in this method. Grenerally，develop‑
ments of an online approach to accurately predict the
remaining useful life of rolling element bearings
with a lower requirement for observed process sta‑
tus and the trend of change which makes this predic‑
tion in a timely fashion remain a significant chal‑
lenge in this field.

The failure crack growth curve of rolling ele‑
ment bearings is composed of three sages［9］. The
first stage is the change from emergence to growth
of the crack. The second stage is the stable growth
of the crack，also referred to as the Paris Region.
The third stage is the process of instability and fast
fracture of the crack. The simple physical model of
rolling bearings is used to predict the remaining use‑
ful life by describing the second degradation stage，
and the accuracy is limited by incomplete degrada‑
tion description.

In this paper，a method of state space model
（SSM）and particle filter（PF）for life prediction of
rolling element bearings based on a different degra‑
dation stage is proposed. In this method，the Paris
formula［10］ and Foreman formula［11］ are adjusted to
model the degradation stages. The model is then ad‑
justed with the process status of the rolling element
bearing to fit the degradation trend. The real work‑
ing status of the rolling bearing is predicted by the
improved model and the particle filter algorithm to
analyze the remaining useful life.

1 Theory of Life Prediction Method

1. 1 State space model

SSM is a dynamic time‑domain model with im ‑
plicit time as the independent variable. SSM con‑
tains two models. The first is a state equation mod‑
el，which reflects the transferred state of a dynamic
system influenced by input variables at a certain mo‑

ment. The second is an output or measurement
equation model，which links the output of the sys‑
tem at a certain moment to the state and input vari‑
ables of the system.

The SSM is usually defined as follows
xt= ft ( xt- 1,wt ) (1)
yt= ht ( xt,vt ) (2)

where ft：Rn
x × Rn

w → Rn
x and ht：Rn

x× Rn
v → Rn

y are
the nonlinear functions；wt is the process noise and
vt is the observation noise， independent sets of
noise sequences［12］.

SSM incorporates non observable variables
（state variables） into an observable model，and us‑
es the model to determine the estimated result. At
the same time，SSM can describe the state of the
system by using the minimal present or past informa‑
tion，which does not require a large amount of his‑
torical data，minimizing the time and effort of the
operation process.

1. 2 Particle filter algorithm

The PF algorithm describes the dynamic model
of the system by using the state equations and de‑
scribes the observation model of the system based
on observation equation. This approach can deal
with a time‑varying system，non‑stationary signal，
and multidimensional signal. The application of the
PF algorithm largely solves the difficult calculations
required for use of the state‑space method. The PF
algorithm is based on Bayesian estimation and Mon‑
te Carlo methods，using particle collection to denote
the probability. The PF algorithm can be used in
any SSM in multiple forms. The core principle is ex‑
pression of the distribution by using a random state
particle extracted from the posterior probability. In
brief，PF approximates the probability density func‑
tion by looking for a set of random samples in the
state space，then replaces integral calculation by us‑
ing the sample mean to obtain the state minimum
variance estimation.

The PF algorithm includes particle generation，
importance sampling，weight update，resampling，
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state estimation，and other steps［13］. The specific
steps used in this implementation are as follows：

（1）Particle set initialization，k=0
For i=1，2，… ，N，The sampling particles

{ x ( i )0 }Ni= 1 are generated by the prior probability distri‑
bution p ( x o )，w ( i )

o = 1/N.
（2）Importance sampling
For i=1，2，…，N，sample

~x
( i )
k = q ( x

k
| x ( i )0 ∶ k- 1,y1∶ k )

and set
~x
( i )
0 ∶ k=( x ( i )0 ∶ k- 1,

~x
( i )
k )

（3）Updating importance weights
Calculate the particle importance weight

w ( i )
k = w ( i )

k- 1

p ( yk |||
~x
( i )
k ) p (

~x
( i )
k
|
|
|
~x
( i )
k- 1 )

q ( ~x
( i )
k
|
|
|
~x
( i )
0 ∶ k- 1,y1∶ k )

(3)

and normalized weight

w ( i )
k =

w ( i )
k

∑
j= 1

N

w ( i )
k

(4)

（4）Resampling
Calculate number of valid samples

N eff
∧
= 1

∑
i= 1

N

( ~w
( i )
k ) 2

(5)

If N eff ≥ N thres

x ( i )0 ∶ k=
~x
( i )
0 ∶ k,w ( i )

k =
~w

( i )
k

Otherwise，resampling is conducted based on the
importance.

Weight w ( i )
k κi = l：x ( i )0 ∶ k=

~x
(κi )
0 ∶ k，w ( i )

k = 1/N.
（5）State estimation

x est0 ∶ k= ∑
i= 1

N

x ( i )0 ∶ k w͂ ( i )
k (6)

where x 0∶ k is the state variable of 0 ∶ k；y1∶ k a vari‑
able value that is observed at the time k；p ( x 0 ) the
initial value of the prior density；q ( xk |x 0∶ k- 1，y1∶ k )
the importance function；p ( xk | xk- 1 ) the state tran‑
sition probability density of the system；p ( yk | xk )
the observation likelihood probability density of the
system state；and N thres the threshold for measuring
the degree of particle degradation.

2 Life Prediction of Rolling Ele⁃

ment Bearings Based on SSM in

different Degradation Stages and

PF

2. 1 Establishment of SSM based on Paris for⁃

mula and Foreman formula

Since the data of current SSM are derived from
equipment operation condition information from the
monitor system and the uniqueness of the prediction
model，the accuracy of these models is comparative‑
ly low. To address this problem，specific SSM for
different degradation stages is proposed with the
transfer of physical data to SSM followed by modifi‑
cation according to the Paris formula and the Fore‑
man formula.
2. 1. 1 Improved derivation of Paris formula for

the second stage

The Paris formula describs the stable expan‑
sion law of the fatigue crack，particularly during the
second stage of crack propagation. The pure physi‑
cal data used in the theoretical formula is difficult to
obtain and calculate.

The common Paris formula is as follows
dl
dN = C ( Δk )n (7)

where l is the length of the crack；N the number of
stress cycles；C the material constant；and Δk the
stress intensity factor.

The basic types of cracks are classified into
three types：Opening mode，sliding mode，and an‑
ti‑plane shear mode. Since the first type occurs most
frequently，the first type of stress intensity factor
formula can be used to calculate

K= σ × π × a (8)
where σ is the magnitude of bearing stress and a the
length of the horizontal displacement of the load ar‑
ea of the bearings.

Since
Δk= Kmax - Kmin (9)

Eqs.（7）—（9）can be combined to derive
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dl
dN = C ( σ πamax - σ πamin )n (10)

According to Eq.（7），the material value n is re‑
lated to the experimental condition and the material
of experiment bearing because σ is related to the
load q and the vibration value is influenced by a. n is
variable when the experiment condition or the mate‑
rial change.

The modified state equation in the sec‑
ond‑stage SSM is proposed as described in Eq.（11）.
V ( t+ 1 )
N- N or

= k1 × qm× πm ×(V dq - V nr )m+

w ( t ) (11)
where V dq is the current vibration value；V nr the vi‑
bration value of normal operation；N or the stress cy‑
cle times at the beginning of degradation；V the ei‑
genvalue of the bearings；V ( t+ 1 ) the eigenvalue
of the bearings at the time of t+ 1. The transferred
disturbance of w ( t ) at time t is the value of the pro‑
cess noise vector generated during the operation of
the bearings. k1 and m are material coefficients that
can be changed according to the material characteris‑
tics and experimental environment； and q is the
load.
2. 1. 2 Improved derivation of Foreman formula

for the third stage

The rolling bearings prediction is focused on
the second stage，and the third‑stage rapid expan‑
sion of the crack is neglected，increasing the poten‑
tial error of the prediction result. To solve the above
problem，Foreman proposed the Foreman formula
in 1976［9］. For the situation when a crack expands
rapidly，the Foreman formula is as follows

dl
dN =

C ( Δk )m
( 1- R )Kc-Δk

(12)

where Kc denotes the fracture toughness of materi‑
als and R the stress ratio. Here

R= Kmin

Kmax
(13)

where Kmin is the minimum value of the equal ampli‑
tude alternating load and Kmax the maximum value of
the equal amplitude alternating load.

The crack growth rate increases rapidly when
Kmax → Kc，as derived from Eqs.（12）—（13）

( 1- R )Kc-Δk=Δk × ( Kc- Kmax

Kmax ) (14)

Since the calculation of the value K is related to
the force and the vibration value also can reflect the
force，we can change the value K to the vibration
value Ved，where the V ed denotes the vibration stop
threshold. Therefore，Eq.（12） can be transformed
as shown in Eq.（15）

x ( t+ 1 )= x ( t ) ∙
k1 × qm× πm ×(V dq - V nr )m+ w ( t )

V ed - x ( t )
(15)

The state formula in the third‑stage SSM is
proposed as shown by Eq.（16）.
V ( t+ 1 )
N- N or

= ( k1 × qm× πm ×(V dq - V nr )m+

w ( t ) )× x ( t )
V ed - x ( t ) (16)

The parameters in Eq.（16）are the same as the
parameters in the second‑stage SSM.

The observation equation for the degradation
stages is as Eq.（17）

y ( t+1 )= V ( t+1 )
N-N or

×( N-N or )+v ( t ) （17）

where y ( t+ 1 ) is the final state prediction value
while v ( t ) the observation noise vector generated
during the operation of the bearings.

SSM in different degradation stages combines
the fracture mechanic modeling approach with the
data‑driven method，which eliminates the problem
of the large predicted trajectory deviation due to the
single prediction model，and thus improves the accu‑
racy of the prediction results.

2. 2 Process of the SSM prediction stages

The flow chart of the procedure is presented in
Fig.1 and illustrates the process of extracting eigen‑
value and force load data from the operation state of
the rolling element bearings，establishing SSM for
the different degradation stages，using PF to predict
the trend value of the eigenvalue for the rolling ele‑
ment bearings，and calculating the life prediction of
the rolling element bearings. The detailed steps are
as follows：

（1）The running state vibration signal of the
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rolling element bearings must be collected， and
from this signal，the eigenvalue is extracted.

（2）The alarm threshold，the third‑stage degra‑
dation threshold，and the stop threshold are set as
the initial point of the prediction，the cut‑off point
for the second and third stages，and the cut‑off point
of the prediction， respectively. According to the
standards of ISO2372 and ISO7919，the vibration
standard is divided into A，B，C，and D regions，
and each region has an upper limit value. The set‑
ting alarm threshold is 1.25 times as much as the up‑

per limit of the B region，and the third‑stage degra‑
dation threshold is 1.25 times of the upper limit of
the C region.

（3） The eigenvalue is incorporated into the
rolling element bearing life prediction algorithm
when it is greater than or equal to the alarm thresh‑
old.

（4）The initial value of the PF algorithm is set.
（5）The predicted step value is set to 10，es‑

tablishing the SSM. The material constants k1 and
m of the SSM are set according to Ref.［14］ and

Fig.1 Life prediction process for rolling element bearings
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Eq.（11）. The initial value of these material con‑
stants are 2.0 and 1 × 10-3，respectively.

（6）When the eigenvalue is less than or equal
to the third‑stage threshold of deterioration， the
model parameters are updated by using the nonlin‑
ear least square method combined with the sec‑
ond‑stage SSM，resulting in the second‑stage mod‑
el，which is consistent with the actual running state.
The model parameters are subsequently updated by
using the nonlinear least square method combined
with the third‑stage SSM， resulting in the
third‑stage model that is also consistent with the ac‑
tual running state.

（7）PF is used to predict the trend of the eigen‑
value.

（8）When the predicted eigenvalue is less than
the parking threshold，the trend of the eigenvalue
can be predicted in a loop. The result of the rolling
element bearing life prediction should be output at
the prediction time.

3 Experiment and Prediction Anal⁃

ysis

3. 1 Experiment

Analysis was conducted by using previously re‑
ported full life cycle vibration data［15］ produced at
the University of Cincinnati in the United States.
The experimental apparatus is shown in Fig.2.

The bearing test bench was driven by an AC
motor. The speed of the test bench was 2 000 r/
min，and the shaft and the bearings were applied to
6 000 pounds of radial load. The acceleration sensor
was installed in the horizontal and vertical direction

of the bearings.
The experimental data for the bearings［15］ were

classified into four groups，and we adopted the inner
fault data and the first set of sample data. The dura‑
tion of the experiment was 34 d11 h40 min. To en‑
sure that the data reflected the smooth operation of
the rolling element bearings，we adopted data from
the previous 32 days after the elimination of serious
degradation points. The observable changes of the
inner ring of the bearings before and after the experi‑
ment are shown in Fig.3，and the detail of the sen‑
sors is shown in Fig.4.

3. 2 Acquisition of experimental data and ex⁃

traction of eigenvalue

The data acquisition system adopted a 6062E
data acquisition card （NI Corporation， United
States）. Data was collected with 2 000 sampling
points at a sampling frequency of 20 kHz，allowing
the collection of a set of data at intervals of 10 min.

For the collected data，a wavelet packet energy
extraction method［16］ was used to obtain the specific
frequency band energy at different times. The per‑
formance of energy impact was obvious under 1 kHz
and a Chebyshev filter was used with a 1 kHz cutoff
to obtain high frequency and low frequency signal of
the rolling element bearings with time. Then we ex‑
tracted the variance，peak to peak value，waveform
index，peak index，impulsion index，margin index，

Fig.2 Experimental device

Fig.3 Contrast before and after the experiment

Fig.4 Sensor placement
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skewness index，kurtosis index，effective peak val‑
ue of acceleration，high frequency effective peak val‑
ue，low frequency effective peak value，envelope
spectrum peak value，and 12 characteristic indices.
The envelope spectrum peak value is sensitive to

the degradation process of the rolling element bear‑
ings，and it can be determined using a feature evalu‑
ation algorithm and then used as the eigenvalue for
the rolling element bearing life prediction. The eval‑
uation results are shown in Table 1.

3. 3 Analysis of predicted result

The envelope spectrum peak value was normal‑
ized， and the alarm threshold， threshold of the
third‑stage degradation， and the stop threshold
were，set to 3.0，7.0，and 9.0 m/s2，respectively，
according to the standard requirements described in
Section 2.2. According to Section 2.2，an initial val‑
ue k1 of 2.0 and an initial value m of 1 × 10-3 were
used，and the noise w ( t ) and v ( t ) were adopted ac‑

cording to a normal distribution. To avoid a large in‑
fluence of a weighted value，the numerical range
was below 1. For an envelope spectrum peak value
greater than or equal to the warning threshold，roll‑
ing element bearing life prediction is performed ac‑
cording to the process shown in Fig.1.

The model parameters were adjusted by calcu‑
lation with the least squares method，and the param‑
eter convergence process is shown in Fig.5.

After obtaining the model parameters，the roll‑
ing element bearing life was predicted by using the
method described in Section 2.2 and SSM for differ‑
ent degradation stages and the PF algorithm.

There is regular adjustment of the model pa‑
rameters during the process of rolling element bear‑
ing life prediction. To assess the validity of SSM
during different degradation stages，the prediction
model was used to predict the life of rolling element

bearing life during degradation. The predicted re‑
sults for different degradation stages are shown in
Fig.6.

We next compared the SSM for different degra‑
dation stages with the Gamma model，which is the
preferred method for describing the product degrada‑
tion process and the single second‑stage model. To
comprehensively evaluate the effect of prediction re‑
sults of different models，we calculated the root

Table 1 Distance evaluation factor of the characteristic indices

Eigenvalue

Distance evalua‑
tion factor

Eigenvalue

Distance evalua‑
tion factor

Variance

0.823 1

Skewness
index

0.498 8

Peak to
peak val‑
ue

1.725 6

Kurtosis
index

1.352 5

Waveform index

1.256 0

Effective value of ac‑
celeration

0.785 6

Peak index

1.698 2

High frequency ef‑
fective value

1.160 6

Impulsion index

1.602 0

Low frequency ef‑
fective value

1.735 7

Margin index

1.545 6

Envelope spectrum
peak value

1.748 0

Fig.5 Convergence process of the model parameter

438



No. 3 LI Qing, et al. Remaining Useful Life Prediction of Rolling Element Bearings Based on Different…

mean square error（RMSE），the mean absolute er‑
ror（MAE），the variance absolute error（VAE），

the mean relative error（MRE）and the variance rel‑
ative error（VRE）），as shown in Table 2.

It can be seen from Fig. 6 that the rolling ele‑
ment bearing life prediction method based on SSM
in different degradation stages and PF can accurate‑

ly reflect the degradation process of the rolling ele‑
ment bearings. The predicted degradation curve is
close to the actual degradation curve，and this meth‑

Fig.6 Rolling bearing life prediction result

Table 2 Evaluation of life prediction effect for the different models

Model
Gamma model

The second‑stage model
SSM with different degradation stages

RMSE
1.213×10-1

1.009×10-1

3.13×10-2

MAE
5.012×10-1

3.951×10-1

1.086×10-1

VAE
1.34×10-2

2.73×10-2

5.9×10-3

MRE
1.12×10-1

9.02×10-2

2.49×10-2

VRE
1.3×10-3

2.1×10-3

3.384×10-4
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od is feasible. During the process of prediction，the
accuracy of the predicted result improved gradually，
and the predicted degradation trend becomed closer
to the actual degradation trend because the parame‑
ters of the model were updated regularly，allowing
correction of the model with time.

Table 2 shows the evaluation results of the life
prediction effect of different models. The life predic‑
tion method based on SSM for different degradation
stages shows better accuracy and precision than the
second‑stage model and the Gamma model， be‑
cause of the inclusion of SSM based on different
degradation stages，including the second‑stage and
the third‑stage degradation of the rolling element
bearings. Meanwhile， the degradation path be‑
comed closer to the actual degradation path，sug‑
gesting the improved model can accurately reflect
the deterioration process of the rolling element bear‑
ings. Since the Gamma model is based on a probabil‑
ity method，the calculation results are necessarily
dependent on the prior probability distribution，and
the method has a low degree of relativity with the
degradation mechanism of rolling element bearings.

4 Conclusions

In order to improve the accuracy of models for
the life prediction of rolling bearings，we propose a
prediction method based on SSM in different degra‑
dation stages and PF，including three rolling ele‑
ment bearing life prediction methods，and improv‑
ing the Paris formula and Foreman formula accord‑
ing to the degradation mechanism of rolling element
bearings. Additionally，this method incorporates the
running status information of rolling element bear‑
ings and uses the PF algorithm to predict the real
lifetime of the rolling bearings. This approach effec‑
tively improves accuracy of life prediction thanks to
the physical degradation model of rolling bearings.

The experimental evaluation results show that
the rolling element bearing life prediction method
based on SSM for different degradation stages and
PF is more accurate than the traditional prediction
method based on the Gamma model and the PF.
Generally，this work provides a new effective meth‑

od for life prediction of rolling element bearings.
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