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Abstract: An ant colony optimization with artificial potential field（ACOAPF） algorithm is proposed to solve the
cooperative search mission planning problem of unmanned aerial vehicle（UAV） swarm. This algorithm adopts a
distributed architecture where each UAV is considered as an ant and makes decision autonomously. At each decision
step，the ants choose the next gird according to the state transition rule and update its own artificial potential field and
pheromone map based on the current search results. Through iterations of this process，the cooperative search of
UAV swarm for mission area is realized. The state transition rule is divided into two types. If the artificial potential
force is larger than a threshold，the deterministic transition rule is adopted，otherwise a heuristic transition rule is
used. The deterministic transition rule can ensure UAVs to avoid the threat or approach the target quickly. And the
heuristics transition rule considering the pheromone and heuristic information ensures the continuous search of area
with the goal of covering more unknown area and finding more targets. Finally，simulations are carried out to verify
the effectiveness of the proposed ACOAPF algorithm for cooperative search mission of UAV swarm.
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0 Introduction

With the development of inexpensive
mini‑UAV，a novel concept of“UAV swarm”has
become a research hotspot［1‑2］. The main inspiration
of UAV swarm comes from the biological groups，
such as bird flock， ant colony and fish school，
which exhibit a collective intelligence［3］. Each UAV
in the swarm acts with a certain level of autonomy
based on the local perception and interaction with
the environment without centralized control. There‑
fore，the UAV swarm is self‑organized and shows
good robustness，scalability and flexibility which are
beneficial to operations.

Cooperative search for an unknown mission ar‑
ea is a typical operational task of UAV swarm，with
purpose to determine where the targets lie. The
commonly used algorithms are search map‑based

methods，such as occupancy maps［4］，probability
maps［5］，pheromone maps［6］，and so on. However，
many studies are based on the centralized architec‑
ture which will lead to an exponential increase in
computation when the system becomes complex.
Due to the large scale of swarm，an important re‑
quirement of the search strategy is to adopt distribut‑
ed approaches［7］. Qu et al.［8］ studied the regional sur‑
veillance problem of multi‑UAV based on phero‑
mones and artificial potential field（APF），and suc‑
cessfully resolved the issues of optimal search and
obstacle avoidance. Kurdi et al.［9］ solved the task al‑
location problem in multi‑UAV search and rescue
mission based on a bio‑inspired algorithm inspired
from locust behavior. Yao et al.［10］presented a three‑
layer distributed control structure to generate the op‑
timal search trajectories of multiple UAVs based on
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the Gaussian mixture model（GMM） and receding
horizon control（RHC）. Gao and Zhen et al.［11］ pro‑
posed an improved distributed ant colony optimiza‑
tion（ACO） and designed a self‑organized search
mechanism which successfully solved the online
search‑attack mission planning problem［11‑12］.

By combining the ant colony algorithm and arti‑
ficial potential field，we propose a hybrid distributed
ant colony optimization with artificial potential field
（ACOAPF） algorithm to solve the cooperative
search problem of UAV swarm. The APF is intro‑
duced into ACO for improving the state transition
rule. When the potential force exerted on the UAV
is larger than a certain threshold，a deterministic
transition rule is adopted for UAV to avoid threats
or approach targets quickly，otherwise a heuristics
transition rule is used with the goal of covering more
area and finding more targets. The proposed ACO‑
APF algorithm ensures that UAVs are able to
search the uncovered mission area continuously
meanwhile avoid threats effectively.

1 Description of Cooperative

Search Mission Planning Prob⁃

lem for UAV Swarm

The cooperative search mission refers to a
swarm of UAVs searching for targets in a designat‑
ed area under some certain mission requirements
and constraints. Thus the discretized search environ‑
ment model and mission optimization model are es‑
tablished for describing this problem.

1. 1 Search environment model

The cooperative search mission of UAV
swarm is described as：The swarm with size of N v

isomorphic UAVs searches for targets in a given ar‑
ea with N t targets and N th threats which are un‑
known in advance. The UAVs should work in a co‑
operative way to search targets meanwhile avoid the
threats. The mission area is two‑dimensional and
discretized to a grid map with size of L× W，as
shown in Fig.1. The black circles represent the thr‑
eats and red stars represent the targets. Assume that
the detection radius of UAV is R，then the targets

and threats within R will be found. Take the dis‑
placement of UAV in a decision step as the width of
grid and consider the maximum turning angle θmax，
then the gray grids will be the candidate grids for the
next step.

1. 2 Mission optimization model

The goal for cooperative search mission of
UAV swarm is to cover more area and find more tar‑
gets. Therefore，the target discovery benefit and en‑
vironment search benefit are defined for establishing
the mission optimization model.

The target discovery benefit is defined as the
sum of target existence probability of all grids within
detection radius，namely

J t ( k )= ∑
i= 1

Nv

∑
(m,n ) ∈ Si

pimn ( k ) (1)

where Si represents the detection range of the ith
UAV and pimn ( k ) the target existence probability of
grid (m，n ) at the ith UAV’s target probability map
at time k.

The environment search benefit is defined as
the surveillance coverage rate，which is calculated
by the ratio of grids that have been searched to all
grids in the mission area.

Je ( k )= ∑
x= 1

L

∑
y= 1

W

grid( x,y ) ( k ) L× W (2)

where grid( x，y ) ( k )= 1 if the grid ( x，y ) has been
searched at time k，otherwise grid( x，y ) ( k )= 0.

Then the mission optimization model with goal
of maximizing the target discovery benefit and envi‑
ronment search benefit can be expressed as

Fig.1 Discretized search environment model
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U * = arg max
U
(ω× J t +( 1- ω )× Je )
s.t. G ≤ 0

(3)

where ω is the weighting coefficient and U the deci‑
sion input. G ≤ 0 is the set of constraints，including
the maximum turning angle θmax，collision avoidance
constraint G c and threat avoidance constraint G t. We
have
ì

í

î

ïï
ïï

G c:dmin - dij ( k ) ≤ 0      i,j= 1,2,⋯,Nv ; i≠ j

G t:RT
l - d T

il ( k ) ≤ 0     i= 1,2,⋯,Nv ; l=
1,2,⋯,N th

(4)

where dij ( k ) is the distance between the ith UAV
and the jth UAV at time k，which should be larger
than the minimum safe distance dmin. d T

il ( k ) is the
distance between the ith UAV and the lth threat at
time k，which should be larger than the radius of the
lth threat RT

l .

2 Design of ACOAPF Algorithm

for Cooperative Search Mission

Planning

For solving the mission optimization model，an
ACOAPF algorithm is presented. Each ant estab‑
lishes its own artificial potential field and pheromone
map. Then at each decision step，ants carry out the

state transition and accordingly update the artificial
potential field and pheromone map based on search
results.

2. 1 Artificial potential field

UAVs are expected to move towards the grids
with higher target existence probability meanwhile
avoid threats effectively，thus the target attraction
field and threat repulsive field are designed.

（1）Target attraction field
The target attraction field can be expressed by

the target probability map（TPM），which describes
the possibility that the target exists at a certain re‑
gion. The greater target existence probability means
the greater attraction to UAVs. The TPM for the
whole mission area at time k stored by the ith UAV
is

TPM i (k) = {pimn ( k ) |m= 1,2,…,L,n=
1,2,…,W}

(5)

The initial value of TMP represents the priori
information of mission area. And it will be dynami‑
cally updated at each decision step according to the
search results. Then the target existence probability
update method is designed based on the Bayes prob‑
ability formula as

pimn ( k+ 1 )=
ì

í

î

ï

ï
ïï

ï

ï
ïï

τpimn ( k ) (m,n )     ∉ Si
PD ·pimn ( k )

PF +( PD - PF ) ·pimn ( k )
(m,n )     ∈ Si,b ( k )= 1

( 1- PD ) ·pimn ( k )
1- PF +( PF - PD ) ·pimn ( k )

(m,n )     ∈ Si,   b ( k )= 0

(6)

where τ ∈ [ 0，1 ] is the attenuation factor. PD，   PF
represent the detection probability and false alarm
probability of sensor，respectively. b ( k ) = 1 if the
sensor detects a target，otherwise b ( k ) = 0. When
the target existence probability of a grid is greater
than a certain threshold，it is considered to have a
target.

Then the target attraction force exerted on the
ith UAV is the gradient of TPM at the position of
UAV Xi.

F att ( Xi )= ∇XiTPM i   (7)
Eq.（7）means that the attraction force will point to

the direction where the target existence probability
increases the most，so as to drive UAV move to‑
wards the grid with higher target existence probabili‑
ty quickly.

（2）Threat repulsive field
The threat repulsive field is designed for gener‑

ating a repulsive force so as to prevent UAVs from
entering the threat areas. The repulsive force needs
to increase as the distance between UAV and threat
decreases. Therefore，the repulsion function is de‑
signed as
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F rep ( Xi )=
ì

í

î

ïï
ïï

K r ⋅ ( )1
( d ( Xi,X t ) )2

- 1
( dm- d 0 )2

  d ≤ dm

0                                                                                d > dm

(8)

where K r is the repulsion gain，X t the position of the
discovered threat，d ( Xi，X t ) the distance between
UAV and threat，d 0 the minimum safe distance，
and dm the influence range of the repulsive potential
field. The repulsive force points from threat to
UAV so as to drive UAV away from the threat.

2. 2 Pheromone map

Pheromone is an important medium for ant col‑
ony to realize the behavior coordination，whose con‑
centration reflects the attraction degree of the grids
to ants. Each ant establishes its own pheromone
map to represent its perception of the environment
as

τ i ( k )= { τ i( x,y ) ( k ) }  
x= 1,⋯,L, y= 1,⋯,W (9)

where τ i( x，y ) ( k ) denotes the pheromone concentra‑
tion of the grid（x，y）at time k in the ith ant’s pher‑
omone map. Then a local pheromone update mecha‑
nism and a global pheromone update mechanism are
designed for achieving the cooperative search behav‑
ior of UAV swarm.

After a state transition，pheromone concentra‑
tion of the grids that have been searched should be
reduced so as to avoid repeated search. Thus the lo‑
cal pheromone update mechanism is designed as

ì

í

î

ïï
ïï

τ i( )x,y ( k+ 1 )= τ i( )x,y ( k )- Δτl i( )x,y ( k )

Δτl i( )x,y ( k )= ∑
j ∈ T i

neighbor

Δτl ( )i,j
( )x,y ( k ) (10)

Δτl ( )i,j
( )x,y (k) =

ì

í

î

ï
ï
ï
ï

Δτl0 ×
R4 - d 4 ( ( x,y ),( xj,k,yj,k ) )

R4

                   d 4 ( ( x,y ),( xj,k,yj,k ) ) ≤ R4

0 d 4 ( ( x,y ),( xj,k,yj,k ) ) > R4           

(11)

where T i
neighbor is the neighbor set of the ith ant，Δτl0

the local pheromone attenuation coefficient，
( xj，k，yj，k ) the position of the jth ant at time k，and
d ( ( x，y )，( xj，k，yj，k ) ) the distance between grid
( x，y ) and ( xj，k，yj，k ). This update mechanism is able
to improve the surveillance coverage rate.

Considering that new targets may appear in the
grids which have been searched， the pheromone
concentration of all grids should be enhanced at reg‑
ular intervals. Therefore，a global pheromone up‑
date mechanism is designed as

τ i( )x,y ( k+ 1 )= τ i( )x,y ( k )+ F × Δτg0 (12)

where F ∈ ( 0，1 ) is the environment uncertainty.
This update mechanism ensures the continuous
search of the entire mission area.

2. 3 State transition rule

By introducing the APF into the state transi‑
tion rule of ACO，an ACOAPF algorithm is pro‑
posed，where the transition rule is divided into de‑
terministic transition and heuristics transition. When
the ant is located at a grid with large potential field
force，it means that the ant is close to threat or tar‑
get. Thus the deterministic transition is adopted to
drive the ant away from threat or approach target as
quickly as possible under the guidance of force.
While in other cases，heuristics transition consider‑
ing pheromone and heuristic information is adopted
for covering more area and finding more targets.

（1）Deterministic transition rule
Assume that smax is the detected grid with the

maximum potential field force. If the distance be‑
tween current grid si and smax is smaller than a certain
threshold dT，the deterministic transition rule is ad‑
opted and the next gird sj is chosen from

sj= arg minj ∈ Ω
{ θj }      d ( si,smax ) ≤ dT (13)

where Ω is the set of candidate grids and θj the angle
between the potential force of si and the path pointed
from si to sj. A candidate grid with minimum θj will
be chosen as the next grid for the ant，so as to lead
it quickly away from threat or close to target.

（2）Heuristics transition rule
If there is no threat or target near the ant，the

heuristics transition rule is adopted. The ant will
transfer according to the pheromone concentration τ
and heuristic information η as
sj= arg max

j ∈ Ω
{ [ τij ]α×[ ηij ]β }      d ( si,smax ) > dT(14)

where α，β reflect the importance degree of τ and η
in transition，respectively. In order to improve the
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coverage of mission area to find more targets，the
surveillance coverage rate is constructed as heuristic
information.

Furthermore，considering the situation that the
ant is surrounded by grids that have been searched
and trapped in a local search，an iteration threshold
NT is introduced. If the coverage rate keeps un‑
changed for NT iterations， the ant will move to‑
wards the nearest unsearched gird. This improve‑
ment ensures that the surveillance coverage rate can
always reach 100%.

3 Simulation Analysis

In order to verify the effectiveness of the de‑
signed ACOAPF algorithm，simulations are carried
out in this section. The mission area is set as
100 km × 100 km and discretized to grids with size
of 100 × 100. There are 18 targets and 5 threats
distributed in the mission area whose information is
shown in Tables 1，2，respectively. The swarm con‑
sists of 10 UAVs，whose maximum turning angle
θmax = 45° and detection radius R= 3 km. More‑
over，the system parameters used in the simulations
are：PD = 0.9，PF = 0.1，Δτl0 = 0.8，Δτg0 = 80，

F= 0.02，α= 1，β= 3，NT = 10.

To better verify the superiority of the proposed
algorithm，following cases are designed for compari‑
son.

Case 1：ACOAPF algorithm without consider‑
ing the heuristic information η and iteration thresh‑
old NT.

Case 2：ACOAPF algorithm considering the
heuristic information η and iteration threshold NT.

The UAV paths generated after 200 iterations
of these two cases are shown in Figs. 2，3，where
the red stars and black circles represent the targets
and threats，respectively. The black dots denote the
initial position of UAVs. Fig.2 shows the UAV pa‑
ths of Case 1 and it can be seen that the UAVs are
trapped into local search in the top left of the area.
While in Case 2，the UAVs are able to avoid the lo‑
cal search and cover more area，as shown in Fig.3.
As a result，the coverage rate of Case 2 is signifi‑
cantly higher than that of Case 1， as shown in
Fig.4. After 200 iterations，the coverage rate of Ca‑
se 2 reaches 85.54% and all the targets are found.
However， the coverage rate of Case 1 is only
77.21% and 16 targets are discovered. Moreover，
the UAVs are able to avoid the threats effectively.
Therefore，the proposed ACOAPF algorithm that
considers the η and NT has great advantages in im‑
proving the coverage rate meanwhile realizing the
online threat avoidance.

Table 1 Target information km

Target label
1
2
3
4
5
6
7
8
9

Coordinate
(8, 15)
(15, 60)
(22, 35)
(25, 82)
(29, 50)
(35, 90)
(38, 12)
(45, 41)
(50, 70)

Target label
10
11
12
13
14
15
16
17
18

Coordinate
(55, 20)
(60, 85)
(64, 39)
(72, 31)
(75, 90)
(80, 65)
(85, 13)
(92, 48)
(95, 95)

Table 2 Threat information km

Threat label
1
2
3
4
5

Coordinate
(20, 70)
(85, 60)
(60, 30)
(25, 25)
(70, 85)

Radius
6
4
6
2
3

Fig.2 UAV paths generated after 200 iterations of
Case 1
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4 Conclusions

A distributed ACOAPF algorithm is proposed
for solving the cooperative search problem of UAV
swarm. This algorithm introduces the APF into the
ACO for improving the state transition rule，which
is divided into the deterministic transition and heuris‑
tics transition. Simulation results show that the de‑
terministic transition rule enables UAV to avoid
threat or approach target effectively. And compared
with traditional state transition rule in ACO，the
heuristics transition rule considering heuristic infor‑
mation and iteration threshold significantly improves
the coverage rate. Therefore，the proposed ACO‑
APF algorithm has great advantages in improving
the search efficiency meanwhile realizing the online
threat avoidance，which makes it more effective to
deal with the dynamic environment.

References

［1］ PONDA S S，JOHNSON L B，GERAMIFARD A，

et al. Handbook of unmanned aerial vehicles［M］.［S.

l.］：Springer，2015.
［2］ CLOUGH B T. UAV swarming？ So what are those

swarms，what are the implications，and how do we
handle them？［C］//Proceedings of AUVSI Un‑
manned System Conference. Orlando，FL：AIAA，

2002.
［3］ BRAMBILLA M，FERRANTE E，BIRATTARI

M，DORIGO M. Swarm robotics：A review from the
swarm engineering perspective［J］. Swarm Intelli‑
gence，2013，7（1）：1‑41.

［4］ LUM C W，RYSDY R T，PONGPUNWATTANA
A. Occupancy based map searching using heteroge‑
neous teams of autonomous vehicles［C］//Proceed‑
ings of AIAA Conference on Guidance，Navigation，
and Control Conference and Exhibit. Keystone，Colo‑
rado：AIAA，2006.

［5］ BERTUCCELLI L F，HOW J P. Search for dynamic
targets with uncertain probability maps［C］//Ameri‑
can Control Conference. Minneapolis， Minnesota：
IEEE，2006：737‑742.

［6］ ERIGNAC C. An exhaustive swarming search strate‑
gy based on distributed pheromone maps［C］//AIAA
Infotech@Aerospace 2007 Conference and Exhibit.
Rohnert Park，California：AIAA，2006.

［7］ ALFEO A L，CIMINO M G C A，FRANCESCO N
D，et al. Swarm coordination of mini‑UAVs for target
search using imperfect sensors［J］. Intelligent Decision
Technologies，2018，12（12）：1‑14.

［8］ QU Y H，ZHANG Y T，ZHANG Y M. A UAV so‑
lution of regional surveillance based on pheromones
and artificial potential field theory［C］//International
Conference on Unmanned Aircraft Systems. Denver，
Colorado：IEEE，2015：380‑385.

［9］ KURDI H，HOW J，BAUTISTA G. Bio‑inspired al‑
gorithm for task allocation in multi‑UAV search and
rescue missions［C］//AIAA Guidance，Navigation，
and Control Conference. San Diego， California：
AIAA，2016.

［10］ YAO P，WANG H L，JI H X. Gaussian mixture
model and receding horizon control for multiple UAV
search in complex environment［J］. Nonlinear Dynam‑
ics，2017，88（2）：1‑17.

［11］ GAO C，ZHEN Z Y，GONG H J. A self‑organized
search and attack algorithm for multiple unmanned aer‑
ial vehicles［J］. Aerospace Science & Technology，
2016，54：229‑240.

［12］ ZHEN Z Y， XING D J， GAO C. Cooperative
search‑attack mission planning for multi‑UAV based
on intelligent self‑organized algorithm［J］. Aerospace

Fig.3 UAV paths generated after 200 iterations of
Case 2

Fig.4 Comparison of coverage rate

917



Vol. 36Transactions of Nanjing University of Aeronautics and Astronautics

Science & Technology，2018，76：402‑411.

Acknowledgements This work was supported by the Na‑
tional Natural Science Foundation of China (Nos.61973158,
61673209) and the Aeronautical Science Foundation (No.
2016ZA52009).

Authors Ms. XING Dongjing is currently a postgraduate
student of navigation，guidance and control in College of Au‑
tomation Engineering，Nanjing University of Aeronautics
and Astronautics. Her research interest focuses on coopera‑
tive control of UAVs.
Prof. ZHEN Ziyang is currently a professor in College of Au‑
tomation Engineering，Nanjing University of Aeronautics
and Astronautics. His research interests are flight control of
UAVs and hypersonic vehicle，preview control and adaptive
control.
Mr. ZHOU Chengyu is currently a postgraduate student of
control engineering in College of Automation Engineering，
Nanjing University of Aeronautics and Astronautics. His re‑
search interest focuses on flight control of UAVs and image

processing.
Prof. GONG Huajun is currently a professor in College of
Automation Engineering，Nanjing University of Aeronautics
and Astronautics. His research interests are flight control of
UAVs and hypersonic vehicle，system modeling and simula‑
tion.

Author contributions Ms. XING Dongjing designed the ar‑
chitecture for cooperative search mission planning of UAV
swarm， established the mission optimization model，pro‑
posed the ACOAPF algorithm，interpreted the results and
wrote the manuscript. Prof. ZHEN Ziyang summarized the
existing researches and contributed ideas about improvement
direction of the algorithm. Mr. ZHOU Chengyu provided
the simulation programming supports and contributed to the
results analysis. Prof. GONG Huajun contributed to the dis‑
cussion and background of the study. All authors commented
on the manuscript draft and approved the submission.

Competing interests The authors declare no competing in‑
terests.

(Production Editor: Xu Chengting)

918


