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Abstract: The problem of correcting simultaneously mass and stiffness matrices of finite element model of undamped
structural systems using vibration tests is considered in this paper. The desired matrix properties, including
satisfaction of the characteristic equation, symmetry, positive semidefiniteness and sparsity, are imposed as side
constraints to form the optimal matrix pencil approximation problem. Using partial Lagrangian multipliers, we
transform the nonlinearly constrained optimization problem into an equivalent matrix linear variational inequality,
develop a proximal point-like method for solving the matrix linear variational inequality, and analyze its global
convergence. Numerical results are included to illustrate the performance and application of the proposed method.
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0 Introduction

It is necessary to build highly accurate mathe-
matical models for analyzing, predicting and control-
ling the dynamic response of actual structures, such
as automobiles, aircrafts, satellites and so on. The
analytical model of an undamped system with n de-
grees of freedom, obtained by finite element meth-
ods, can be represented by

M, x(t)+ K,x(t)=f (1) (1)
where x(7), f(1)€ R" are the displacement and ex-
ternal force vectors, respectively, and M,, K,&
R are the analytical mass and stiffness matrices.
In general, M, and K, are symmetric, sparse and
positive semidefinite matrices (denoted by M,=0,
K, = 0) with special zero/nonzero patterns. The
natural frequency w and the corresponding mode
shape x of the system can be obtained via the follow-
ing characteristic equation or generalized eigenvalue
problem

K. x=o*M,x (2)
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Using eigensolvers''', we can compute the fre-

a)

quencies !’ and the corresponding mode shapes
2" of the finite element model (1). On the other
hand, some of the lower order frequencies w!”’ (i=
1,-++, m<n) and corresponding mode shapes !} of
the real structure can be obtained experimentally by
performing vibration tests on the structure. Owing
to the complexity of the actual structure, the finite
element model is an approximate discrete analytical
model of the continuous structure. The analytically
evaluated dynamic behavior of the structure seldom
agrees with the corresponding experimentally mea-
sured ones. The engineer would like to correct the
mass and stiffness matrices of the existing structure
such that the updated finite element model predicts
accurately the observed dynamic behavior. Then the
improved finite element model may be considered to
be a better representation of the structure than the
original finite element model, and can be used with
more confidence to analyze, predict and control the

dynamic responses of the structure.
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Over the past years, many methods** have
been developed for correcting finite element model
to predict test results more accurately. The most
common approach is to correct the analytical mass
or stiffness matrix with minimal deviation from the
finite element model by imposing the characteristic
equation and the desired matrix properties as side
constraints.

Assume that the analytical mass matrix M, is
exact. Imposing the characteristic equation and the
symmetry of the stiffness matrix as side constraints,
Baruch'*' and Wei”' obtained closed-form solutions
of the updated stiffness matrix by using Lagrangian
multipliers. However, these methods do not guaran-
tee the positive semidefiniteness of the updated stiff-
ness matrix. Based on the QR-factorization of mea-
sured mode shapes, Dai'® proposed an expression
of the updated stiffness matrix. Using a decomposi-
tion of the stiffness matrix, Kenigsbuch et al.'” pre-
sented the closed-form solution of the updated stiff-
ness matrix. The stiffness matrices corrected by
these two methods not only satisfy the characteristic
equation and are symmetric positive semidefinite. In
all the aforementioned methods, however, the ana-
Iytical stiffness matrix is adjusted globally, and the
sparsity or the zero/nonzero pattern of the stiffness
matrix is not taken into consideration. Kabe'®', Sako
and Kabe'” developed a method and its direct least-
squares formulation for updating stiffness matrix by
imposing the characteristic equation, the symmetry
and connectivity of the stiffness matrix as side con-
straints. Applying the theory of inverse problems for

symmetric matrices' !,

Li et al. '™ presented a
method for updating stiffness elements in local error
model. But these methods fail to guarantee that the
updated stiffness matrix is positive semidefinite. Re-

cently, Yuan'*"

considered the problem of finding
the least change adjustment to the analytical stiff-
ness matrix subject to constraints including charac-
teristic equation, symmetry, positive semidefinite-
ness and sparsity of the stiffness matrix, trans-
formed the problem into the dual problem and the
matrix linear variational inequality, and presented a
subgradient method, a projection and contraction

method, and a proximal-point method, respectively.

Using experimentally measured mode shapes,

Berman et al.!"

sought the least change adjustment
to the analytical mass matrix subject to both the
symmetry of the mass matrix and the orthogonality
relation, and derived an expression of the updated
mass matrix by using lLagrangian multipliers.

Zhang''"", and Lee et al.'"

obtained the explicit ex-
pressions of the updated mass matrix by using ma-
trix transformation method and the Moore-Penrose
inverse, respectively. However, the mass matrices
corrected by these expressions not only change the
sparsity of the analytical mass matrix, but also are
not necessarily positive semidefinite. In order to
maintain the sparse structure of the analytical mass
matrix, Wei and Zhang'"', and Cha'®"’ proposed the
analytical mass matrix modification method via ele-
ment correction, but the updated mass matrix fails
to be positive semidefinite. Recently, Dai and
Wei'?' considered the problem of correcting the ana-
lytical mass matrix subject to constraints including
symmetry, orthogonality relation, positive semidefi-
niteness and sparsity of the mass matrix, and pre-
sented a cyclic projection method.

Combining the analytical mass matrix modifica-
tion with the analytical stiffness matrix adjustment,
Baruch'”' , Berman and Nagy'*", Kenigsbuch and
Halevi”, Cha and Gu'®’', Wang and Yang*' pro-
posed procedures to adjust alternately analytical
mass and stiffness matrices. The mass and stiffness
matrices are related by the characteristic equation,
therefore it is conceivable that simultaneously cor-
recting the mass and stiffness matrices will yield bet-
ter results than sequential correction. Dai'®' |
Wei[zﬂ ,

problem of simultaneously updating the analytical

Kenigsbuch and Halevi'”' considered the

mass and stiffness matrices. However, the analyti-
cal mass and stiffness matrices are adjusted globally
in these methods. Recently, Yuan and Dai'®’ inves-
tigated the problem of simultaneously correcting the
analytical mass and stiffness matrices to satisfy char-
acteristic equation, symmetry, positive semidefi-
niteness, orthogonality and sparsity, and presented
a subgradient algorithm for solving the problem.
However, the computational cost of the subgradient

algorithm is expensive and the measured mode
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shapes may not satisfy orthogonality before the
mass matrix is determined. More recently, Wang
and Dai'®’ developed an alternating projection meth-
od for simultaneously correcting the analytical mass
and stiffness matrices. Using the vectorization and
the Kronecker product of matrices, Rakshit and
Khare ™ proposed a novel solution approach for the
finite element model updating problem with no spill-
over. The approach preserves symmetric band struc-
ture of finite element model, but fails to guarantee
that the updated mass and stiffness matrices are posi-
tive semidefinite.

For convenience, we use the following nota-

tions. For a matrix A, tr(A), A" and ||A[|, denote

the trace, transpose and spectral norm of A, respec-
tively. For A, BER""", (A,B) = tr (B"A) and
A2B denote the inner product and the Hadamard
product of A and B, respectively, and the matrix

norm || A | . 18 the Frobenius norm induced by the in-

ner product. SR™" denotes the set of all 7Xn sym-
metric matrices and SR, is the set of all symmet-
ric positive semidefinite matrices in R”". A = 0
means that A is a real symmetric positive semidefi-

nite matrix. The vector inequality x = 0 is meant to

be componentwise (i.e., forx = (2, 25, ,2,)" €
R", we writex =0 ifx, =0foralli=1,--,n),
and let R" = {2lr€ER",2=>0). For A, BER""",

sparse (A) = sparse (B) means that the matrix A
has the same zero/nonzero patterns with the matrix
B. Let A, = diag ((0,"" )7, +++, (w,')?) € R"™™
consist of m measured frequencies, X, = [z, -+,
2] € R consist of m measured mode shapes and
be of full column rank. Without loss of generality,
we assume that the analytical mass matrix M, and

stiffness matrix K, are symmetric since

a6 —(a K| =
1 A A
Mig(MuAFMa) + E(MuiMa) +
F F
1 R ’
HKZ(KHrKf) +H2(Kqu)
F

F
holds for M, K € SR"™.
In this paper, we consider the problem of up-

dating simultaneously the analytical mass and stiff-

ness matrices with requirements of satisfaction of
the characteristic equation, the symmetry, the posi-
tive semidefiniteness and the sparsity, and formu-
late such a problem as the following matrix pencil

nearness problem

1 ’
min o [M.K] —[ M. K],
s.t. KXP :MXyAr
M"=MZ=0 3)

K'=K=>=0
sparse( M ) = sparse( M,)
sparse( K ) = sparse( K,)

Using partial Lagrangian multipliers, we convert
the nonlinearly constrained optimization problem
(3) into an equivalent matrix linear variational in-
equality. Applying proximal point algorithm (PPA)
for variational inequality problems, we develop a
proximal point-like method for solving the prob-
lem (3).

The rest of this paper is organized as follows.
In Section 1, we transform the sparsity constraints
on the mass matrix M and stiffness matrix K into
two equality constraints, and give a brief description
of PPA for variational inequality problems. In Sec-
tion 2, we convert the matrix pencil nearness prob-
lem (3) into an equivalent matrix linear variational
inequality by using partial Lagrangian multipliers. In
Section 3, we develop a proximal point-like algo-
rithm for solving the problem (3), and analyze its
convergence. In Section 4, three numerical experi-
ments are performed to illustrate the effectiveness
and application of the proposed method. Some con-

clusions are drawn in Section 5.
1 Preliminaries

1.1 Reformulation of problem (3)

We transform the sparsity requirements on the
mass matrix M =(m;)€R""" and the stiffness ma-
trix K =(%;)€R""" into convenient forms. The ze-
ro/nonzero matrices M, =

(my)eR""and K, = (k;")E€R""" may be definite-

patterns  of the

ly described as the following index sets

M

Lo ={(i,j)my" =0;i=1,-+ m;j=1,--+,n}
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Low ={(i,j)k;'" " =0;i=1,-- ,n;j=1,+-,n}

Based on the sparsity constraints on the mass matrix
M and the stiffness matrix K depending on the zero/
nonzero patterns of the matrices M, and K,, We de-

fine two auxiliary matrices T, = (2;) € R™™ and

Ty = (1;) € R"" as follows

v |0 gl |0 ()€ L
o Goen’t 1 GuEers
The matrices M, and K, are symmetric and so are

1251 showed

the matrices T, and T%,. Yuan and Dai
that
sparse( M )= sparse(M,)= M*T,, =0
sparse( K )= sparse( K,)= K*Tx =0
Then the problem (3) is equivalent to the following

convex minimization problem

min (M. K] ~[ M..K.]

2
F

s.t. KX.=MX. A,

M,KE SR " 4)
M*T, =0
K*Ty =0

Obviously, the feasible region of the problem (4) is
nonempty.
In order to convert the minimization problem
(4) into an equivalent matrix linear variational in-
equality, we need the following lemmas.
Lemma 1°''  For following convex program-
ming problem
minf(x)
s.t. xe2

where f(z) : R"—>R is a continuously differentiable

(5)

and convex function and 2 C R" is a closed convex
set, x € £ is a minimum if
<x —x,V/( x*)> =0

Lemma 2"

Vre R (6)
For following constrained mini-

mization problem

min /()
sit. gi(x)=0 i=1,--,m (7)
hi(x)=0 j=1,--,!

where f(x), g/(x), j(x): R">R are assumed to
be continuously differentiable, its feasible region is
denoted by Q. Let g(x) = (g, (x), -+, g.(x))",
h(x)=(h(x), -+, h(x))", and L(z,u,v)=x) —
u'g(x) +v"h(x) be the Lagrangian function of the

minimization problem with Lagrangian multipliers
u€R” and v€ R’ Assume that f(x), —g(x) are
convex functions, A(x) is a linear function and the
minimization problem satisfies the Slater constraint
qualification™ , then 2" € and ' ER", v ER’
satisfy the Karush-Kuhn-Tucker (KKT) condi-
tions*" if and only if

Lz u,v)<L(x"u',v)<L(x,u,v) (8
forallz €2, ucR” and vER'.

1.2 Proximal point algorithm (PPA)

Let 2CZR" be a closed convex set, and F:
R" — R" be a mapping. Assume that F(«) is mono-
tone on £2, i.e., <u— v, F(u) — F(v)> =0 for all
u, v& Q. The variational inequality problem is that
of finding «" € £2 such that
(u—u' ,F(u')=0 VYuc (9)
A classical method for solving the variational
inequality problem is the proximal point algorithm
(PPA) proposed first by Martinet'™ , and then de-
veloped by Rockafellar*', Burachiky and Iusem'*’.
For given u' €€, the new iterate "' is obtained by
solving the following auxiliary variational inequality
subproblem
u! 6!2,<u —u" L F(d )+
Bu(u ' — u")> =0

where {8;! is a sequence of positive numbers called

(10)
Yu e

regularization parameters, bounded above. Howev-
er, it is impractical to solve exactly the subproblem
(10) since solving the subproblem (10) may require
a computation as difficult as solving the original
problem. Many researchers presented some imple-
mentable PPAs. Recently, He et al."™ proposed an
implementable PPA method for monotone variation-

al inequalities. The method generates a proximal

point %" which is the solution of the following proxi-

mal subproblem

Z"'eg,<u— W F(d )+ H(ua — uk)> =0 0y
Yuc 2

where the proximal term H (u) is positive definite

(not necessarily symmetric) but may not be the gra-

dient of any function, and the new iterate """ is up-

dated by
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~k

T =u—aH(u— u) (12)
where
k ~k B ~k
<u —u H(u" —u )>

a, — 5

”H(u"* ;k)

(13)

a;=vya;, y€[l,2)
He et al."™ established the global convergence of
the PPA-based method. The parameter y in Eq.
(13) is a relaxed factor. In practical computation,

taking y € [1, 2) is wise for fast convergence.

2 Equivalent Matrix Linear Varia-

tional Inequality Formulation

Let
O —=SR,"""X SR, " XR" "X R""XR""
then 2 is a closed convex set. Let A6R”"", I';,
I', €R""" be the Lagrangian multiplier matrices cor-
responding to KX, —=MXA,, M*T,,—0 and K*
Tx,=—0, respectively. We get the following partial

Lagrangian function for the problem (4)

L(M,K,A,T,,T,)= %”M — M,

2
+

%HK — K| — w(Akx,— mx.4,))—

tr(I, (M*Tw))* tr(FZ(K*TK))
Eq.(14) is defined on £2. Obviously, the gradient of
L(M,K,A, I, T,) with respect to M,K,A, T, and

I', can be written as

a% =M — M, +A"(X.A) —I'*
gﬁ; —K—K,—A"X," — I''*Ty
ZZ =—(KX,— MX,A,)"
=T
KT

Let (M, K', A", I'1, I';) € £ be the KKT
point of the problem (4). By Lemma 1 and Lemma
2, noting that M and K" are the minimum points of
L(M, K,A, T', T',) with respect to M and K, re-
spectively, while A", I'} and I'; are the maximum
points of L (M, K,A, I'y, I';) with respect to A,

I, I',, respectively, we have

(M =M M —M,+(A)(XA,) —
(I Ty ) =0
(K=K K —K,—(A) (X)) —
(T3)'*Ty ) =0
(15)
(A=A (K'X.— M X.A)") =0
(Di= DM Ty ) =0

(I DK T ) =0
VY(M,K,A,I',T',)c N
The compact form of Eq.(15) is the following

linear variational inequality

WeR(u—u Flu))=0 YucR (16)

where
M M
K K
u=| A |, u=| A
I, r,
I, T,
M—M,+A"(X.A) —ri*T, | (D
K—K —AX,"— Fg*TKU
F(u) = (KX, — MX,A,)"
M™*T,,
K™*Ty

We call the problem (16) matrix linear varia-

tional inequality (MLVTI).

3 Proximal Point - Like Method for
MLVI

The PPA for linear variational inequalities can

be directly extended to the matrix linear variational

M/u
Kk
inequality (16). For given «'=| A" |€Q, the
r;
r
~k
M
~k
K
new iterate % = A" | is obtained by solving the
T
~k
r

following proximal subproblem
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~k ~k ~k ~k
u E.Q,<u— u ,Flu )+ H(u —u")>>0
Yue Q

(18)

where H( % — u") is the proximal term. In this pa-

per, we construct the proximal term as follows

P M+ A(X.A) —TI*T,,
rK—A"X," — TI*T,

H (u) = sA— (KX, — MX,A,)" (19)
l‘lI'l 7 MT*TA\/[U
6T, — K"™*T)y

where u € Q2 and s, r;, 1, €ER (i = 1,2) are positive
numbers selected to ensure the positive definiteness
of the linear operator H (u ).

It is easy to verify the following lemma.

Lemma 3 Let A, B R, C, DR,
S € SR"™. Then

(1) tr(A"B)=1tr(B'A);

1 2
@) [(a.8)] < llall Bl < S(lal; +
ENE
(3) tr(C(D*S) )=tr(D(C*S)).

Theorem 1 For any u, v €4,
(«— 0, F(u) — F(v)) =0holds.

M M'
K K’
Proof For any u=| A |,v=| A’ |E€R,it
I, I
r, I,

follows from LLemma 3 that
(u—0,F(u) —F(v))=1tr[ (u—) (F(u)—
F(o)]= M —M'|! +||K —K'|; =0
Theorem 1 shows that the mapping F defined
by Eq.(17) is monotone.
Theorem 2

(1) For any u, v €2,

<u, H(U)> - <7” H(u)>holds;

(2) There exists ¢ > 0 such that | H (]| <
C||u||iforanyu6[2;
(3) Ifry, 1o, s, 41, 1o satisly
n>14 2| XA 12 x| 0

s>1,6>1 i=1,2
then there exists d~>0 such that <u,H(u)>>

cl||u||i for any u € 2.

Proof By Lemma 3, it is easy to verify that

both (1) and (2) hold. Now, we prove (3). By the

definition of the auxiliary matrices 7'y and Tk , we
have [| V<7 || <IIYl, and [[ysr]| <Y,

forany Y €R""". It follows from LLemma 3 that
2(A(KX.— MX.A)") < ||A||’ +

| KX, — Mx.A,

"< lAll: + || kx.

-
F
|Mmx.A, <

2| kx| x| mx.A,
F F

F

ALl + 2] x| <[]+ 2f| x| < Ik

2<I‘1,(M*TM(,)>I-> < ”I'l

L
.

Il + il
2Pl KT ) < || 1|+ [k | <
I+l
(w.H(w) = rl|M||;+ rllKI A+ sllall -+
z,‘]HF]”erlfg r, if

2(A (KX, — MX,A,)") —
2( DM Ty)") — 2 To K¥T )" = (n —

1— 2| x.A.,

2 2
vl + (= 1-

2.

JIKI+ = llall -+ -

2
2

vllr +@ =l

2 2
=dlull?

where d=min{r,—1— ZHXPAF|

2 2
12| x|
2 2
s—1,6,—1,4,— 1}. By Eq.(20), we have d>>0.

Remark 1

operator H (u) is positive definite on £ under the

Theorem 2 shows that the linear

condition (20). For convenience, we use the nota-
tion ||u||;= <u,H(u)>, and assume that Eq.
(20) holds always.

By Eq.(19), we can decompose the problem

(18) into several smaller and easier subproblems as

follows
(M—M(rn+1)M —r M —M,+(24 —
AV (X A) =T —r)Tu) =0 @D
VM € SR,
(K—K'(rnt+ DK —rK'—K,— (24 —
AV X =T, —ry Ty =0 (22
VK € SRy



No. 1 DAI Hua, et al. Proximal Point-Like Method for Updating Simultaneously Mass and Stiffness Matrices--- 7

<A A (A A (KX — M"XkA(,)T> >0

VA6R171><11 (23)
~k ~ o
<1“1 T (T = (M *TM“> =0 )
VI ER
(P =T (To= PO+ (KT ) =0 .

VF'_/ 6 Ru>< n
It is easy to find the solutions to the problems
(23)—(25) as follows

~k 1 -
A=A — 2 (K'X.— M'X.A) (26)
S
— 1 .
T =T — (M7, (27)
1
—_ 1
I',=TI)— — (K'*Ty)" (28)

ly
The problems (21) and (22) are equivalent to

the following minimization problems

. 1 ~k
min||M — p—— [rM'+M,—(2A —
£NT T T ENT ’ (29)
A (XA, (2, —T) Ty,
e
st. M ESR:"
. 1 . ~t
min|| K Sl [rK'+ K, +(2A
: (30)

AV X, T (2T, — TH™T,

F

s.t. KESRy ™"
In order to find the solutions to the subprob-
lems (29) and (30), we need the following Lemma.
AER",
A=(A"+A)/2, and the spectral decomposition

Lemma 447 Let

of the real matrix A=
Qdiag(0,, 0,, -+

are the eigenvalues of /i, QER" " is an orthogonal

symmetric

,0,)Q", where 0,(j=1,2,+,n)

matrix. Then the following problem

min||X — A ||;

s.t. XE€SR; ™"
has the unique solution A, which may be expressed
by

AL = Qdiag(B1,8,-.3,)Q"
where 3, = max{ﬁ,,O}, i—=1,2,-,n.
Using Lemma 4, it is easy to compute the solu-

tions to the subproblems (29) and (30) , denoted

by M and kk, respectively.
From Theorem 1, we know that the problem

(16) is a monotone variational inequality. Once
~k ~kE ~k

f]\v/[k,K ,A ,Ft and Ti are obtained, «* can be updat-
ed to «"" ' by using Egs.(12), (13) and (19). How-
ever, this is time consuming. We use the following

kt1

extrapolation formula to correct ", that is

~k

W =u"—y(u—u) (31)
where the parameter y is a relaxed factor, it is wise
to set y€ [1, 2) for guaranteeing the fast conver-

gence"™.

A numerical algorithm for the problem
(4) is summarized as follows.
Algorithm 1 Proximal point-like algorithm
Input: MK, Ty.Tx €SR"",A,€R""",
X.eR"", matrices M°, K°&SR""",
AER"* ", I, 'y ER"™", tolerance e >0 and £ = 0.

Output: Updated mass and stiffness matrices.

nitial

(1) Compute ’A‘/,T/l and T“i by using Egs.
(26), (27) and (28), respectively;
(2) Solve the subproblems (29) and (30) to
getﬂk,kk, respectively;
(3) Compute the new iterate «' ' by using
Eq.(31);
(4) If |ju*— Z/CHF<€, set the solution " =
u'" " and exit; else set k:=/k+1 and go to (1).
Now we analyze the convergence of Algorithm
1 and show that Algorithm 1 converges globally.
Lemma 5 Let 2 be the solution set of the
problem (16) which is assumed to be nonempty,
and " be a solution of the problem (16). If % s
generated from the given «'€R2by Eq. (18) with
the proximal term H(u)(Eq.(19)), then
(w = =00 = =
Yu €
Proof Sinceu € 27, it
Eq.(18) and the linearity of H(u) that

follows from

<u"— W H(d— 7 F(Z’“)> >0 (33

On the other hand, since ;he.ﬂ, and u” 1s a

solution of the problem (16), we have

<;k—u*,F(u*)>>O (34)
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Adding Egs. (33) and (34) and using Theorem 1,
we obtain
<Zk— u' H(u"— ;k)> =
~F ~k (35)
<u —u ,F(u )*F(u*)>20
Consequently, we have Eq.(32).

Lemma 6 Let# be the proximal point gener-
ated from the givenu' €2 by Eq. (18) with the
proximal term H (u) (Eq. (19) ). Then for all

u €82, the sequence {u'} generated by Algorithm

1 satisfies
b+l HIE k HIE
o =] <lla'—u]],—y(2—
H H

2 (36)

~k

u'— u

7)|

H

Proof It follows from Theorem 2, Eq.(31)

and Lemma 5 that

2
~ “
||uk7'*u w'—y(u'—u)—u

2
H |

||t — u”Z* 27<uk* w,H(u — ;k)> +

H

2

H_y(Z_

2
<l
H

~k
k
u —u

2
Y
~||?

u'— u

7)

H

Lemma 6 shows that the sequence {u'!

gener-
ated by Algorithm 1 is Fejér monotone ™’ with re-
spect to the solution set £2°.

Theorem 3 The sequence {u'| generated by
Algorithm 1 for the problem (16) converges to the
solution set £2".

Proof For any y€[1,2), it follows from
Theorem 2 and LLemma 6 that {«'] is bounded and

thus

H
~k .
Consequently, {u | is also bounded. Let u™ be an
. . ~}”' .
accumulation point of {u |, then there exists a sub-

~k

iy ~k ~ 4
sequence {u | in the sequence {u | such that {u 'f

converges to u~ . From Eq.(18), we have
u e.(z,<u ~ % P H u*f)> =0
Yuc 2
Since 7 —u* and j_li)rr; IIuk’—;k/H,,:O, we

. k
obtain u” — u~, and

u” €.Q,<u — u°°,F(u“)> =0 VYue
and thus «” is a solution point of the problem (16).

Noting that the inequality (36) is true for all solu-
tions of the problem (18), we get

2 2
k41 ) I3
[ N
H H

Ve=0

thus the sequence {u'} converges to u”.

4 Numerical Tests

In this section, we present three numerical ex-
amples to show the effectiveness and the application
of Algorithm 1 for solving the problem (3) arising
in structural dynamics model updating. All the nu-
merical tests are carried out in MATLAB. Let A}
and 2! (=1, 2, +--, m) be the measured lower or-
der eigenvalues and corresponding eigenvectors, re-
spectively, and A, and o, (i=1,2, -+, m) be the low-
er order eigenvalues and corresponding eigenvectors
of the updated system, respectively. We use M and
K to denote the updated mass and stiffness matri-
ces, respectively. Let

Err= ||[KX. — MX.A,

F

(err) (e) __

Aier — ‘All AI‘

(e) .
(err) TI.P ’li>

0:") = arccos (
(e
2
1= 172,... ,m

In Algorithm 1, the parameters ry, ., s, 4, L
in H (u) should theoretically satisfy Eq. (20). In
fact, the parameter s only needs to satisfy the condi-
tion s=>0 since some inequalities are overestimated
in the proof of Theorem 2, so some of our numeri-
cal experiments show that Algorithm 1 converges
faster for 0<Cs<Z1 than for s=1.

Example 1  An undamped spring-mass sys-
tem, including the spring stiffness and mass values,
is shown in Fig.1.

Let m, = 1 kg (i=1,2,-+,5), £=0.5 N/m

(i=1,2,+--,6). The exact stiffness and mass matri-

\

Fig.1 Spring-mass system
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ces are given by

100 00
01 00 0
M=|0 0 1 0 0
00 01 0
00 0 0 1
1 —05 0 0 0
—05 1 —05 0 0
K=| o —05 1 —05 0
0 0 —05 1 —05
0 0 0 —05 1

We choose three exact lower order eigenvalues
and corresponding eigenvectors as the given mea-

sured data, denoted by A, and X,, respectively.

[0.1340 0 0
A, =] 0 0.5000 0
O 0 1.000 0
[—0.2887 —0.5000 0.5774
—0.5000 —0.5000 —0.0000
X,=|—0.5774 0.0000 —0.5774
—0.5000  0.5000 —0.0000
| —0.2887  0.5000 0.5774

To show the effectiveness of Algorithm 1, the
exact stiffness and mass matrices are perturbed by

M,:=M + uR,*M, K,.= K + uR*K
where R, and Ryx are 5X 5 symmetric matrices
whose entries are generated randomly and distribut-
ed uniformly within [ —1.0,1.0], and p is a parame-
ter. In this example, we set z#—0.001.

To implement Algorithm 1, we set the pre-

scribed tolerance e=4.5X 1077, and choose y=

1.95, s=0.11, r =17+ 2[|x.A]

=17+

2

ZHXe . and £,=—1£=—1.001. Algorithm 1 terminates

after 159 iterations. Numerical results are reported
in Table 1.

Table 1 Numerical results of Example 1

i Err Alem) gler)

1 1.056 3X107° 5.2035X107°
2 7.226 8X10 " 2.9274X10 7 3.9652X107°
3 2.6932Xx10°7 2.4375X10°

The updated mass and stiffness matrices are ob-

tained as follows

1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000 0.0000
M=|0.0000 0.0000 1.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 0.0000 1.0000
1.0000 —0.5000 0.0000 0.0000 0.0000
—0.5000 1.0000 —0.5000 0.0000 0.0000
K=| 0.0000 —0.5000 1.0000 —0.5000 0.0000
0.0000 0.0000 —0.5000 1.0000 —0.5000
0.0000 0.0000 0.0000 —0.5000 1.0000

The updated mass and stiffness matrices M and
K have the same zero/nonzero patterns as M, and
K., respectively. It is easy to verify that M = 0 and
K = 0. Table 1 shows that the updated matrices M
and K satisly the characteristic equation and the dif-
ferences between the measured eigenpairs and the
reproduced ones are very small.

The following two real-life models are built by
Patran 2008 r2 and analyzed by Nastran'**'.

Example 2'*)  Consider a cantilever with one
fixed end and a lumped mass on the other free end.
The cross section of the cantilever is like “T”
(Fig.2). The length and height of the cantilever are
L,=—1 m and L,=—0.05 m, respectively. The geo-
metric parameters of the cross section are H=—
0.1 m, W,=W,=0.068 m, /=—0.004 5 m, and /,=
£,—0.007 6 m. The elastic modulus is 2.0 X 10" N/
m®, Poisson’s ratio is 0.33, and the density is
7 800 kg/m®. The lumped mass on the free end is
F=2 kg. The cantilever is meshed into 40 nodes
with 6 degrees of freedom by using finite element
method. The 240 X 240 analytical mass and stiff-
ness matrices M and K are obtained. M has 122 non-
zero entries, K has 1 098 nonzero entries, and they

have special zero/nonzero patterns.

L
" H’FIH
e

Fig.2 Cantilever with “I” cross section

L,

In order to illustrate the effectiveness of Algo-

rithm 1, we choose four lower order eigenpairs
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{ (A, x_,)}j:] of the matrix pencil (M, K) as the mea-
sured eigendata, and set
M,,::M —+ /lRM*M, K‘,::K —+ /jRK*K
RS, o) B (R2
o o 7" \o
0

& and R are 30 X 30 symmetric matrices whose

where R, = ( 8) C RHOX M0

entries are generated randomly and distributed uni-
formly within [ —1.0,1.0], and y is a perturbed pa-
rameter. For succinctness, we only report numerical
results for the case where #x=0.001. In this exam~-

ple, we set the prescribed tolerance e=5x<10""*, and

choose y=1.58, s=0.5, r1:21+2HXKAK

2
’
F

r,= 21+ 2|| X,

~and f,=,=1.1. Using Algorithm

1, the perturbed mass and stiffness matrices are up-
dated from the given eigendata. Algorithm 1 termi-
nates after 2 110 iterations. Numerical results are
listed in Table 2.

Table 2 Numerical results of Example 2

i Err /15(‘") gi‘crr)

1 1.932 6X107* 3.844 8X107°

2 - 2.577 7X107* 1.229 4X107*
3.838 2X10™ B _

3 1.100 1X10~* 1.695 9x10~*

4 5.640 3X10°° 8.399 1X10°*

Table 2 shows that the updated matrices M
and K satisfy the characteristic equation and the dif-
ferences between the measured eigenpairs and the
reproduced ones are very small. It is easy to verify
that the updated matrices satisly symmetry, positive
semidefiniteness and sparsity simultaneously.

Example 3"  The deflection of a plate acted
on by a distributed load is considered as shown in
Fig.3. The geometric and physical parameters of the
plate are ~=0.01 m, L=1.2 m, w=0.6 m, elastic
modulus 7.0 X 10" N/m?, Poisson’s ratio 0.33, and
density 2 800 kg/m’. The distributed load F=
2 000 N/m”’ is rigidly supported at its two border-
lines. Using finite element method, we mesh the
plate into 150 rectangular grids, and obtain 1 008X
1 008 analytical mass and stiffness matrices M and
K with special zero/nonzero patterns. There are 504

nonzero entries in M and 14 418 nonzero entries

inK.

Fig.3 Plate with distributed load

We choose 20 lower order eigenpairs
{(A;,x;)} 2, of the matrix pencil (M,K) as the giv-
en eigendata, and set M= M + uR,*M, K, .=

A - R, 0
K+ uRy*K, where R, = o o) Ryx—=

0
metric matrices whose entries are generated random -

ly and distributed uniformly within [ — 1.0, 1.0] ,

RS O
0 ER RS, and Ry are 60X 60 sym-

and x=0.001 is a perturbed parameter. Letting e =

1X10°%, y=15, s=1.01, r=23+2||x.4,]".

r, =23+ 2||X,

i and 4,—15,=—1.44, and using Algo-

rithm 1, we obtain the updated mass and stiffness
matrices M and K after 3 636 iterations. Numerical
results are given in Table 3.

It is easy to verify that the updated matrices are

symmetric and positive semidefinite, and have the

Table 3 Numerical results of Example 3

i Err Aler) gLem)

1 5.7395%10 ¢ 8.600 9 10 *

2 L1627x10*  5.4832x10°*

3 58151X10*  8.6530%10*

4 4.2191%10°° 0.002 4

5 2.797 6X10*  9.8764x 10

6 1.444 210 0.0017

7 6.6384>X10°  9.566 6X 10"

8 3.526 210" 0.002 5

9 y 0.001 5 0.001 6
1.594 410 By B

10 3.7333x10 ¢ 9.3599x 10 *

11 7.7627x10 °  6.8154% 10 *

12 3.260 410 * 0.002 1

13 0.001 0 0.001 8

14 6.955 5X 10 0.002 9

15 0.002 1 0.001 2

16 0.001 7 0.001 8

17 7.3171x10 " 0.001 1

18 0.002 5 0.001 3

19 0.002 3 0.010 5

10 0.001 9 0.004 9
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same zero/nonzero patterns as M and K. Table 3
shows that the updated matrices M and K satisfy the
characteristic equation and the differences between
the given eigenpairs and the reproduced ones are

very small.

5 Conclusions

In this paper, we consider the problem of cor-
recting simultaneously mass and stiffness matrices
of finite element model of undamped structural sys-
tems using vibration tests, and develop a new ana-
lytical model updating method on the basis of the op-
timal matrix pencil approximation and the proximal
point method for solving variational inequalities. In
this method, the desired matrix properties, includ-
ing satisfaction of the dynamic equation, symmetry,
positive semidefiniteness and sparsity or connectivi-
ty, are imposed, thus preserving the physical and
geometric configuration of the analytical model. Nu-
merical examples demonstrate that the new model

updating method is effective.
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