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Abstract: With the continuous increase in the number of flights，the use of airport collaborative decision-making（A-

CDM）systems has been more and more widely spread. The accuracy of the taxi time prediction has an important
effect on the A-CDM calculation of the departure aircraft’s take-off queue and the accurate time for the aircraft block-

out. The spatial-temporal-environment deep learning（STEDL）model is presented to improve the prediction accuracy
of departure aircraft taxi-out time. The model is composed of time-flow sub-model（airport capacity，number of
taxiing aircraft，and different time periods），spatial sub-model（taxiing distance） and environmental sub-model
（weather，air traffic control，runway configuration，and aircraft category）. The STEDL model is used to predict the
taxi time of departure aircraft at Hong Kong Airport and the results show that the STEDL method has a prediction
accuracy of 95.4%. The proposed model also greatly reduces the prediction error rate compared with the other
machine learning methods.
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0 Introduction

With the development of civil aviation transpor‑
tation industry，the number of take-off and landing
flights in China continues to grow，but the punctual‑
ity rate of flights continues to decline with the in‑
crease of the number of flights. The decrease in
punctuality rate is not only due to the limitation of
airspace capacity，but also the impact of airport op‑
erations. In busy airports，departure and landing air‑
craft need to share some taxiways due to the com‑
plex layout of the airport，which may cause air‑
ports’high load operation for a long time. Some
factors like runway configuration，boarding gate as‑
signment，taxiing path planning and taxi time pre‑
diction will directly affect the operation efficiency of
the airport. However，current airport collaborative
decision-making（A‑CDM） only uses airport aver‑

age taxi time as the prediction taxi time of all air‑
craft in the airport. It neglects the factors such as
stands， runway configuration， number of taxiing
aircraft and weather，which leads to the low predic‑
tion accuracy of the aircraft taxi-out time and take-
off time，resulting in flight delays and increased fu‑
el-burn costs. Therefore， the accuracy of aircraft
taxi time prediction plays an important role in opti‑
mizing flight pushback time and improving the effi‑
ciency of departure time sequence. At the same
time，it can provide a theoretical reference for air‑
lines to accurately calculate fuel-burn costs and re‑
duce emissions.

The study of aircraft taxi time is based on the
historical data of airport operation，using statistics
and data mining algorithms to predict and analyze
the taxi time of aircraft. Shumsky［1］ and others ana‑
lyzed queuing theory to predict the departure time
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of aircraft. Idris et al.［2］analyzed the impact of the
number of ground taxiing aircraft and the taxi dis‑
tance on the taxi time. Floris et al.［3］ predicted the
key-related features that influence taxi-out time by
using the neural network， regression tree， rein‑
forcement method. Clewlow et al.［4］ took Zurich
Airport as the research object，and analyzed the re‑
lationship between the number of taxiing aircraft
and the taxi-out time. Ravizza et al.［5-6］ presented
that the taxi distance should be divided into push‑
back section， turning section and straight taxiing
section， and studied the taxiing angle and speed
when the aircraft taxis through these three sections.
Lee et al.［7］ simulated the pushback time and taxi
time of the apron by using the simulation software
Linos. And they compared and analyzed the taxi
time accuracy of computer simulation and software
simulation by using the random forest algorithm in
machine learning. Zhang et al.［8-9］analyzed the fac‑
tors affecting the airport taxi time，used the econo‑
metric model to predict the unimpeded taxi time of
non-normal distribution samples and calculated the
airport taxi efficiency index. Diana［10］ compared the
aircraft taxi time prediction model with integrated
machine learning，ordinary least squares and regu‑
lar term algorithm in Seattle airport. Yin et al.［11］

optimized the flight taxiing path under the predic‑
tion of departure taxi time by fragmenting BP neu‑
ral network，and Yao［12］ used long-term memory
model and cyclic neural network algorithm to pre‑
dict the aircraft taxiing path. Guan et al.［13］ used
least squares regression and queuing theory algo‑
rithms to calculate the pushback time and optimize
the gate-hold rate，thereby reducing ground emis‑
sions and pollution.

From the literatures above，the following prob‑
lems were discovered：

（1）The above studies rarely involve the im‑
pact of weather and runway configuration changes
on taxi time prediction，leading to the problem of re‑
duced prediction accuracy of the model in the event
of changes in the external environment such as
weather and runway configuration. Airport ground
operations are susceptible to severe weather，major
activities，and other factors，which can cause a sud‑

den drop in ground operation efficiency. However，
many studies or simulation models focus on ground
operation efficiency under normal operation， and
lack of research under abnormal operating condi‑
tions.

（2）Traditional machine learning models are
not suitable for the model fitting problem with too
many feature samples，which may decrease the con‑
verge speed of the model and calculation efficiency.

Therefore，according to the above two prob‑
lems，we propose a spatial-temporal-environment
deep learning（STEDL）model that overcomes the
drawbacks of the existing machine learning meth‑
ods. The proposed model includes the actual capaci‑
ty of airport surface，the number of taxiing aircraft，
weather，taxi distance，and other factors，and joints
the convolutional neural network and deep neural
network model to predict the departure aircraft taxi
time. It not only balances the generalization and rep‑
resentation abilities in one model but also improves
the convergence speed of the model and the calcula‑
tion efficiency.

1 Definition of Taxi Time and Vari⁃

ables

Combining the research purpose of this article
and the actual operation of Chinese airports，we de‑
fine the number of taxiing aircraft，airport capacity，
airport runway configuration，and air traffic control
information.

1. 1 Definition of taxi time

The A-CDM’s definition of taxi time is as fol‑
lows：

（1）Taxi-out time (T taxi‑out )
The duration between block-out time (T block‑out )

and take-off time (T departure )
T taxi‑out = T departure - T block‑out (1)

（2）Taxi-in time (T taxi‑in )
The duration between landing time (T arrive ) and

block-in time (T block‑out )
T taxi‑in = T arrive - T block‑in (2)

1. 2 Temporal⁃traffic flow variables

（1）The number of taxiing aircraft
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Due to the complex layout of the taxiway and
runways in busy airports，the landing and take-off
aircraft have to share some taxiways，which induces
the conflict and affects the taxi time of aircrafts［14-15］.
The number of taxiing aircraft at different time peri‑
ods reflects the traffic flow which is a key parameter
affecting the taxi time. The parameter definition re‑
fers to the research of Idris［2］. The taxiing aircraft
are divided into landing taxiing aircraft and depar‑
ture taxiing aircraft.

① The value ( A ( )i ) counts the number of
landing taxiing aircraft if the landing time of the air‑
craft j is after the departure aircraft i’s block-out
time and before the time of aircraft i’s departure
time，as shown in Eq.（3）.

② The value ( D ( )i ) counts the number of de‑
parture taxiing aircraft if the block-out time of the
departure aircraft j is later than the block-out time of
the aircraft i and earlier than the departure time of
the aircraft i，as shown in Eq.（4）.

A ( i) = count ( j )
tblock‑out ( )i < tarrive ( j )< tdeparture ( )i (3)

D ( )i = ∑
j

count ( j )

tblock‑out ( )i < tblock‑out ( j )< tdeparture ( )i (4)
Correlation analysis is conducted out on traffic

flow（average） and taxi time（average），and the
correlation coefficient is 0.43. At the same time，the
correlation between the number of taxiing aircraft
and the taxi time is analyzed，and the correlation is
0.62，indicating that although the traffic flow has an
impact on the taxi time，the effect is not as large as
the number of surface taxiing aircraft. Therefore，
the number of taxiing aircraft is used to express the
traffic flow.

（2）Airport capacity
Airport capacity is defined as the sum of the

number of aircraft take-off and landing within n min
before the estimate take-off time（t iestimate_depart）of the
departure aircraft i，as shown in Eq.（5）. The val‑
ue j1 counts the number of departure aircraft if take-
off time（t ji1depart）of the aircraft ji1 is n min earlier than
the estimate take-off time of the aircraft i. The val‑
ue j2 counts the number of landing aircraft if the ar‑

rival time（t ji2arrive） of the aircraft ji2 is n min earlier
than the estimate take-off time of the aircraft i. The
n is derived from the average taxi time at the air‑
port.

airport capacity ( j )= j1 + j2 (5)
where
j1=∑

ji1

count ( ji1 ) 0 ≤ t iestimate_depart- t j
i
1
depart≤nmin

j2=∑
ji2

count ( ji2 ) 0 ≤ t iestimate_depart- t j
i
2
arrive≤nmin

（3）Different time periods
Traffic flow varies with time， the taxi time

will be different in different time periods. With refer‑
ence to Clewlow’s method［4］ of classifying airport
operation time periods，combined with the actual
operation of Hong Kong Airport，the time period
classification is revised. The new revised classifica‑
tion are Ⅰ（0:00―8:00），Ⅱ（8:01―16:00），and
Ⅲ（16: 01―24: 00）. The results are shown in Ta‑
ble 1.

1. 3 Spatial variables

In the actual operation of the airport，the taxi
path is not the shortest path between the stand and
the runway entrance. First， the automatic depen‑
dent surveillance-broadcast （ADS-B） monitoring
data was analyzed to obtain the taxi path of the air‑
craft from the stand to the take-off runway. Then，
statistics were made to take the most frequently
used taxi path between each stand and the runway
as the mainstream taxi path［16］. Finally，according to
the mainstream taxi path， the taxi distance from
each stand to the take-off runway was calculated.

1. 4 Environmental variables

（1）Weather
According to the definition and classification of

severe weather in the civil aviation meteorological
forecast specifications and the operation of Hong
Kong Airport，thunderstorms，tropical cyclones，ty‑

Table 1 Operation time classification

Operation time period
0:00―8:00
8:01―16:00
16:01―24:00

Type
Ⅰ
Ⅱ
Ⅲ
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phoons，advection fog，and heavy precipitation are
classified as bad weather in this paper. At the same
time，the visibility of the airport，the wind direc‑
tion，and wind speed directly affect the aircraft’s op‑
erating speed and waiting time outside the runway，
and the taxi time. The meteorological report of aero‑
drome conditions（METAR）every hour by the Air
Traffic Management Bureau Meteorological Center
is as the data source. The numerical variables are
wind direction（WD），wind speed（WS），visibility
（VIS），and cloud ceiling（CC）. The dummy vari‑
ables are used to describe the overall weather condi‑
tions. If it is severe weather，it is set to 1；other‑
wise，it is 0.

（2）Air traffic flow control
Air traffic flow control is a type of external en‑

vironment restriction. If the amount of flights enter‑
ing or leaving the airspace sector is too large or the
air route cannot meet the required flow due to
weather conditions，the air traffic control manage‑
ment center will release the flow control informa‑
tion. The type of flow control information release is
mainly the airspace flow control. If the flow control
information is released，the aircraft flying in this air‑
space will be delayed. The dummy variable is used
to describe the flow control information. If the air‑
craft is affected by flow control，it is set to 1；other‑
wise，it is 0.

（3）Runway configuration
The runway configuration is mainly determined

by the wind direction and air traffic flow of the air‑
port at the current time. The change of the runway
configuration includes the change of runway opera‑
tion direction and multi-runway combination take-
off and landing modes. Different runway configura‑
tions may result in different taxi time. Runway con‑
figuration is described in the form of“A1，A2 | D1，
D2”，where A1 and A2 are landing runways，and
D1 and D2 are take ‑ off runways. For example，

“07R | 07L”indicates that the runway 07R is used
as the landing runway and 07L runway is used as
the take-off runway during this period. In actual op‑
eration， three kinds of runway configuration are
used. The dummy variable is used to describe the
runway configuration. If the corresponding runway

configuration is used during takeoff，it is set to 1；
otherwise，it is 0.

（4）Aircraft category
Although the taxi distance of some flights is the

same，the taxiing speed and holding short of runway
time may be different due to the influence of aircraft
departure wake［17-18］. The Federal Aviation Admin‑
istration（FAA）’s NextGen plan proposes a new
wake reclassification standard to increase the run‑
way capacity and reduce the minimum take-off inter‑
val under the premise of ensuring safe operation.
The aircraft are reclassified into six categories：A，

B，C，D，E，and F. The reclassification is called
RECAT. According to the standard， the Hong
Kong Civil Aviation Department conducted opera‑
tional verification at the Hong Kong Airport［19-20］.
The average taxi-out time by aircraft category is
summarized in Table 2. In the same taxiing distance
and time period，the average taxi time of E190 is
5 min longer than that of A330. The dummy vari‑
ables are described the aircraft categories. If the air‑
craft type belongs to the corresponding category，it
will be 1；otherwise，it will be 0.

2 Spatial⁃Temporal⁃Environment

Deep Learning Model

STEDL model is divided into three sub-mod‑
els，which are composed of a spatial-temporal mod‑
el and environment model based on two convolu‑
tional neural networks，and a fully-connected spa‑
tial model. Based on these three sub-models，the
predicted weights are obtained，and the prediction
results of the three models are fused to obtain the
predicted value of the final departure aircraft taxi
time.

Table 2 Taxi⁃out time by aircraft category

Aircraft category
A
B
C
D
E
F

Average taxi‑out time/min
22
20.1
19
21

26
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2. 1 Sub⁃model design

（1）Time-flow sub-model
The input variables are composed of the num‑

ber of taxiing aircraft ( A ( )i ，D ( )i )，airport capaci‑
ty，and traffic flow of different time（t）. The main
structure of the model is convolutional neural net‑
work（CNN）. The model framework is as follows：
X t ( j )= ( A ( i )，D ( i )，airport capacity ( j )，t ). The
model definition is f ( X t ( j ) )→ jn× 4.

（2）Spatial sub-model
The input variable is the taxiing distance

Dis ( j ). The model structure is fully-connection.
The model framework is as follows：f ( Dis ( j ) )→
jn× 1.

（3）Environmental sub-model
The input variable are composed of airport

weather，runway configuration，aircraft category，
and air traffic control. The main structure of the
model is CNN. The model framework is as fol‑
lows：Xenv（j）=（WD，WS，VIS，CC，ATC，CON，

runway，aircraft），where CON is the convective
weather，ATC the air traffic control，runway the
runway configuration，and aircraft the aircraft cate‑
gory.

2. 2 Model framework

As shown in Fig.1，the STEDL model is com‑
posed of three sub-models： Time‑flow variable
model and environmental model based on CNN，

and spatial model based on fully connected（FC）
layer. As shown in Eq.（6），the output values of the
sub‑model ( p t，p e，pd ) are fused with different
weights to obtain the prediction value of departure
aircraft taxi time ( pi ).

pi= w t p t + w e p e + w d pd (6)
Since the model still solves the regression prob‑

lem，the mean square error（MSE） is taken as the
loss function of the model.

MSE= min 1
m ∑i= 1

m

( p̂ i- pi )2 (7)

In STEDL model， its CNN sub-model con‑
sists of two convolutional layers，a pooling layer，
and a fully connected layer. The pooling layer uses
maxpolling. The use of Maxpolling makes the mod‑

el shield the unimportant parameters while maintain‑
ing the data characteristics，and solves the problem
of excessive model data redundancy. The sub-sam‑
pling window value of the pooling layer is set to 2 to
reduce the original data length to half of the origin.
In terms of convolution layer settings，the research
data in this paper is discrete and is not sensitive to
periodic changes in time. Therefore，the horizontal
sliding value and vertical sliding value of the two
convolutional layers of the sub-model are set to 1，
and when performing the convolution operation，
padding of all 0 s of same convolution type is used.
In terms of activation function，we use the Relu
function（Eq.（8））as the activation function of the
sub-model，which can avoid the problem of gradient
explosion and disappearance of the model.

f ( x )= max (0,x) (8)

The three sub-models analyze spatial-temporal
characteristics，external environmental characteris‑
tics，and spatial characteristics of the model，which
can show the effects of spatial-temporal correlation，
environmental differences， and spatial changes in
the taxi time of the departure aircraft.

3 Experiment

3. 1 Datasets

This data was based on observations at Hong
Kong Airport from 1 July，2019 to 10 February，
2020. The period of interest was from 0:00 to

Fig.1 Model of STEDL
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24:00. The data information consisted of flight num‑
ber， aircraft type，parking stand，block-in time，
block-out time， runway configuration， take‑off
time，and landing time. Among them，the data af‑
fected by extreme conditions such as strong convec‑
tion weather and typhoons accounted for 5% of the
total data. The specific information including depar‑
ture aircraft is shown in Table 3.

After data cleaning，a total of 77 360 valid da‑
ta were obtained. Table 4 is a statistical analysis of
taxi time at Hong Kong Airport. According to the
data in the table，the average，the minimum，and
the maximum values of the taxi- in time at Hong
Kong Airport are less than the taxi-out time. Com‑
pared with the taxi-out time distribution，the differ‑
ence in taxi-in time distribution at Hong Kong Air‑
port is smaller.

Figs. 2 and 3 show the taxi-out time frequency
distribution of the aircraft at Hong Kong Airport and
the analysis of the residual error. As shown in the
figures， the taxi-out time at Hong Kong Airport
presents a right skewed distribution with skewness

and kurtosis of 1.24，4.208. The skewness and the
kurtosis of the taxi-in aircraft are 1.3 and 3.57，re‑
spectively. At the same time，the 25th percentile
and the 75th percentile in Table 4 indicate that the
taxi-out time of Hong Kong Airport is concentrated
at 16—24 min and the taxi-in time is concentrated at
6—10 min. Taxiing efficiency of arrival aircraft is
higher than that of departure aircraft.

Tables 5 and 6 show the statistical analysis in‑
formation of numerical variables and the dummy
variables in Hong Kong Airport’s STEDL model，
respectively.

Table 3 Data of departure aircraft

Flight
number
CX530
CA101

Aircraft
type
A333
A321

Block‑
out time
8:52
9:00

Departure
time
9:16
9:12

Runway

25R
25R

Stand

7
501

Table 4 Aircraft taxi time analysis

Parameter
Taxi‑in time/min
Taxi‑out time/min

Min
2
4

Max
25
67

Avg
8
20

Stdev
3.0
6.7

25th
6
16

75th
10
24

Fig.2 Frequency chart of departure taxi-out time

Fig.3 Residual analysis plot

Table 5 Numerical variable dataset

Variable

Taxiing distance/m
Amount of landing taxiing aircraft
Amount of take‑off taxiing aircraft
Airport capacity per 15 min/flight

Wind direction
Wind speed/(m·s-1)
Visibility /m
Ceiling/m

Hong Kong Airport（HKG）
Mean
2 413.9
8.42
8.95
7.12
137.5
6.88

9 534.54
488.12

Stdev
1 151.2
4.41
4.45
4.52
8.87
0.34
198.27
16.89

Min
481
0
0
0
50
3.1
4 700
360

Max
5 600
37
42
30
220
12.3
9 999
750
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3. 2 Prediction results

STEDL model was implemented in Python
and run by using the TensorFlow framework. The
model used Adam as the optimization parameter，
the activation function was the Relu function，the
number of training iteration was 1 000，and the
learning rate was 0.01.

（1）Competing methods
To assess the overall model fit，we assessed

three indices， including R-square （R2） ， mean
square error（MSE），and the mean absolute error
（MAE）. The predicted results are shown in Tables
7，8.

According to Table 7，compared with the oth‑
er three algorithms， the STEDL model has the
smallest prediction error，and MAE and MSE are
only 0.26 and 0.135. The median absolute error val‑
ue of the STEDL model is 0.09 lower than that of

random forest（RF）and 0.13 lower than that of sup‑
port vector machine （SVM）. According to the
MSE value，the STEDL model is 0.165 lower than
the RF model，and 0.195 lower than the SVM mod‑
el. Compared with the traditional machine learning
model，the STEDL model has higher prediction ac‑
curacy and smaller prediction error. At the same
time，comparing the STEDL model with the tradi‑
tional statistical multiple regression model，the R2

value of the STEDL model is improved 0.202，and
the model fit is better than that of the traditional sta‑
tistical model. From Table 8 and Fig. 4，it can be
seen that the probability of the error between the
predicted value and the actual value of the STEDL
model within 1 min is 52%，the probability of RF is
50.2%，and the probability of SVM is 47.3%. The
probability of the error between the algorithm and
the actual value within 1 min is similar，but the
probability of the STEDL model within 3 min and
the probability within 5 min is higher than that of
RF and SVM，indicating that the STEDL model
has higher prediction accuracy.

（2）Sub-model importance analysis
In order to study the impact of the three sub-

models on taxi time，three sub-models are used to
predict the taxi time，as shown in Table 9.

According to MSE，the time-flow sub-model
error is only 0.27，the external environmental sub-

model error is 0.71，and the spatial sub-model error
is the largest，0.73. The R2 value of time-flow vari‑

Fig.4 Plot of prediction vs. actual value

Table 6 Dummy variable dataset

Variable

Runway configuration

Air traffic control

Aircraft type

Weather

Traffic flow of different
time

Type
25L | 07R
07L | 25R
25R | 25R
Effect
None
A
B
C
D
E
F

Normal
Typhoon

Thunderstorm
Ⅰ
Ⅱ
Ⅲ

Percentage/%
52.7
38.08
8.5
20.7
79.3
1

58.15
1.12
38.3
0.3
0.9
95
2.4
2.6
19.5
57.3
23.2

Table 7 Evaluation of prediction accuracy

Method

SVM
RF

Multi regression
STEDL

R2

Train
0.80
0.80
0.70
0.902

Test
0.77
0.79
0.69
0.87

MAE（nor‑
malization）

Train
0.38
0.30
0.37
0.23

Test
0.39
0.35
0.37
0.26

MSE
（normaliza‑

tion）
Train
0.32
0.28
0.31
0.10

Test
0.33
0.30
0.39
0.135

Table 8 Prediction accuracy %

Model
STEDL
SVM

Multi regression
RF

±1min
52
47.3
40.9
50.2

±3 min
79.5
75.4
69.8
71.5

±5 min
95.4
87.4
85
90.0
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able，external environmental variable，and spatial
variable is in descending order. It is proved that the
time-flow variable has the greatest effect on the taxi
time of the aircraft. The degree of traffic congestion
at the airport is positively correlated with the taxi
time of the aircraft. Although the severe weather in
external environmental variables also has a strong
impact on the taxi time of the aircraft，due to the
fewer days it takes，the number of affected aircraft
accounts for less of the total number of aircraft，re‑
sulting in its importance to decline.

（3）Comparison of prediction performance in
different weather conditions

In order to investigate the prediction effect of
the STEDL model on the taxi-out time in different
weather conditions，the test samples are classified
according to weather types. Thunderstorms，heavy
precipitation，fog（with visibility less than 1 km），

and typhoons（including three days before and after
transit） are classified as severe weather，and the
rest are classified as normal weather. The three days
of 19 April，31 July，and 1 August，2019 are as se‑
vere weather samples. The day of 19 April，2019 is
a severe thunderstorm and strong precipitation，and
the days of 31 July and 1 August，2019 are typhoon
weather. The comparison of the taxi time in differ‑
ent weather is shown in Table 10.

From Table 10， the taxi time in extreme
weather conditions is longer than that of normal
weather. It indicates that the taxiing aircraft is affect‑
ed by severe weather conditions. As shown in Table
11，the prediction error of the STEDL model in‑

creases in severe weather， and its accuracy of
1 min，3 min，and 5 min is reduced by about 20%
compared with that in normal weather. It shows that
the prediction of aircraft taxi time in severe weather
is complicated. At the same time，based on the anal‑
ysis of the taxi time characteristics of the landing
and take-off aircraft in severe weather，it was found
that the taxi time in different severe weather is also
quite different（Fig. 5）. The average taxi time of a
take-off aircraft in a thunderstorm weather is 3 min
longer than in a tropical storm weather system.
Judging from the impact time of severe weather，it
can be concluded that two hours after the end of the
severe thunderstorm weather system， the traffic
congestion reaches its peak，and the taxi time also
reaches the maximum accordingly. Due to the
strong predictability of tropical storm systems，
when the typhoon transits， the aircraft taxi time
reaches the maximum，and the next day after tran‑
sit，there is no scene of traffic congestion，and the
aircraft taxi time is gradually decreasing.

4 Conclusions

To improve the accurate calculation of flight de‑
parture and delay time， a deep learning model
（STEDL）based on time-space-environment data is
proposed to predict the taxi time of the departure air‑
craft. Some conclusions can be drawn as follows.

（1）The STEDL model can effectively reflect
the impact of airport surface space attributes，envi‑
ronmental changes and surface traffic flow changes

Table 9 Variable importance analysis

Sub‑model
Time‑flow sub‑model
Spatial sub‑model

Environmental sub‑model

MSE（normalization）
0.27
0.73
0.71

R2

0.765
0.25
0.27

Table 10 Comparison of aircraft taxi time in different

weathers

Weather
condition
Normal
Severe

Taxi‑in time/min
Avg
7
10

Med
7
7

Mode
6
5

Taxi‑out time/min
Avg
20
34

Med
20
31

Mode
18
28

Fig.5 Different weather forecast results

Table 11 Accuracy of STEDL prediction in different

weathers %

Accuracy
Normal weather
Severe weather

±1min
51
32.1

±3 min
79.5
54.5

±5 min
95.8
70
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on aircraft taxi time，but the most important factor
affecting aircraft taxi time is still the change in traffic
flow.

（2）The accuracy of the STEDL model for
taxi time prediction of departure aircraft is 95.4%.
Its model-fitting prediction capability is higher than
other machine learning algorithms such as SVM and
RF，and it can be used to predict the actual taxi
time of large airports.

（3）Severe weather such as strong thunder‑
storms and typhoons have a great impact on the taxi
time of the aircraft and exhibit lagging and continu‑
ity characteristics.

（4）Due to the limitation of data acquisition，
only the taxi time of Hong Kong Airport is ana‑
lyzed. It is planned to add other large airports to the
proposed model for prediction and comparison in the
future to improve the universality of the model.

（5）Comparing the prediction results of the
STEDL with the research results of other scholars.
It is found that the fitting value（R2= 0.90）after us‑
ing the STEDL model is higher than using the tradi‑
tional machine learning model［10］（R2= 0.70），also
higher than using the econometric regression meth‑
od［9］（R2= 0.74）. It shows that the use of STEDL
algorithm is more suitable for the prediction of air‑
craft taxi time.
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基于深度学习的离场航空器滑行时间预测

李 楠 1，焦庆宇 1，朱新华 2，3，王少聪 1

（1.中国民航大学空中交通管理学院, 天津 300300，中国；2.中国民航大学经济与管理学院，天津 300300，中国；

3.中国民航环境与可持续发展研究中心，天津 300300，中国）

摘要：随着航班数量的不断增加，机场协同决策系统（Airport collaborative decision‑making，A‑CDM）的使用也越

来越广泛。滑行时间预测的准确性对A‑CDM计算离场航空器起飞排序队列和给出准确的撤轮挡时间具有重要

的作用。本文提出一种基于时间 ‑空间 ‑环境数据的深度学习模型（Spatio‑temporal‑environment deep learning
model，STEDL）来提高滑行时间预测的准确性。该模型由时间 ‑流量变量（机场实际容量，场面航空器数量，时

间段）、空间变量（滑行距离）、外部环境变量（天气，流控信息，跑道运行模式，机型）3部分组成。使用 STEDL模

型对香港机场离场航空器滑行时间进行预测验证。实验结果显示，STEDL模型预测准确率为 95.4%，预测精度

明显优于其他机器学习算法。

关键词：航空运输；滑行时间；深度学习；场面运行；卷积神经网络
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