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Abstract: This paper presents a low‑complexity method for the direction‑of‑arrival（DOA）estimation of noncircular
signals for coprime sensor arrays. The noncircular property is exploited to improve the performance of DOA
estimation. To reduce the computational complexity，the rotational invariance propagator method（RIPM）is included
in the algorithm. First，the extended array output is reconstructed by combining the array output and its conjugated
counterpart. Then，the RIPM is utilized to obtain two sets of DOA estimates for two subarrays. Finally，the true
DOAs are estimated by combining the consistent results of the two subarrays. This illustrates the potential gain that
both noncircularity and coprime arrays provide when considered together. The proposed algorithm has a lower
computational complexity and a better DOA estimation performance than the standard estimation of signal parameters
by the rotational invariance technique and Capon algorithm. Numerical simulation results illustrate the effectiveness
and superiority of the proposed algorithm.
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0 Introduction

Over the last several decades，the direction ‑of
arrival（DOA）estimation problem has received con‑
siderable attentions in the field of sensor array signal
processing［1］. Many DOA estimation algorithms
have been developed，including multiple signal clas‑
sification（MUSIC）［2］，estimation of signal parame‑
ters by the rotational invariance techniques（ES‑
PRITs）［3］，propagator method（PM）［4］，and Capon
algorithm［5］. PM does not require the eigenvalue de‑
composition（EVD） of covariance matrix，thus it
has a smaller computational complexity［6］. But in
conventional PM，the spectral peak search is used，
while it still suffers from computational burden. To
meet the real ‑ time requirements，rotational invari‑
ance PM（RIPM）was proposed，which can avoid
the spectral peak search.

In communication systems，noncircular（NC）
signals have been widely used，such as amplitude
modulation，binary phase shift keying，and quadra‑
ture phase shift keying modulated signals［7］.The NC
feature has been widely used to enhance the perfor‑
mance of DOA estimation［8］. NC‑MUSIC algorithm
was proposed in Ref.［9］，which showed that NC ‑
MUSIC exceeds MUSIC in DOA estimation preci‑
sion. Some modified algorithms were proposed to
further improve DOA estimation performance based
on NC feature［10‑11］. However，these investigations
are applied to the conventional arrays with inter‑ele‑
ment spacing of half‑wavelength.

Several studies have suggested that non‑uni‑
form linear arrays may outperform a uniform linear
array（ULA）in terms of the number of sensors and
resolution［12‑13］. The inter ‑ element spacing of non ‑
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uniform linear arrays is larger than the half ‑ wave‑
length. Thus，these non‑uniform linear arrays have
a larger aperture and better resolution than ULAs.
Ref.［14］proposed a new non ‑ uniform linear array
called coprime sensor arrays（CSAs）. A CSA can
provide Ο ( N 2 ) degrees of freedom（DOFs） using
just Ο ( N ) sensors. This technique makes it possi‑
ble to sample the spatial signals in a sparse way［15］.
In Ref.［16］，a method to estimate the DOAs was
proposed by combing the results of the two subar‑
rays of the CSA. In Ref.［13］，a partial spectral
peak search method was proposed for two‑dimen‑
sional DOA estimation with coprime planar arrays.
Li et al. proposed a real‑valued cross correlation ma‑
trix method for coprime arrays［14］. However， the
above‑mentioned methods are all devised for circu‑
lar signals，and no contributions have dealt yet with
the problem of DOA estimation for CSAs assuming
the signals to be NC.

In this paper，a computational efficiency meth‑
od is proposed for the DOC estimation of NC sig‑
nals for CSAs. The NC property is exploited to im‑
prove the performance of DOA estimation. To re‑
duce the computational complexity，the NC rota‑
tional invariance propagator method（NC‑RIPM）is
included in the algorithm，which requires no spec‑
tral search and greatly reduces the complexity.

Our main contributions are as follows：（1）We
consider noncircular signals impinging on a CSA
and investigate the problem of DOA estimation in
this new scenario.（2）We develop a NC‑RIPM al‑
gorithm to reduce the computational complexity，
which requires no spectral peak search.（3）The pro‑
posed algorithm has a better angle estimation perfor‑
mance than conventional methods for CSA.（4）
The proposed algorithm requires no NC phase esti‑
mation，thus being more efficient in real ‑world ap‑
plication.

Notations：Lowercase（capital） bold symbols
denote vectors（matrices）. ( ⋅ )* and ( ⋅ )T denote the
complex conjugate and transpose， respectively，
while ( ⋅ )H，( ⋅ )-1，and ⊥ denote conjugate trans‑
pose，inverse，and ortho‑complement of a projector
matrix，respectively. diag {v} is a diagonal matrix

whose diagonal is a vector v. E｛·｝ represents the
statistical expectation. det｛·｝，In｛·｝，and Tr｛·｝

are the determinant，the logarithm，and the trace
operator of matrix，respectively. min（·） is to get
the minimum element of an array. IM represents an
M × M identity matrix and 0M × N is a zero matrix
with M × N. angle ( ⋅ ) means to get the phase.

1 Data Model

A CSA is constructed using two uniform linear
subarrays with M and N sensors， respectively，
where M and N are coprime integers，and the total
number of elements is M+ N- 1. The subarray
with M sensors（Subarray 1）has the inter ‑ element
spacing Nλ/2，while the other subarray with N sen‑
sors （Subarray 2） has the inter‑element spacing
Mλ/2. Fig.1 gives an example of a CSA.

Assume that there are K far ‑ field，uncorrelat‑
ed narrow ‑ band signals impinging on a CSA with
M+N-1 antennas from angles θ=[ θ1，θ2，⋯，θK ]，
where θk is the DOA of the k‑th source， k =
1，⋯，K ，and K < min {M，N} . The noise is ad‑
ditive Gaussian with zero mean and variance σ 2，in‑
dependent of the signals. For the unknown non‑uni‑
form noise scenario，the Ref.［17］formulated a re‑
duced covariance tensor by exploiting the diagonal
characteristic matrix to estimate the 2D DOA for
uniform rectangle array. As the CSA can be de‑
composed into two uniform linear subarrays， the
steering vectors corresponding to the k ‑ th source
for Subarrays 1 and 2 can be expressed as fol‑
lows［15］

a1 ( θk )=[ 1,ejμk,1,⋯,ej(M- 1) μk,1 ]T ∈ CM × 1 (1)
a2 ( θk )=[ 1,ejμk,2,⋯,ej(N- 1) μk,2 ]T ∈ CN × 1 (2)

Fig.1 Illustration of the array geometry of a CSA
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where μk，1 = -πd 1 sinθk/λ， d 1 = Nλ/2， μk，2 =
-πd 2 sinθk/λ，d 2 =Mλ/2，and k= 1，⋯，K.

Then，the received signal vectors of Subarrays
1，2 at the t‑th time slot can be defined as［15］

x 1 (t) = A 1 s (t) + n 1 (t) (3)
x 2 (t) = A 2 s (t) + n 2 (t) (4)

where A 1 =[ a1 ( θ1 )，⋯，a1 ( θK ) ] ∈ C( )M- 1 × K and
A 2 =[ a2 ( θ1 )，⋯，a2 ( θK ) ] ∈ C( )N- 1 × K are the steer‑
ing matrices of Subarrays 1， 2， respectively.
s (t) ∈ CK × 1 is the narrow‑band NC signal vector，
n 1 (t) and n 2 (t) denote the additive white Gaussian
noise，and t= 1，⋯，L，L denotes the number of
snapshots.

We just consider the maximum NC rate signal
in this paper，the vector of NC signals can be ex‑
pressed as follows［18］

s (t) = Ψs0 (t) t= 1,⋯,L (5)
where s0 (t) ∈ RK × 1 and Ψ is a diagonal matrix，
which is represented as follows

Ψ=
é

ë

ê
ê
êê

ù

û

ú
ú
úú

e-jφ1
⋱

e-jφK
(6)

where φk is the NC phase of the k⁃th signal. Accord‑
ing to Eqs.（3）and（5），the received vectors of Sub‑
array 1 and Subarray 2 can be expressed as follows

x 1 (t) = A 1Ψs0 (t) + n 1 (t) (7)
x 2 (t) = A 2Ψs0 (t) + n 2 (t) (8)

2 DOA Estimation Algorithm

In this section，we derive the NC‑RIPM algo‑
rithm for the DOA estimation of NC signals for
CSA. We first give the extended data model by ex‑
ploiting the NC property，then discuss about the NC‑
RIPM algorithm and phase ambiguity problem. And
finally，in the last part of this section，the detailed
steps of NC‑RIPM algorithm are given.

2. 1 NC⁃RIPM algorithm for DOA estimation

for Subarray 1

The array output of Subarray 1 for circular sig‑
nals is

y cir1 (t) = x 1 (t) = A 1 s (t) + n̄ cir1 (t) (9)
where A 1 ∈ RM × K

Similar to Eq.（3），we construct the extended

array output of Subarray 1 as［18］

y1 (t) =
é

ë
êê

ù

û
úú

x 1 ( )t
JM1 x *1 ( )t

= B 1 s (t) + n̄ 1 (t) (10)

where B 1 ∈ R 2M × K，n̄ 1 (t) =
é

ë
êê

ù

û
úú

n 1 ( )t
JM1n *1 ( )t

. Compared

with the circular signals，B 1 has higher dimensions
than A 1， so the conjugate transpose information
x *1 (t) of the noncircular signals can be used.

The aperture of CSA for circular signals is
γcir = 1/2( max ( N ( )M- 1 N,M ( )N- 1 ) ) (11)
The aperture of CSA for noncircular signals is
γnoncir = ( max ( N ( )M- 1 N,M ( )N- 1 ) ) (12)
The noncircular property doubles the aperture

of the array，so it has better DOA estimation perfor‑
mance. JM1 is the permutation matrix and can be giv‑
en as follows

JM1 =
é

ë

ê
êê
ê

ù

û

ú
úú
ú

0 1
⋰

1 0
(13)

B 1 = é
ë
ê

ù
û
ú

A 1

A 1Φ 1Ψ -2
1

(14)

where Φ 1 = Γ-( )M- 1
1 is a diagonal matrix，and

Γ 1 =
é

ë

ê
ê
êê

ù

û

ú
ú
úú

ejμ1,1
⋱

ejμk,1
(15)

Partition B 1 can be given as follows

B 1 = é
ë
ê

ù
û
ú

B x1

B y1
(16)

where B x1 ∈ CK × K is a nonsingular matrix and
B y1 ∈ C( )2M- K × K. From Ref.［19］，B y1 is a linear
transformation of B x1

P H
c1 B x1 = B y1 (17)

where P c1 ∈ CK × ( )2M- K is the propagator matrix.
The covariance matrix of the extended array

output can be expressed as follows
R 1 = E [ y1 ( )t yH1 ( )t ] (18)

Partition R 1 can be defined as follows［19］

R 1 =[ G 1, H 1 ] (19)
where G 1 ∈ C2M × K and H 1 ∈ C2M ×(2M- K ).

In the absence of noise，we can obtain
G 1 P c1 = H 1 (20)

Define

P 1 = é
ë
ê

ù
û
ú

IK1
P H
c1

(21)
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where P 1 ∈ C2M × K. According to Eqs.（16） and
（17），we have

P 1B x1 = B 1 (22)
In the case of noise，the propagator matrix can

be estimated as follows
P̂ c1 = G +

1 H 1 (23)
Partition P 1 can be split into two parts as fol‑

lows

P 1 = é
ë
ê

ù
û
ú

P x1

P y1
(24)

where P x1 ∈ CM × K and P y1 ∈ CM × K.
Define the selective matrices as follows

Jx1 =
é

ë

ê
êê
ê
1 0
⋱

0 1

0
⋮
0

ù

û

ú
úú
ú

( )M- 1 × M

(25)

Jy1 =
é

ë

ê
êê
ê
0
⋮
0

1 0
⋱

0 1

ù

û

ú
úú
ú

( )M- 1 × M

(26)

Let

P a1 = é
ë
ê

ù
û
ú

Jx1 P x1

Jx1 P y1
, P b1 = é

ë
ê

ù
û
ú

Jy1 P x1

Jy1 P y1
(27)

According to Eqs.（22），（24） and（27），we
have

P a1B 1Γ 1 = P b1B 1 (28)
Define

P r1 = P +
a1 P b1 (29)

According to Eqs.（28）and（29），we have
P r1 = B 1Γ 1B-1

1 (30)
By performing the EVD of P r1，we can obtain

P r1 = U 1Λ 1U H
1 (31)

where Λ 1 = diag { [ η1，…，ηK ] }. Note that the ei‑
genvalues of P r1 are corresponding to the diagonal el‑
ements of Γ 1.

From Eqs.（1）and（2），the angle estimates of
the k ‑ th source can be obtained from Subarray 1 as
follows

sinθ̂ k,1 =
-λ ⋅ angle ( ηk )

πN - 2W 1

N
W 1 = 0,1,…,N- 1 (32)

The algorithm on Subarray 2 can be obtained
in a similar way to that on Subarray 1. Note that the
ambiguity problem arises because the inter ‑ element
spacing is larger than the half ‑wavelength，and am‑
biguity elimination is represented in the following
sections.

2. 2 DOA estimation and ambiguity elimina⁃

tion

Assume that there is K= 1 noncircular signal
impinging on a CSA with the elevation angle
θ= 20° and noncircular phase φ= 10°，where M=
5，N= 3 for the CSA， and SNR=20 dB. As
shown in Fig.2，there are three estimated values for
Subarray 1，and five estimated values for Subarray
2. In the set of estimated values of the two subar‑
rays，the coincidence point is the real value.

Assume there is only one far ‑ field narrowband
source impinging on the CSA from an elevation an‑
gle θ with NC phase φ. The phase difference be‑
tween the received signals of two adjacent elements
can be expressed as follows

Δ=mod ( 2πλ dsinθ,2π) (33)

where the mod ( ⋅ ) operation returns the modulus af‑
ter the division of parameter 1 by parameter 2. The
mod operation is based on the principle that the
phase of a signal rotates by 2π for every λ distance
the signal travels. Therefore，the relationship be‑
tween the phase difference and the element spacing
is given as follows［13］

Δ+ 2kπ= 2π
λ
dsinθ (34)

where k is an integer. Since θ ∈ [ - π/2，π/2]，we
have -1 ≤ sinθ ≤ 1. Therefor，k is in the range of
é
ë
ê- d

λ
- Δ
2π，

d
λ
- Δ
2π

ù
û
ú. For particular phase dif‑

ferences Δ，there exists one or a set of DOAs that

Fig.2 RIPM of the decomposed two subarrays
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satisfy Eq.（34）. Specifically， in the case of
d ≤ λ/2，k can only be 0. As d increases，the num‑
ber of possible k values increases.

In a CSA，the spacing between two adjacent
sensors of each subarray is much larger than the half‑
wavelength. Therefore，there are multiple ambigu‑
ous DOAs in addition to the actual one［13］.

Suppose θk is the actual DOA of the NC signal
and θ ak is one of the ambiguous DOAs. The NC
phase φ is negligible to the angle ambiguity. Accord‑
ing to Eq.（34），the relationship between the actual
DOA θk and its ambiguous DOA θ ak for Subarray 1
and Subarray 2 is given as follows

sinθk,1 - sinθ ak,1 =
2P
N

(35)

sinθk,2 - sinθ ak,2 =
2Q
M

(36)

where P is the difference between any elements of
set k，which is an integer between ( -N+ 1 ) and
( N- 1 )，and Q is an integer between ( -M+ 1 )
and (M- 1 )，respectively. Considering that θk and
θ ak are interchangeable，there is a total of ( N- 1 )
ambiguous angles for Subarray 1. Similarly，there
are totally (M- 1 ) ambiguous angles for Subar‑
ray 2.

Although ambiguity arises with the enlarge of
the inter‑element spacing， the correct estimation
can be achieved by finding the common results of
the N and M estimations based on the coprimeness
of N and M，and the proof process refers to Ref.
［15］. In the noise case，the correct estimations will
not be strictly overlapped，and the actual DOA is
estimated by averaging two closest solutions as fol‑
lows

θ̂ k=
θ̂ k,1 + θ̂ k,2

2 k= 1,…,K (37)

where θ̂ k，1 and θ̂ k，2 denote the corresponding angles
of the two closest solutions of the two decomposed
subarrays.

2. 3 Detailed steps of NC⁃RIPM algorithm

According to Eq.（10），the covariance matrix
of a sample extended with finite array output data
can be expressed as follows

R̂= 1
L ∑l= 1

L

y (tl ) yH ( )tl (38)

The main steps of the NC‑RIPM algorithm are
as follows：

（1） Construct the extended matrix y using
Eq.（10），then calculate the covariance matrix R̂ of
Subarray 1 and Subarray 2.

（2）Compute the propagator matrix P c，and ob‑
tain P r using Eq.（30）.

（3）Perform EVD of P r using Eq.（31）.
（4）Estimate the ambiguous angles using

Eq.（32）.
（5） Select the K nearest angles as the esti‑

mates based on Eq.（37）.

3 Performance Analysis

In this section，we first discuss the extension
of array DOF，we then analyze the computational
complexity of the proposed method，and finally，
we derive the CRB of DOA estimation for NC sig‑
nals.

3. 1 Degree of freedom

The DOF is the maximum number of signal
sources the array can estimate［19］. For CSA，it is de‑
termined by the subarray with fewer elements.
Therefor，the DOF of a CSA for circular signals is
given as follows［16］

DOFcirCSA = min (M,N )- 1 (39)
In this paper，the NC property of incident sig‑

nals has been considered，which can double the
number of sources that can be estimated. There‑
fore，we can increase the DOF of CSA to

DOFnoncirCSA = 2min (M,N )- 1 (40)
Figs. 3，4 depict the DOA estimation results

of the RIPM for NC signals and circular signals，
respectively， over 100 trials， where the actual
DOAs are 10° and 24°，respectively，and SNR=
5 dB，M = 2，and N = 3. It is shown that the
proposed algorithm can accurately estimate the two
angles，while the RIPM algorithm fails to obtain
the correct results when the signals are circular.

3. 2 Complexity analysis

In this section，we consider only the complexi‑
ty of the algorithms with Subarray 1. Table 1 shows
the comparison of the computational complexity of
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the proposed algorithm with those of NC‑ES‑
PRIT［18］ and NC‑Capon［15］ algorithms，where n1
and n2 denote the spectral searching times of Subar‑
ray 1 and Subarray 2. Table 2 shows the compari‑
son of average running time versus M of NC‑
RIPM，NC‑Capon， and NC‑ESPRIT algorithms
for CSA. The computational complexity compari‑
sons versus L and M are shown in Figs. 5，6，re‑

spectively. As shown in Fig. 6，the proposed algo‑
rithm has a lower computational complexity than the
NC‑Capon and NC‑ESPRIT algorithms.

3. 3 Crámer⁃Rao bound

In the case of finite samples，the extended data
model of NC signals for both subarrays can be pre‑
sented as follows［10］

y (t) =
é

ë
êê

ù

û
úú

x ( )t
x * ( )t

(41)

where x (t) =[ x T1 ( )t ，x T1 ( )t ]T.

Fig.3 RIPM for noncircular signals

Fig.4 RIPM for circular signals

Table 1 Computational complexity of NC⁃RIPM, NC⁃

Capon，and NC⁃ESPRIT algorithms for CSA

Algorithm

NC‑RIPM

NC‑Capon

NC‑ESPRIT

Computational complexity

O (8MK 2 + 3K 3 - 6K 2 + 4M 2 (L+ K) )+
(8NK 2 + 3K 3 - 6K 2 + 4N 2 (L+ K) )

O (4M 2L+ 8M 3 + (8M 2 + 8M ) n1 )+
(4N 2L+ 8N 3 + (8N 2 + 8N ) n2 )

O (8 (M- 1) K 2 + 13K 3 + 8M 3 + 4M 2L)+
(8 (N- 1) K 2 + 13K 3 + 8N 3 + 4N 2L)

Table 2 Comparison of average running time versus M

of NC⁃RIPM, NC⁃Capon, and NC⁃ESPRIT al⁃

gorithms for CSA s

Algorithm

NC‑RIPM
NC‑Capon
NC‑ESPRIT

M=4
N=3
0.170
9.770
0.175

M=5
N=4
0.176
10.842
0.188

M=6
N=5
0.179
11.741
0.187

M=7
N=6
0.207
13.869
0.216

Fig.5 Comparison of computational complexities versus M

Fig.6 Comparison of computational complexities versus
snapshots
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According to the probability density function
of y (t)［20］

p ( u,v )= p' ( y )=

π-G [ det ( R y ) ]-1/2exp é
ë
ê- 1

2 y
HR-1

y yù
û
ú (42)

where G=M+ N- 1 is the total number of sen‑
sors in an array，and

R y= E { y ( )t yH ( )t }= BR s͂BH + σ 2n I2M (43)

with R s͂= é
ë
ê

ù
û
ú

R s R 's
R '*s R *

s

，R s= E{s (t) sH ( t )}，R 's=

E{s (t) sT ( t )}，and B= é
ë
ê

ù
û
ú

A 0
0 A*

.

Consequently，the CRB of NC sources for a
CSA can be expressed as follows［20‑22］

CRBnoncir = σ 2n
2 ·

{Re éëêêDHΠ ⊥
A D⊕ ( [ R sAH,R 'sAT ] R-1

y͂
é
ë
ê

ù
û
ú

AR s

A*R '*s )
Tù

û
úú}

-1

(44)
where D= dA (Θ 1 ) /dΘ 1，Π ⊥

A ( )Θ1
is the projection

matrix A[AHA] -1AH，R y͂= é
ë
ê

ù
û
ú

R y R 'y
R '*y R *

y

，and ⊕ is

the Hadamard product （i. e.，
( A⊕B )i，j= (A) i，j (B) i，j）.

3. 4 Advantages of the proposed algorithm

Compared with conventional RIPM algorithm，

the proposed algorithm has the following advantag‑
es：

（1）The proposed algorithm has a much lower
computational complexity as no spectral peak search
is involved.

（2）The proposed algorithm can obtain a larger
array aperture and more DOFs. Specifically， the
maximum number of detected sources is increased
to min ( 2M- 1，2N- 1 ).

（3）It can achieve a better DOA estimation per‑
formance than Capon method and ESPRIT‑based
method.

（4） The proposed algorithm can work well
without estimating the NC phase.

These advantages are verified in the simulation
section below.

4 Simulation Results

Independent Monte Carlo simulations are used
to evaluate the DOA estimation performance. The
root mean square error（RMSE）is defined as follows

RMSE= 1
K ∑k= 1

K 1
L ∑l= 1

L

[ θ̂ k,l- θk ]2 (45)

where θk is the real angle of the k‑th signal and θ̂ k，n is
the estimate of θk in the l‑th Monte Carlo trial，
where l= 1，2，⋯，L. All the numerical results
were obtained from L= 1 000 independent trials.

4. 1 DOA estimation performance improvement

by using NC features

In Fig.7，we show the DOA estimation perfor‑
mance of circular and NC sources versus SNR for
CSA. Assume that there are K=2 NC signals im‑
pinging on the CSA with elevation angles being θ=
(10°，30°) and the NC phases being φ= (5°，15°)，
and the number of sensors for Subarray 1 and Subar‑
ray 2 is set as M=5 and N=7，respectively. Fig.7
shows that the proposed algorithm NC‑RIPM
achieves a much better performance than conven‑
tional RIPM for circular signals.

4. 2 DOA estimation performance improvement

by using coprimeness

Consider that K=2 uncorrelated NC signals
impinge on a ULA and a CSA. For fair compari‑
son，the ULA has M+ N- 1 sensors. Fig. 8 indi‑
cates the RMSE performance of the NC‑RIPM for
ULA and NC‑RIPM for CSA. The CRB［22］ is plot‑

Fig.7 RMSE performance comparison with circular and
noncircular signals versus SNR
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ted as a benchmark. It is illustrated in Fig.8 that the
proposed algorithm has a better DOA estimation
performance for CSA than for ULA.

4. 3 Comparison of DOA estimation RMSE ver⁃

sus Different algorithms

Fig.9 indicates the DOA estimation perfor‑
mance comparison among the RIPM，RD‑Capon，
and ESPRIT for CSA. It can be seen that the pro‑
posed algorithm has approximate DOA estimation
performance.

Fig.10 presents the DOA estimation perfor‑
mance of different methods versus different snap‑
shots. In this simulation，we fix M= 7，N= 5.
Fig.10 shows that the DOA estimation performance
becomes better with the increase in snapshot. The

reason is that increasing the amount of sampled data
makes the covariance matrix more accurate.

4. 4 Comparison of DOA estimation RMSE ver⁃

sus different Parameters

Fig.11 plots the variation tendency of DOA es‑
timation performance with a changing sensor num‑
ber of Subarray 1，while the sensor number of Sub‑
array 2 is fixed.

5 Conclusions

In this paper，we proposed the NC‑RIPM algo‑
rithm for the DOA estimation of NC signals for
CSA. Compared with the conventional RIPM for
circular signals and NC ‑ RIPM for ULA，the pro‑
posed algorithm has a better estimation performance
by exploiting the NC property and the coprimeness
of the subarrays. Different from the conventional
PM method，the proposed algorithm achieves DOA

Fig. 8 RMSE performance comparison versus different ar‑
ray geometries

Fig.9 DOA estimation performance comparison versus
SNR

Fig.10 DOA estimation performance comparison versus
snapshot number

Fig.11 DOA estimation performance comparison versus M
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estimations without performing the spectral peak
search. It has a much lower computational complexi‑
ty. Moreover，the proposed algorithm requires no
EVD of the covariance matrix，and it works well
without estimating the NC phases. Numerical simu‑
lation results verify the effectiveness and improve‑
ment of the proposed algorithm.
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