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Abstract: With the development of data age, data quality has become one of the problems that people pay much
attention to. As a field of data mining, outlier detection is related to the quality of data. The isolated forest algorithm is
one of the more prominent numerical data outlier detection algorithms in recent years. In the process of constructing
the isolation tree by the isolated forest algorithm, as the isolation tree is continuously generated, the difference of
isolation trees will gradually decrease or even no difference, which will result in the waste of memory and reduced
efficiency of outlier detection. And in the constructed isolation trees, some isolation trees cannot detect outlier. In this
paper, an improved iForest-based method GA -iForest is proposed. This method optimizes the isolated forest by
selecting some better isolation trees according to the detection accuracy and the difference of isolation trees, thereby
reducing some duplicate, similar and poor detection isolation trees and improving the accuracy and stability of outlier
detection. In the experiment, Ubuntu system and Spark platform are used to build the experiment environment. The
outlier datasets provided by ODDS are used as test. According to indicators such as the accuracy, recall rate, ROC
curves, AUC and execution time, the performance of the proposed method is evaluated. Experimental results show

that the proposed method can not only improve the accuracy and stability of outlier detection, but also reduce the
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number of isolation trees by 20%—40% compared with the original iForest method.
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0 Introduction

As a significant subject, outlier detection has
been widely researched recently. The general idea
of outlier detection is to identify data objects that do
not fit well in general data distribution. Outlier de-
tection is related to many aspects of real life, such
as track clustering“: , cyber malicious attacks, trans-
action fraud, grid data anomaly, and so on. For ex-
ample, the governance of power grid data may be
abnormal, missing and repeated to some extend for
power data from different systems. These abnormal
data often can reflect some potential problems faced
by various business systems, power equipment and

platforms in practical work. How to effectively gov-
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ern the data from different sources will have a pro-
found impact on the “management” , “viewing” ,
“using” and “checking” of data. How to detect and
identify abnormal data (outlier) has become a hot re-
search topic.

The definition of outliers given by Hawkins'®
is generally accepted, which is “An outlier is an ob-
servation that differs so much from other observa-
tion as to arouse suspicion that it was generated by a
different mechanism”. In the field of outlier detec-
tion, the commonly used methods mainly include

8 cluster based” ",

distance based®”, density based'
tree based * "', etc.
In the process of detecting outliers, traditional

methods based on distance, density and clustering
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usually need to define abnormal distance, neighbor-
hood radius, abnormal density, etc., and then ob-
tain outlier scores through a large number of calcula-
tions or comparisons on the whole dataset. The la-
bels of data (outliers or inliers) are finally deter-
mined by different thresholds of different methods.
These methods construct a profile of normal instanc-
es, then identify outliers that do not conform to the
normal profile. In addition, some of these methods
(such as clustering) don’t intend to specifically de-
tect outliers which are merely a by-product. There-
fore, these methods have two major drawbacks:
(i) they are optimized to profile normal instances,
but not optimized to detect anomalies. And the re-
sults of outlier detection might not be as good as ex-
pected causing too many inliers identified as outliers
or too few outliers identified as inliers. (i) Many ex-
isting methods can only be used in the small data
size because of their high computational complexity.
Later, an outlier detection algorithm based on isolat-
ed forest (iForest for short) appears. This method
uses the idea of random sampling to sample the orig-
inal dataset without using all the whole data when
performing the outlier detection. Therefore, it does
not require a large amount of calculations and com~-
parisons. And the amount of calculation required for
this method is greatly reduced. The method of iFor-
est obtains a number of samples by randomly sam-
pling the original dataset, and then establishes an
isolation tree (iTree for short) on each sub-sample.
It is considered that the data closer to the root node
is more likely to be abnormal data. Finally, the path
lengths of the data on different iTrees are integrated
to obtain the final abnormal score by which the ab-
normality of the data can be judged. Although iFor-
est has logarithmic time complexity and can effec-
tively process large data sets, it also has the follow-
ing drawbacks:

(i) Since iTree is constructed based on subsam-
ples from random sampling, the structure of iTree
built by different samples may be similar or identi-
cal. As the number of iTrees increases, the differ-
ence between i1Trees gradually decreases, which
will cause memory waste and unnecessary computa-

tional overhead.

(ii) The purpose of building iTrees is to find
out which data is closer to the root node. However,
due to the random sampling of the original dataset
and the next construction of iTrees, it is possible
that some of the iTrees are complete binary trees
and cannot realize the detection of outliers.

(iii) Although the iForest can use part of the
data to detect outliers through random sampling of
the original data, the iTree established on different
sub-samples will appear similar or repeated, so the
detection results of outliers may vary greatly each
time, and the stability of detection cannot be guaran-
teed.

In response to the above questions, a method
is proposed to optimize the construction of iForest
using genetic algorithm on the basis of the original
iForest algorithm. The proposed method selects
iTrees with high detection accuracy and large differ-
ence to form iForest, thereby optimizing the detec-
tion of outliers. In this paper, the detection accura-
cy, difference index and fitness function of the
1Trees are established first, and then the iTrees se-
lected by the genetic algorithm are used to improve
the accuracy and stability of outlier detection. The
main contributions of this paper are as follows:

(i) It has reduced the generation of 20%—
40% iTrees and saved computing resources and
memory space.

(ii) Some indicators are built for selecting
iTrees, such as accuracy of each iTrees, similarity
of difference 1Trees and fitness function.

(iii) It has improved the stability of outlier de-
tection by adding a selection process of iTrees ac-

cording to the accuracy and similarity of each iTree.

1 Related Work

Outlier detection is a very popular area in the
field of data mining. In recent years, many scholars
have done a lot of work in this field. Here, several
advanced and representative outlier detection meth-
ods are introduced.

The distance-based outlier detection method is
a basic method for outlier detecting, which tries to

find the global outliers far from the rest of the data
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based on k nearest neighbor distances of the data
points. This method calculates the distance of the £
nearest neighbors of each data as the abnormal dis-
tance, and then sorts the abnormal distance. The da-
ta with a large abnormal distance is more likely to be
considered as outliers. Then, based on this point of
view, some distance -based outlier detection meth-
ods are proposed, for example, KNN-weight '*.

The density-based approach and its variants try
to find the local outliers located in a lower density re-
gion compared to their 4 nearest neighbors. This
method defines the anomaly factor''” concept for the
first time and counts the number of neighbors within
the specified radius of the data point as outlier score.
It is generally considered that the data with a small
outlier score is outlier. Based on the idea of density,
some improved density-based outlier detection meth-
ods have been proposed, for instance, K-LOF""
This method uses a clustering algorithm to find the
center of the original dataset, and then determines
whether the data is outlier according to the distance
from the data to the center.

The cluster-based method divides the data into
a series of clusters by basic cluster algorithm, and
judges whether the data is abnormal according to the
size of the cluster. The data in clusters with less da-
ta is generally considered to be outlier. Later, some
scholars proposed an anomaly data recognition algo-

rithm based on sample boundaries'”’

. Firstly, clus-
tering was used to obtain the boundary sample set of
normal clusters, and then the relationship between
the data to be tested and the boundary sample set
was analyzed. If the data to be tested belonged to
the boundary sample set, it was judged as normal
data; otherwise, it was outlier.

The above abnormal value detection methods
are usually based on a large number of calculations
or comparisons, which will result in a large compu-
tational overhead when the number of data is larger.
In addition, these methods often under-perform re-
sulting in too many false alarms (having normal in-
stances identified as anomalies) or too few anoma-
lies be detected. Although the emergence of iForest-
based outlier detection methods have improved the

efficiency of outlier detection, as mentioned above,

it still has some shortcomings. Aryal at al.''"’

point-
ed out that the underlying similarity or distance mea-
sures in 1Forest had not be well understood. Con-
trary to the claims that these methods never rely on
any distance measures, they found that iForest had
close relationships with certain distance measures.
This implies that the current use of this fast isolation
mechanism 1s only limited to these distance mea-
sures and fails to generalize to other commonly used
measures. And then they proposed a generic frame-
work named LSHiForest for fast tree isolation
based ensemble anomaly analysis with the use of a
locality-sensitive hashing (LSH) forest. This frame-
work can be instantiated with a diverse range of
LLSH families, and the fast isolation mechanism can
be extended to any distance measures, data types
and data spaces where an LSH family is defined.
Zhang et al.""™ indicated that while iForest - based
methods were effective in detecting global anoma-
lies, they failed to detect local anomalies in datasets
having multiple clusters of normal instances because
the local anomalies were masked by normal clusters
of similar density and they became less susceptible
to the isolation. And they proposed a very simple
but effective solution to overcome this limitation by
replacing the global ranking measure based on the
path length with a local ranking measure based on
relative mass that took local data distribution into
consideration. Although the shortcomings of the iF-
orest-based outlier detection methods were pointed
out, they could not be fundamentally improved. In
this paper, indicators such as detection accuracy and
difference are established for the iTrees, and then
the genetic algorithm is used to select the iTrees to
filter those iTrees with low detection accuracy and
duplicates or similar ones, so as to reduce the gener-
ation of iTrees and improve the effectiveness and

stability of detection results.

2 The Proposed Solution

2.1 Fundamental iForest algorithm

The idea of the iForest algorithm comes from
two characteristics of outliers'” : (i) the exception

data instance occupies a small part of the entire data-
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set; (ii) their attribute values are greatly different
from the normal data attribute values. That is to
say, the outliers are usually “less and different” ,
which makes them easily to be recognized by the
outlier detection algorithm, i.e. “isolated”.

The iForest uses the structure of the binary
tree to define the iTree. Since the outliers are usual-
ly a small part of the entire dataset, iForest can iso-
late the outliers to the leaf nodes that are close to
the root node, thereby identifying the outliers. The
key to iForest algorithm is to construct iTrees so as
to form the forest. For the convenience of descrip-
tion, the notion of iTree and calculation method of
path length and outlier score are defined as follows.

iTree Assuming that T is a node of an iTree,
T is either an external node (leaf node) with no
child or an internal node with one test and exactly
two child nodes (T, , T.). The test at node T con-
sists of an attribute ¢ (segmentation attribute) and a
split value p (segmentation value) so that the test
g << p determines the traversal of a data point to ei-
ther T or T.. The data records less than the segmen-
tation value are assigned to the left child node,
while the data records larger than the segmentation
value are assigned to the right child node. Repeat
this process until the child node has only one data or
has reached the maximum height of the iTree.

Let X ={x, x5,

of a d-variate distribution. A sample of ¢ instances

-, x,) be the given data set

X'"C X is used to build an iTree. X' is recursively
divided by randomly selecting an attribute ¢ and a
split value p, until either: (i) the node has only one
instance or (ii) all the data at the node have the
same values. An iTree is a proper binary tree,
where each node in the tree has exactly zero or two
daughter nodes.

Path length The path length A(x) of the data
record x refers to the number of edges x traverses an
iTree from the root node until the traversal is termi-
nated at an external node.

Outlier score The path length of the data re-
cord in iForest algorithm is taken as an outlier score.
Firstly, the length of the data record x in different
iTrees is solved. Then the average path length of

iTrees is calculated as a normalization factor. Final-
ly, the outlier score of data record x is obtained by
the normalization of path length. According to the bi-
nary search tree, for a sample instance with a given
sample size of ¢, the average length of the corre-

sponding binary search tree is

20— 1
o) (PR AU
2
clp)= (1)
1 =2
0 otherwise

where H (¢ ) is the harmonic function and can be es-
timated by In (ga) +0.5772156649 (Euler con-
stant). As c(go) is the average of A(x) given @, it

can be used to normalize A(x ). The outlier score s

of an instance x 1s defined as

E(h(2) = Eh,(x)/n ()

s(x,ga) = 27 <(e) (3)
where h;(x ) represents the path length of data x in
the ith iTree and E(A(x)) is the average of
h(x) from a collection of iTrees. The following con-
ditions provide three special values of the anomaly
score.

(a) When E(h(x)) >0, s> 1;

(b) When E(h(x)) >¢—1, s> 0;

(¢) When E(h(x) ) = c(¢), s> 0.5.

The process of detecting outliers by the iForest
algorithm can be divided into two steps: (1) The
training process. The original dataset is randomly
sampled, and multiple 1Trees are constructed ac-
cording to the sub-dataset. Then the iForest is com-
posed by the constructed iTrees. (I1) The evalua-
tion process. The outlier score is calculated based
on the path length of the data record in the construct-
ed iForest. For the calculation method of the outlier
score established above, the following assessments
can be made: (i) the closer the average path length
E(h(x)) of data x is to the average length ¢(¢) of
the corresponding binary search tree, the closer the
outlier score s is to 0.5. If all the instances re-
turn s & 0.5, the entire sample does not really have
any distinct outliers. (ii) The closer E(h(x)) is to

0, the closer s is to 1. If instances return s very close
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to 1, they are definitely outliers. (iii) The closer
E(h(x))1s to the sampling size ¢, the closer s is to
0 for the outlier score. If instances have s much
smaller than 0.5, they are quite safe to be regarded

as normal instances.

2.2 GA-iForest: iForest based on genetic algo-

rithm

Although the iForest algorithm integrates the
iTree through the idea of selective integration and
realizes the accurate detection of abnormal data.
However, it does not consider the difference be-
tween the iTrees (individual classifier) , which will
affect the final effect and the stability of the algo-
rithm. In this paper, based on the original iForest al-
gorithm, the idea of genetic algorithm is used to se-
lect the iTrees. After the selection of genetic algo-
rithm, the iTrees with similarity, repetition and
poor detection effect are removed, so as to improve
the difference between individual classifiers and fi-
nally form a classifier with stronger generalization
ability.

The iForest based on genetic algorithm (GA -
iForest) consists of three algorithms, whose specif-
ic descriptions are shown in Algorithms 1, 2 and 3.
Firstly, the iTree is constructed by sampling the
original dataset. Secondly, the detection accuracy
and the difference of the constructed iTrees are cal-
culated according to the test data (randomly sam-
pling from the original dataset and has no label).
Thirdly, the iTrees with high detection accuracy
and great difference are selected by the genetic algo-
rithm according to the corresponding indexes. Final-
ly, the selected iTrees are used to construct the iF-
orest to calculate the outlier score, and the outlier is
judged according to the outlier score. The general
process of GA-iForest is shown in Fig. 1.

The process of detecting outliers for GA-iFor-
est can be roughly divided into five steps: sam-
pling, building iTrees, selecting iTrees, building
iForest, and scoring outliers. The specific steps for
building iTrees, selecting iTrees, and scoring outli-
ers are described in Algorithms 1, 2 and 3.

In algorithm 1, there is an input parameter,

which is the sampled data. Different sub - datasets

ier) Qe

}’rediction
ayer ED)
Model
layer
@
Selection
layer
@
iTree
layer
iTree 1 iTree 2 iTree N
lin i
ISaz;n;rp & ||Subsample 1] [Subsample 2| [Subsample N]|

[ Original Dataset |

Fig.1 Framework of GA-iForest

Algorithm 1: iTree (X ')

Inputs: X'~ input data

Output: an iTree

1. if X'cannot be divided then

2 return external Node{size < |X |}

3. else

4 let Q be a list of attributes in X’

5. randomly select an attribute ¢ € Q

6. randomly select an split value p between the max and
min values of the ¢

7. Xlkselect(X',q<p)

8. X, < select(X',qg=p)

9.  return inNode{LLeft <= iTree( X)),

10. Right <= 1Tree(X,),
11. SplitAttribute < ¢,
12. SplitValue <= p}
13. Endif

are obtained by subsampling approach'®’ randomly
sampling the original dataset, and then an iTree is
established on each dataset. The process of building
an 1Tree is the same as the i1Forest mentioned
above. And then the iTrees are selected according
to the detection accuracy and difference between the
iTrees. The specific process of selecting is described
in algorithm 2. The fitness function and related con-
cepts in algorithm 2 are defined as Eqs. (4—7).

In this algorithm, a part of the data (randomly

sampling from the original dataset and has no label)
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Algorithm 2: Select_iTree (iTrees)

Inputs: M iTrees

Output: the n optimal iTrees

1. encoding the iTrees according the accuracy and dissimi-
larity of each iTrees

2. initial population

3. calculate the fitness

4. for fitness value<Zexpected and iterations <<maximum do

5 nature select by the higher fitness with high probability

of selection
6.  cross with the probability P,

calculate the fitness

8. if fitness value™>expected and iterations ~>maximum
then

9. End

10.  else

11. variation with probability P,

12.  Endif

13. End for

14. return n optimal iTrees

is used to calculate the detection accuracy and differ-
ence of the iTree, and then the genetic algorithm is
used to select the iTrees. The iTrees with high de-
tection accuracy and large difference are selected

and then the iForest can be generated.

Algorithm 3: Outlier (D, N, M)
Inputs: D - input dataset, N - the sample size, M - the

number of trees

Output: outliers

1. set the parameters of the iTree

2. fori=1toMdo

3 X’«sample(D,N)

4. iTree(X'")

5. End for

6. Select iTree(iTrees)

7. build the iForest according to the selected n optimal
iTrees

8. calculate path length to get the outlier scores

9. rank the outlier scores

10. return outliers

Algorithm 3 is based on algorithms 1 and 2. In
this algorithm, the iTrees are generated by algo-
rithm 1, and then the iTrees are selected by algo-

rithm 2. Finally, the iForest is constructed to calcu-

late the path length of the data point and determine
which data is abnormal according to the path length.
The GA -iForest consists of the above three algo-
rithms. The process of selecting the iTrees by genet-
ic algorithm is divided into two steps.

The first step is to define the accuracy index
of the iTree and the similarity index between differ-
ent iTrees. To reduce the similar and repeated
iTrees, the degree of similarity between different
iTrees 1s measured by cosine similarity. The M da-
tasets are obtained by randomly sampling the origi-
nal data, and the M 1Tree (T, T,, -+
tablished according to algorithm 1. Then a part of
the data D ={d,, d>, -

of the original data and has no label) is used to se-

, Ty) are es-

,d,} (randomly sampling

lecting iTrees. For each data sample d;(1 << j <

n), if the score on T; is greater than 0.6 (this val-

ue is the abnormal value threshold) , r, =1, oth-
erwise 0. That 1s
— 1 score(d;) > 0.6 @)
0 otherwise
The result vector V., ={ru, 7, =+, r, (1<

i << M ) is constructed for each iTree. The accuracy
of each tree 1s defined as

n
a;, — E rij

i=1

l<isM ()

The similarity between the two trees T, and T;

is
V.-V,
cosf, — ———~1— (6)
L Vil vl
where “ + 7 represents the inner product of the vec-

the

length of the vector. Thus, the similarity coefficient

.

tor, “ X 7 the normal multiplication, and

matrix between M 1Trees can be constructed as

cos#,, cosb, cos Oy

. cos#, cosb, cos @y
Diff — . . . (7)

cosbyy  coS Oy coS Oy

It can be known from the linear algebra, if the
similarity between two iTrees is lower, the value of
cosine is close to —1. The higher of the similarity,
the closer the cosine value is to 1. And the value of
cosine on [ —1, 1] increases with the increase of
the similarity.

In the second step, according to the difference
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index and the accuracy index, different test data
(random sampling of the original dataset has no la-
bel) are used to compute the detection accuracy and
similarity of different iTrees. Then, according to
the detection accuracy of the iTrees and the dissimi-
larity between different 1Trees, the fitness function
is constructed. Finally the genetic algorithm is used
to select the iTrees with high detection accuracy and

small similarity. The fitness function is

I<ij<M (8)
cos

f(Tz) = wlgij_ +w, X q,
where f(T,) represents the fitness function of T,
cos 0, the phase difference between T, and T;, g,
the accuracy of T, and w, and w, are the weights
corresponding to the phase difference and accuracy,
respectively.

The constructed M iTrees are selected accord-
ing to the detection accuracy and the difference in-
dexes defined above, and the specific steps are as
follows.

(1) Individual coding: encoding the accuracy
and difference of each iTrees. The accuracy uses the

binary coding with the length ’_log’z’ , and the differ-

ence uses the floating-point coding.

(2) Generation of initial population: a popula-
tion of size n is generated, and the encoding format
of each individual 1s (01110---1, 0.54). The first di-
mension is the accuracy coding, and the second di-
mension is the difference coding with a floating
point number between —1 and 1.

(3) Fitness calculation: the individual fitness is
calculated according to the fitness function defined
by Eq. (8). Fitness value determines the merits of
each iTrees and the chance of inheritance to the next
generation.

(4) Selecting the operation: the specific pro-

cess includes: (i) Calculating the total fitness

DY f(Ty) of all individuals in the group; (ii) Calcu-
i=1
lating the relative fitness of the each individual

P(T)=f(T))/ > f(T,) and it is used as the group
=1

probability of each individual to inherit to the next

generation; (iii) Calculating the cumulative proba-

bility ¢, = EP( T,) of each individual; (iv) Gener-
=1

ating a random number 7 in the interval of [0, 1];
(v) If r << gy, select individual 1, otherwise select
individual % such that P, ; << r << P, holds; (vi) re-
peat (iv) and (v) n times;

(5) Crossing: according to the probability P,
to exchange some codes between two individuals, a
single point crossing method is adopted, such as the
crossing of individual T, =(011010---0,0.42) and
individual T, =(101010---1, 0.35) at position 1. T,
T,=(111010---0,0.42) and T,=
(001010---1,0.35) after crossing or the exchange of

turns 1nto

the second-dimensional decimal.

(6) Variation: the coding of a certain position of
the individual was changed according to the probabil-
ity P,,, for example, the fourth position of the first
dimension of the individual T, =(101010---0,0.42)
1s mutated. It turns to T, =(101110---0, 0.42) after

the variation.
3 Analysis of Algorithm Complexity

3.1 Analysis of time complexity

In this paper, the genetic algorithm is used to
realize the improvement of iForest. The algorithm
complexity of iForest is analyzed firstly. In the iFor-
est algorithm, the storage structure of the binary
tree is used to construct the iTrees, and then the
corresponding path length is calculated. For a bina-
ry tree, in the worst case where all nodes have on-
ly left children or only right children, the time of
each search operation is T'(n )= cn and the travers-
al can only be assigned into the left or the right sub-
sequence each time. So the time complexity satis-
fies

Tn)=Tm—1) +cn=
Tn—2)+cn—1) + =

Tn—3) +cn—2) +cn—1) +an—

T(1) +2c+3c+ -+ cn=0(n" (9)

In the average case, the binary tree is a full bi-
nary tree. Each search only needs to traverse half of
the sequence, and then each traversal sequence is di-

vided into two halves each time, so the time com-
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plexity satisfies
T(n) =2T (n/2) +cn/2

T(n) :2[2T(%2) + C"/ZJ + n/2

T(n) = 2" T(%K) + ken/? (10)

Supposing that 2" = n , then

T(n) =0O(nlogn) (11)

For the iForest, the average time complexity
is O(nlogn).

For the genetic algorithm used in this paper, it
can be seen as a ONE-MAX problem, which is a
GA-easy problem. The problem can be described as

max{ f(x);x € X} (12)
where x=(x,,x,, *+,x,) 1s the individual code,
2, €{0,1}; n the code length; the fitness function
f(x)=x +x,+ -+ 2, The optimal solution
is x"=(11---1), and the optimal function value
is /' (x) = n. The following genetic algorithm is con-
structed to solve the time complexity of the above
problems.

N samples are selected as the initial popula-
tion, denoted as &. Let f (&) =0 and £= 0.

Reorganization operation: For any reorganiza-
tion operation, generating a new population, denot-
ed as &;; Mutation operation: For each individual x,
(binary string) in &, one bit is randomly selected
and converted into its complement to generation a
new individual y, and a new population &y =
{ ¥1,y2, ==, yu )3 Selection operation: Select N indi-
viduals from the population &y as the next genera-
tion population, denoted as &y.,, and concate-
nate k=+/k+ 1. If f(Ex-1) =n, the process is end-
ed, otherwise the above process is repeated.

Let time T= min { /(§)=n}, the expecta-
tion of this time is considered as the average calcula-
tion time. Let f (&) =0, then

E[Tf(§)=0]< 0"

ProveLet To=0, Ty="T,+ min { /(&)=
1}, = and T,= T, + min { f(§ 4 )=n},
then

T:Tl_T0+T2_T1+"'+T11_Tn*l

Foragivenm(lsm<n), let T, =T, |+

min { f(§.7,)=m }, on the one hand

T, =T, = min { fGor )= m)=

min { /(v J=m =T, T,
On the other hand,
T,— T, = min {(f(&ir, )=m}<
M min { f (&0 )=m)

So
E(T,— T, )<E(T,— T, )<ME(T,—T,-1)

Let the population £'be the progeny population
after a cycle of population &, since P( f(&)<<m —
1/ (&)=m—1)=0, therefore

P(f(E)=mlf(§)=m—1)= L~
SoE(T,— T, )=

1
e =mlper=m— 1) ="

n* < E(T|f(&)=0)< Mn®
Therefore, the time complexity of genetic algo-

rithm application in this paper is O(n”).
3.2 Analysis of spatial complexity

In this paper, the iTrees need to be construct-
ed in the process of detecting outliers, and the con-
struction process of 1 Trees is similar to the construc-
tion process of the binary tree. Therefore, the spa-
tial complexity of the method is the same as that of

the binary tree, namely O(N ).

4 Experiment

In this paper, the "Spark on Yarn" cluster
mode is used to construct the experimental environ-
ment of outlier detection. The experiment uses three
virtual machines as the outlier detection nodes, one
of which 1s the master and the other two are the
slaves. Each node uses the Ubuntu-14.04 operating
Hadoop-2.7.6, Spark-2.1.1-bin-ha-
doop2.7, Scala-2.11.7, and JDK-1.8.0_16 to build

a software environment. The three virtual machines

system,

are all 4 G memory. In this paper, the parameter
setting of the iForest and the GA -iForest is set by
the default, that is, the number of iTree 1s 100 and
the sampling size is 256. In the LOF algorithm, the
parameter K is settled to 6. The experimental datas-
ets are all from ODDS, and the specific information

of the dataset is shown in Table 1.
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Table 1 Information of experiment dataset 0.85
No. of No. of dimen- Outliers (Pre- 0.80
Dataset ) )
points sion centage/ %) 8 075
Annthyroid 7 200 6 534(7.42) g ’
Arrhythmia 452 274 66(15) £ 0.70
Breastw 683 9 239(35) o 065
= 0.
Forestcover 286 048 10 274 7(0.9) <
Pendigits 6 870 16 156(2.27) 0.60
Mammogra-
11183 6 260(2.32 0.55 e
phy ( ) 0 10 20 30 40 50 60 70 80 90 100
No. of iTree
Mulcross 262 144 4 262 14(10) Fig.3 Detection performance AUC varying with the num-
Cardio 1831 21 176(9.6) ber of iTrees on Arrhythmia dataset

To verify that as the number of iTrees increas-
es, the similarity between them gradually increas-
es, the final detection accuracy is compared by
changing the number of iTrees. In the experiment,
two datasets of Annthyroid and Arrhythmia are se-
lected as the representatives and AUC is used as the
comparison index. The results are shown in Figs.2
and 3.

As can be seen from Figs.2 and 3, as the num-
ber of iTrees increases gradually, the value of AUC
gradually tends to be stable. In Fig. 2, when the
number of iTrees is around 80, the change of detec-
tion accuracy AUC tends to be flat. While in Fig.3,
when the number of iTrees is around 60, the detec-
tion accuracy AUC starts to be flat. This indicates
that as the number of iTrees increases, the similari-
ty between them increases gradually, leading to no
significant improvement in detection accuracy.

Experiment 1 Comparison of detection accu-

racy and actual number of iTrees

0.85

0.80

e

2

v
T

AUC performance
I
~
S

I
=Y
o

60
0 10 20 30 40 50 60 70 80 90 100
No. of iTree

Fig.2 Detection performance AUC varying with the num-

ber of iTrees on Annthyroid dataset

To verify the detection accuracy of GA -iFor-
est, the datasets in Table 1 are used as the test data.
For the sake of ensuring the credibility of the experi-
ment, the experiment is performed 10 times and the
average value is taken as the final result on each da-
taset. For the verification of the detection accuracy,
ROC curve and the value of AUC are selected as
metrics, whose results are shown in Figs.4, 5 and 6.

From the above experiment, it can be seen that
the ROC curve of GA-iForest can completely cover
the ROC curves of iForest and LOF. It indicates the
detection accuracy of the GA-iForest is better than
iForest and LOF in Breastw and Forestcover datas-
et. The GA-iForest selects high-performance iTrees
and optimizes the construction process of iForest.
Therefore, GA -iForest algorithm can improve the
detection accuracy of outliers. To fully verify the su-
periority of the detection accuracy of the GA-iForest
to iForest and LLOF, experiments on several other
datasets are carried out, whose results are shown in

Fig.6.

— GA-iForest
— iForest
LOF (K=6)

True positive rate

0.0 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

Fig.4 ROC curve on Annthyroid dataset
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0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.0 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

— GA-iForest
— iForest
LOF(K=6)

True positive rate

Fig.5 ROC curve on Forestcover dataset

= GA-iForest
= iForest
o LOF(K=6)

AUC performance
CoLoLLooeoor
O—=PNWRARARULNAIOOO

& D PGS
PSS S Ko L
& V&‘”@ Yé‘%\ & Qf*& & C
&4‘9
Dataset

Fig.6 AUC performance on the other datasets

It can be seen from the results of ROC curve
and histogram of AUC performance that the pro-
posed method GA-iForest is superior to the iForest
and LOF in terms of detection accuracy. In this pa-
per, efficient detection of abnormal data is achieved
by filtering similar or repeated iTrees. Due to differ-
ent datasets, the number of iTree reductions on
each dataset is not equal, the specific results of
iTrees reduction are shown in Table 2.

Experiment 2 Comparison of detection time

To compare the execution time of each algo-
rithm, the above datasets are also used in this exper-

iment. For GA-iForest and iForest algorithms, the

Table 2 Reduction of iTrees on different datasets

Original )
) Selected Reduction
Dataset iTrees ) .
1Trees ratio / %
numbers
Annthyroid 100 80 20
Arrhythmia 100 63 37
Breastw 100 78 22
Forestcover 100 90 10
Pendigits 100 76 24
Mammography 100 65 35
Mulcross 100 84 16
Cardio 100 70 30

training time and prediction time are selected as the
comparison basis, and their total time is calculated.
For the LOF algorithm, there is no training and pre-
diction process, so the total time is directly used as
the comparison basis. The specific running time of
each algorithm is shown in Table 3.

From Table 3, it can be seen that in terms of
total time, the GA -iForest has no significant im-
provement compared with the iForest algorithm.
The reason is that GA-iForest needs a selection pro-
cess when training. For the sake of comparison, the
predicted time and training time in Table 3 are made
into a histogram, whose results are shown in Figs.7
and 8.

From the perspective of training time and pre-
diction time, the GA-iForest requires longer train-
ing time and shorter prediction time. The reason lies
in that the method in this paper will select the iTree
when constructing the iForest, so the training time
will be longer than the original method. Through
the selection of genetic algorithm, the iTrees with

partial similarity, repetition and poor detection ef-

Table 3 Comparison of execution time S
Dataset . GA-iI‘*‘o‘resl - iFo-reél LOF
Train Prediction Total Train Prediction Total
Breastw 0.34 0.12 0.46 0.15 0.21 0.36 1.80
Annthyroid 1.35 1.37 2.72 0.56 2.14 2.70 73.54
Arrhythmia 0.86 0.32 1.18 0.24 0.71 0.95 7.24
Forestcover 3.26 10.31 13.57 1.20 17.31 18.51 234 180.14
Pendigits 0.51 0.32 0.83 0.23 0.48 0.71 2.78
Mammography 4.15 0.76 4.91 3.42 1.25 4.67 14 847.23
Cardio 1.53 0.38 1.91 1.24 0.56 1.80 5.48

Mulcross 1.84 6.45 8.29

1.57 10.34 11.91 26 381.4
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Fig.8 Comparison of train time

fect are reduced, so the prediction time will be im-
proved to a certain extent.

Experiment 3  Comparison of algorithm sta-
bility

To compare the stability, the amount of
change in detection accuracy AUC is chosen as the
measurement index. The iTree established by iFor-
est through random sampling will have similar struc-
ture or repeated iTrees. Due to the randomness of
sampling, the results of each detection may be dif-
ferent. GA-iForest selects the iTrees with high de-
tection accuracy and large difference for outlier de-
tection by filtering the established iTrees. Although
sampling is random, there is no similar or repeated
iTrees after selection, which improves the stability
of detection results.

The construction of iTrees is based on random-
ly sampled dataset. To compare the stability of the
detection results, 10 times experiments are used on
a dataset (Mammography) , and the mean detection
accuracy AUC and the standard deviation of AUC
for each experiment are compared. Fig.9 shows the

variation of the detection accuracy of the three algo-

No. of experiment

Fig.9 The variation of detection accuracy

rithms on Mammography dataset. Table 4 shows
the average detection accuracy AUC and standard
deviation of AUC of the three algorithms on differ-
ent datasets.

From Fig.9, it can be seen that GA -iForest
has a smaller fluctuation range compared with iFor-
est and LOF. It indicates that GA -iForest has the
better stability on the Mammography. According to
the calculation, the standard deviation of GA-iFor-
est 1s 0.005 while iForest and LOF are 0.058 and
0.041, respectively. The variation of detection accu-
racy AUC is also compared on the other datasets,
whose results are shown in Table 4. From Table 4,
it can be known that the mean detection accuracy
AUC of GA-iForest is higher than that of LOF and
iForest, and the standard deviation of AUC is lower
than that of LOF and iForest. It can be concluded
that the stability of GA-iForest is better than LOF
and iForest. The reason why GA -iForest is more

stable in detecting accuracy is that the selection oper-

Table 4 The mean and standard deviation of AUC per-

formance

AUC performance

Mean Standard deviation

Dataset . ) . ,
GA- iFor- LOF GA- iFor- LOF

iForest est (K=6) iForest est (K=6)

Breastw 1.000 0.988 0.836 0.002 0.013 0.010
Annthyroid ~ 0.896 0.801 0.780 0.004 0.025 0.037
Arrhythmia  0.889 0.836 0.818 0.007 0.094 0.054
Forestcover  0.893 0.875 0.642 0.003 0.031 0.026
Pendigits 0.984 0.951 0.863 0.007 0.091 0.058
Mammography 0.921 0.873 0.894 0.005 0.058 0.041
Cardio 0.948 0.920 0.886 0.001 0.016 0.034
Mulcross 0.947 0.886 0.753 0.002 0.029 0.013
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ation of iTrees is added on the basis of the original
iForest algorithm. Therefore, the uncertainty and

similar iTree caused by random sampling is reduced.

5 Conclusions

In this paper, an iForest algorithm based on ge-
netic algorithm GA-iForest is designed on the basis
of the iForest algorithm. The method uses genetic
algorithm to select the high-performance iTrees to
construct the iForest and optimize the construction
of the iForest. The optimized iForest does not have
similar, duplicate and low detection accuracy
iTrees, which saves memory space and improves
the detection accuracy compared with the original
iForest algorithm. However, GA -iForest needs a
more stage of selection when constructing the iFor-
est, which will lead to an increase in the training
time. In the future work, how to improve the train-

ing process of the proposed method will be studied.
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