Aug. 2020

Transactions of Nanjing University of Aeronautics and Astronautics

Decentralized Multi-agent Task Planning for Heterogeneous
UAYV Swarm

JIA Tao", XU Haihang, YAN Hongtao, DU Junjie

Aerospace Technology Research Institute, China Aerodynamics Research and Development Center,
Mianyang 621000, P. R. China

(Received 18 June 2020; revised 17 July 2020; accepted 25 July 2020)

Abstract: A decentralized task planning algorithm is proposed for heterogeneous unmanned aerial vehicle (UAV)
swarm with different capabilities. The algorithm extends the consensus-based bundle algorithm (CBBA) to account
for a more realistic and complex environment. The extension of the algorithm includes handling multi-agent task that
requires multiple UAVs collaboratively completed in coordination, and consideration of avoiding obstacles in task
scenarios. We propose a new consensus algorithm to solve the multi-agent task allocation problem and use the Dubins
algorithm to design feasible paths for UAVs to avoid obstacles and consider motion constraints. Experimental results
show that the CBBA extension algorithm can converge to a conflict-free and feasible solution for multi-agent task
planning problems.
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0 Introduction

With the development of unmanned aerial vehi-
cle (UAV) technology and its corresponding sup-
porting technologies, the mission capability of
UAYV swarm has been expanding and has gradually
been transformed from an early reconnaissance and
monitoring platform into a multi-functional multi-
purpose platform'". Due to the limited capabilities
of individual types of UAV, it is not possible to use
a UAV to accomplish all tasks. By selecting a vari-
ety of heterogeneous UA Vs to form a swarm and ac-
complishing tasks together, we can solve the capa-
bility limitation of UAV and improve the efficiency
of performing tasks. And this brings up another im-
portant issue, which is to ensure the coordination
and cooperation of the UAV swarm. This is critical
for a swarm to be able to complete complex tasks ef-
ficiently and successfully. Therefore, it is very im-

portant to develop effective algorithms to solve the
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task allocation problem within the swarm'**'.

Task allocation problem (TAP), assigns a lim-
ited number of agents to a limited number of tasks
while satisfying certain constraints, and gets a high-
er task reward as much as possible. The solution to
this problem is divided into centralized and decen-
tralized methods. More and more researchers are
paying attention to decentralized methods, which
are more suitable for the real world"”. The common-
ly used decentralized solution methods mainly in-
clude market auction methods based on contract
nets, distributed Markov decision methods, decen-
tralized model predictive control methods, dynamic
decentralized constrained optimization methods and
so on""*. Among them, the auction algorithm is ori-
ented to the dynamic execution and autonomous $o-
lution of the task, and considers the information in-
teraction and negotiation between the agents in the
solution process, which is a relatively easy to imple-

9-11]

ment distributed algorithm' The consensus-

How to cite this article: JIA Tao, XU Haihang, YAN Hongtao, et al. Decentralized multi-agent task planning for heteroge-
neous UAV swarm[ J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37(4):528-538.

http: //dx.doi.org/10.16356/j.1005-1120.2020.04.004



No. 4 JIA Tao, et al. Decentralized Multi-agent Task Planning for Heterogeneous UAV Swarm 529

based bundle algorithm (CBBA ) is a multi-task allo-
cation algorithm that utilizes auction algorithm'**. Tt
allows agent to bid on each task, and then develops
a consensus algorithm to resolve allocation conflicts
between agents.

By designing complex tasks with more con-
straints, we can extend the TAP problem to bring it
closer to reality. In the real world, some complex
tasks require multiple agents to work together to
complete, which is classified as a multi-agent task.
Distributed greedy algorithm is used to solve the
multi-agent task assignment problem, where a
group of agents need to select tasks from their ad-
missible task sets'""’. The objective is to find an as-
signment profile that maximizes the global utility.
The multi-agent task assignment problem is impos-
sible to be solved by CBBA algorithms'"*'. So the
consensus algorithms need to be developed to han-
dle these more rigorous task choices and higher col-
laborative decision making.

Besides, the CBBA algorithm does not consid-
er the effects of complex environmental constraints.
In the real world, UAVs will inevitably encounter
unreachable area such as obstacle areas and no-fly
areas during the execution of missions. When the
task allocation model calculates the cost of each
agent to complete the task, the existence of these ar-
eas must be considered. Ref.[ 15] analyzed and com-
pared two frameworks (Compromise view model
and the nearest-neighbour search model) for co-op-
erative path planning combined with task assign-
ment of a multi-agent system in dynamic environ-
ments, and the particle swarm optimization-based
method combined with the obstacle avoidance strate-
gy was applied for path planning. The solution pro-
posed here takes these situations into the new cost
calculation function and uses the Dubins algorithm
to design a feasible path for UAVs to avoid the ob-
stacle area.

This paper first describes the model and princi-
ple of the task allocation problem and the CBBA al-
gorithm, and then extends the CBBA algorithm to
solve multi-agent tasks and develops a new consen-
sus algorithm. Considering the obstacle avoidance
problem in complex environment, the Dubins algo-

rithm is used to design the feasible path that consid-

ers UAVs’ motion constraints. Finally, a number
of comparative simulation experiments are carried
out with the original CBBA algorithm, and result
proves that the algorithm extended in this paper can
converge to a conflict-free and feasible solution

which previous algorithms are unable to account for.

1 Background

CBBA is a distributed auction algorithm that
provides a reliable approximation solution for multi-
agent multitask allocation problems. It has an itera-
tion between two distinct phases: A bundled build-
ing phase in which each agent generates a local or-
dered task bundle, and a consensus phase in which
the allocation conflicts are resolved by communica-

tion between neighboring agents.
1.1 Phase 1: bundle construction

In the first phase, the agent locally builds a
bundle containing all the tasks it plans to complete
and update during the distribution process. Each
agent continually adds tasks to its bundle until it can-
not add any other tasks. The agent contains two
task lists: bundle &; and path p,. &, contains all the
tasks that the agent i will complete and be grouped
in the order of the added tasks. While p, contains the
ordered sequence of tasks that agent 7 will complete.

S is used as a total reward for agent i to perform for

the tasks contained in p,, where Sf’@”{]} 1s the total re-
ward corresponding to the insertion of the task j into
the position 7 of the path p,. Adding task j to bundle
b, will result in a higher score ¢;[ b,].

0 j€b,

max S"®Y — §7  Otherwise (1)
n<|p;

;L b=

where ‘p,-‘ is the cardinality of the list p;, and (D, the
operation of inserting the second list after the nth el-
ement of the first list.

Insert a new task at all possible locations in the
current path and find the highest increase in re-
wards. Each agent has five vectors: winning bid list
y;, winning agent list z;, agent update time s,, bun-
dle b; and corresponding path p,. The winning agent
list 2, 1s the agent that wins in the current bid of each
task, such that, when z;, = %, the agent i believes

that the task j is assigned to the agent 4. The agent
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needs to know not only if the task it chooses is out-
bid, but also who each task is assigned to. There-
fore more complex conflict resolution rules are need-

ed to achieve better allocation.
1.2 Phase 2: conflict resolution

The consensus phase of CBBA is to avoid too
many agents bidding for the same task. If one agent
is outbid for a task, the scores for all subsequent
tasks will no longer be valid. Therefore, when an
agent bid is outbid, it must release all tasks added
after the outbid task. When agent 7 receives messag-
es from another agent %, z, and s; are used to decide
which agent’s information is up to date for each
task. Agent 7 can take the following three possible
actions on task j:

(1) Update: y,= yy, 2;= 243

(2) Reset: y,= 0, z,— (J;

(3) Leave: y,= y;, 2;= 2

If the decision rule changes the bid, each agent
checks that if the updated or reset task is in its bun-
dle, and if so, releases the task and all the tasks
that are added to the bundle after it.

Vis, = 0,2, = ) ¥n> Z,-

bl}l — @

where b,, denotes the nth entry of bundle b,, and

_ (2)
n>n,

n,=min {n:z,, 71}

It should be noted that the winning bid and the
winning agent of the task added after 4,, are reset,
because removing the bin can change the score of all
subsequent tasks. From here on, the algorithm re-
turns to the first phase and adds a new task. And the
agent iterates through the two phases until they con-

verge on a conflict-free solution.

2 CBBA with Multi-agent Task

The extension of CBBA proposed in this sec-
tion will solve the multi-agent task problem, but
keep the agent independent, allowing them to freely
form groups to complete multi-agent tasks. In the
bundle construction phase of the algorithm, the
method of constructing task bundle 4, and path p, is
the same as the original CBBA algorithm, but the
cost calculation method 1s different, which will be

introduced in the next section. In the conflict resolu-

tion phase of the algorithm, the agent receives data
from nearby agents about all task allocation informa-
tion, and then uses a consensus algorithm to agree
on the assignment of all tasks. This section propos-
es a new consensus algorithm for multi-agent tasks.

First of all, we need to determine the data that
are communicated between the agents needed for the
consensus algorithm. Task and agent information is
stored locally when start to use CBBA. Each agent
stores two vectors of length N,, (N, is the number of
tasks in the algorithm) , the winning bid list y; and
the winning agent list z;. Each agent can use z; to de-
termine who has the highest bid for each task and
use y; to determine the highest bid. Problems occur
when using the original CBBA consensus algorithm
to process data for multi-agent tasks. Different tasks
can be assigned different numbers of agents, and for
tasks that require multiple assignments, the vector
cannot store each allocated data. Therefore, we
need to change the way storing these values in order
to solve the multi-agent task allocation problem. We
must convert the two vectors into a matrix to deter-
mine multiple winners and their bids.

We can combine the two vectors into a single
matrix B, which contains all the winning informa-
tion. The matrix uses rows to display tasks and col-
umns to display agents, so B, corresponds to the
bid made by agent ¢ for task j, or equals O if the
agent has not yet bid. In addition, the matrix B has
size of N, XN,,, where N, is the number of agents in
the simulation, and the number of non-—zero values
in each row should never exceed the number of
agents L; required for the task. Besides we use Bj,
to distinguish the local data of each agent, where
B;,>0 means that agent 7 believes that task j is as-
signed to agent m. Algorithm 1 shows how to con-
vert the vector z,, y, into the matrix set B',,.

Algorithm 1 Constructing the matrix set for

agent i

(1) forj=1toN, do
(2) form = 1to N, do
(3) if2(i,j) = m then
(4) B,,= y(m,j)
(5) end

(6) end

(7) end
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The original CBBA algorithm uses a lookup ta-
ble to determine whether to update or reset the re-
ceiver’s information based on the sender’s informa-
tion. In the case of multi-agent tasks, the receiver
does not necessarily leave or update data different
from himself, but is more likely to merge it, result-
ing in the data of both agents being corrected and
saved. The multi-agent consensus algorithm is divid-
ed into two phases so that the data of the agents can
be better combined to cope with the diversity of
tasks.

The first phase is to compare the time informa-
tion of the agent with all the data it receives and ac-
cept the newer data. By comparing the timestamp in-
formation of the agent, we can know which agent’s
data are newer. For example, at lines 4—8 in Algo-
rithm 2, s,,s,, indicate that 4 has more up-to-date
communication data, which may be higher bid or
more up-to-date allocation information and should
be saved.

In the second phase, based on the information
that all senders and receivers are currently up-to-
date, the receiver’s data are updated based on the
sender’s data. We first check every agent that the
sender /4 thinks to be assigned to each task j at lines
10—11 in Algorithm 2. If the receiver agent i be-
lieves that the task has not been assigned to the
agent m(B,,~0) and the number of agents assigned
to task j has not yet reached the number of requests
of the task, the receiver i can directly update the as-
signment matrix by B,,; = B.,.

In addition, when the assignment of task j is
full or there is a better bid, we should update the al-
location matrix of task j at lines 12—14 in Algo-
rithm 2. When the receiver 7 thinks that the assign-
ment of task j is full, we first find the agent with the
lowest bid among the agents assigned to task j. If
the sender 4 thinks there is a higher bid than this val-
ue, we should replace the minimum bid with the
sender’s data, and update the new assignment ma-
trix with B,;=0, B.,= B,, (n is the lowest bid
agent). There may also be a problem here: When
the minimum bid is equal to the sender’s data,
there is a possibility of a deadlock. So we make a
simple rule that when the agents’ bids are equal,
the agent with the higher ID has priority at lines
15—19 in Algorithm 2.

Algorithm 2 Conflict resolution for agent ¢

(1) receive Bf-, and s, from agent 4

(2) forj=1to N, do

(3) form=1to N, do

(4) if B;,>>0 and m # i then

(5) if §4,>>5,, or m=—Fk then

(6) B,,=B,,

(7) end

(8) end

(9) if m 7 i and B,,; = 0 and B;,; > 0 then
(10) if (Bi,>0) <<L,,V¥n then
(11) B, =B,

(12) else if min(B.;))<<B.,,;, Yn then
(13) Bi,—0

(14) B.,= B.,

(15) else if min(B,;))=B,,, Yn then
(16) if m>>n then

(17) B, =0

(18) B,,= B.,

(19) end

(20) end

(21) end

(22) end

(23) end

After checking each task and each agent as-
signed to it according to the above algorithm, the it-
eration is repeated until each agent has already be-
come a sender and receiver. Because the winning
agent and the winning bid value data are used in the
bundle construction phase of the next cycle, we
need to convert the matrix set B into z; and y,of
each agent in Algorithm 3.When the agent 7 believes
that the task j is assigned to himself, let z(7,j) be
equal to 7, otherwise it is equal to the agent who can
get the highest reward for task j, and y(i,;) is the
highest reward value. Although these vectors do not
contain all the allocation information, they are suffi-
cient for each agent’s own allocation information.

Algorithm 3 Restore the vector for agent ¢
(1) for j/=1to N,, do

(2) if Bj; > 0 then

(3) 2(i,j) =i

(4) else

(5) 2(i,j) = argmax,(B;), ¥Yn
(6) end

(7) y(i,j)=max(B.), Yn

(8) end
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3 CBBA with Obstacle Avoidance

The original CBBA algorithm did not mention
how to calculate the distance cost between tasks.
The conventional approach is to use the linear dis-
tance between the tasks without considering the mo-
bility of the UAVs and the obstacles in the environ-
ment. In this section, a new scoring function is pro-
posed, which uses the Dubins algorithm to design a
feasible path for UA Vs to avoid the obstacle area.

Dubins theory is mainly used to solve the short-

est path with curvature constraints'"

'. At present,
there are many research results using Dubins algo-
rithm to plan obstacle avoidance path. The construc-
tion method of Dubins set of circle-line-circle
(CLC) paths using the principles of Euclidean has
been introduced in detail'”” , which is also cited in
this section.

By selecting one of the common tangent lines
of the two circles, the Dubins path can be obtained,
where the starting and ending positions are on the
arc, and the radius of the arc is the radius of curva-
ture, which is determined by the turning radius of
UAV. The problem is then reduced to find the com-
mon tangent of the two arcs. As shown in Fig.1,
the iterconnected arcs and lines form the Dubins
path. If the starting point has no starting direction re-
quirement or agents have no turning radius con-
straint, the starting circle can be considered as a

point.

Fig.1 Dubins path with tangent

Given the starting attitude point P, (x,, y., ¢.)
and ending attitude point P((xy, yi, ¢:), the starting
circle C, center o,(x., y.) and the ending circle C;
center 0;(x., y) can be determined firstly by

Teos =, — 1.cos(p, £x/2)
Ve =y — 1y sin (P, £ 7/2)
Ty=x;—ricos(¢p; £ n/2)
Ya=y;— resin (¢ £ w/2)

where the sign depends on whether the direction of

(3)

motion of the agent is clockwise or counterclock-
wise. Here clockwise is positive and counterclock-
wise 1s negative.
Next the position of cut-out point Py on C, and
the cut-in point Py on C; can be calculated by
Tp, =X T 1, cOSP
Vp, = Ve T 1 SING
(4)

Xp, =TT riCOSP

Ve, = Yua T ri8ing

where ¢ is shown in Table 1.

Table 1 Definition of ¢ value

Direction ¢
7" - 7"3 c - cs
Clockwise arcsin ! -+ arctan (M) + %
V(T = 20" F (3= 3) Lot Tes
. . T T Ver = Ves 3w
Counterclockwise — arcsin + arctan[~——— | + >
V(@6 — 20+ (e — ya)? Lot Tes

Finally we can get the length of the entire Du-

bins path, shown as
L s = s + \/( Lp, — ITp, )2 + ( Ve, T yp\,)Z + "y

(5)

where y, —mod(27c +¢— ((]55 + 72t)’ Z‘Tt) and y;—

mod(Zrt + g+ % — ¢, 27().

When the path encounters an obstacle in the en-
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vironment, we can still use the Dubins algorithm to
avoid the obstacle, as shown in Fig.2. According to
the different directions of motion on the obstacle cir-
cle, two obstacle avoidance paths are generated re-
spectively. By selecting the shorter one, we can ob-

tain a feasible path that can avoid obstacles.

15T

Fig.2 Dubins path with obstacle avoidance

D Ve

4 Performance Analysis

4.1 Test scenario

The simulation scenario used to test the above
algorithm UAVs,
Search-UAV (S-UAV) and RescueUAV (R-

includes two heterogeneous
UAV) , which are responsible for completing two
tasks (search and rescue tasks). STUAV is responsi-
ble for the search task and R-UAV for the rescue
mission. The number of UAVs required for each
task can be defined individually. Each task has 300 s
time windows, a random start time, and 5 or 15 s
task execution time. Each UAV has its own speed
and specific fuel consumption. The initial locations
of the task and UAV are randomly initialized in the
task space. The following is the algorithm perfor-
mance of CBBA with multi-agent tasks considering

obstacle avoidance algorithms in this scenario.

4.2 Performance of CBBA with multi-agent
tasks

To compare the performance difference be-
tween the original CBBA algorithm with the single-
and multi-agent task, we will set up the following
experiments: Each test contains 20 tasks, half of
which are search tasks and half the rescue tasks.
The first experiment verifies the original CBBA al-
gorithm: Each task only needs one agent to com-
plete. The second experiment is the multi-agent ex-
periment requiring two agents for each task. The

third experiment is set to a mixed experiment, in

which the search task requires two S-UAVs and the
rescue mission requires one R-UAV. The goal of
each experiment is to maximize the sum of rewards
for all UAVs completing tasks. The score function
for each UAV is the reward for completing the task
minus the distance penalty. Multi-agent tasks will re-
ward each agent that completes the task, indicating
the difficulty and importance of such tasks. We grad-
ually increase the number of heterogeneous UAVs
to test algorithm performance. Each experiment
runs 100 times and the average data are recorded.
Fig.3(a) shows the total score of the three ex-
periments as the number of agents increases. It can
be found that at the beginning of the experiment,
due to the insufficient number of heterogeneous
UAVs, the scores of multi-agent tasks are lower
than that of single-agent tasks, but as the number
of agents increases, the scores of multi-agent tasks
are significantly higher than single-agent tasks.
Fig.3 (b) shows that the calculation time will only
increase with the number of agents, and will not

change significantly due to the type of experimental
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Fig.3 Experimental performance between the single-agent,

multi-agent and mix experiments
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tasks. It shows that the new consensus algorithm
does not cause an increase in the amount of calcula-
tion.

It is also worth noting that multi-agent tasks
have fewer communication steps than single-agent
tasks, which can be explained by the allocation de-
tails of the agents in Fig.4 and Fig.5. Here, A
means agent and T meas task. Fig.4 shows the de-
tails of a successful allocation of the single-agent
task of the first experiment. In Fig.4(a), for a more
intuitive display we only show the change of the X~
axis position over time, and Fig.4 (b) shows the
task sequence assigned to each UAV. Fig.5 shows a
successful allocation detail for the second experi-
ment. Compared with the single-agent task experi-
ment that each task needs to select the optimal
agent, when multiple agents form a team to com-
plete the first task in a multi-agent task, they usual-
ly go together to perform the next most recent task,
which results in less communication and distance

costs. However, there will also be a change in team
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Fig.4 Distribution details of single-agent experiment (Total
ten UAVs, five SS-UAVs and five R-UAV5s)
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Fig.5 Distribution details of multi-agent experiment (Total
ten UAVs, five SS-UAVs and five R-UAV5s)

members, and the closer agents will form a new
team to complete the task through consensus algo-
rithms. But in general, this phenomenon has re-
duced the distribution conflict between agents, thus
reducing the number of communications steps.

Next we test the impact of the multi-functional
UAV on the experiment. For the second experi-
ment, we can remove the STUAV only to complete
the search task limit, so that it can complete any
task. Fig.6 shows the effect of the multi-function
UAYV on the total score, the number of communica-
tions and the time of operation. Since the rescue
task can be completed with two kinds of UAVs, it
can have a better choice than the single-function
UAYV, so the total score is higher than that of the
single-function UAV. However, this also causes an
increase in the complexity of the distribution be-
cause of requiring more communication time to
achieve consistency among UAVs, so it takes lon-
ger to calculate. Fig.7 shows a successful allocation

detail for multi-functional experiment.
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4.3 Performance of CBBA with obstacle avoid-

ance

In this section we verify the performance of CB-
BA algorithms with obstacle avoidance proposed in
Section 3. First we add the fixed obstacle area to the
experimental scene in the second experiment in Sec-
tion 4.2. Fig. 8 shows the allocation details of the
CBBA algorithm with obstacle avoidance. We set
the obstacle area to a cylindrical shape. In order to
visualize the obstacle avoidance result of the algo-
rithm, we only show the path of the agents on the X
and Y axes. It can be seen that A2 and A5 have suc-
cessfully generated the Dubins path to avoid the ob-
stacle area. In order to verify the influence of the ob-
stacle area on the distribution result, we can com-
pare the distribution results of Fig.8 and Fig.5. It
can be seen that due to the existing obstacle area,
the distribution result has changed.

We still tested the total score, calculation time

and communication time of the CBBA algorithm
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Fig.8 Distribution details of CBBA algorithm with obstacle
avoidance (Total ten UAVs, five SS-UAVs and five
R-UAVs)
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with obstacle avoidance. As shown in Fig.9, since
the Dubins path to avoid obstacles is calculated,
there is a small decrease in the total score, and the

calculation time is slightly increased.
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Fig.9 Obstacle avoidance effect on total score, computa-

tional time and communication steps

5 Conclusions

This paper introduces an extended CBBA algo-
rithm that provides a decentralized task allocation al-
gorithm for heterogeneous UAVs in complex envi-
ronments. The extension of the algorithm includes
enabling the CBBA algorithm to solve multi-agent
tasks and obstacle avoidance in complex environ-
ments. A new consensus algorithm is proposed to
solve the allocation conflict of multi-agent tasks.
The winning bid list and the winning agent list in
the original CBBA algorithm are combined into a
matrix, including all winning information, to solve
allocation conflicts caused by multi-agent tasks.
Then a more realistic complex environment is con-
sidered and the obstacle avoidance is added to the al-
location algorithm. Considering the motion con-

straints of UAV, the Dubins algorithm is used to de-

sign a feasible obstacle avoidance path for each
UAV.

In this paper, several comparative experiments
are carried out to verily the effectiveness of the algo-
rithm. Experiments show that the CBBA algorithm
with multi-agent tasks can significantly improve the
total task score and does not increase the running
time. When obstacles are added to the task scenar-
io, the extended algorithm can design a Dubins path
for each UAV to avoid obstacles, although the cost
is to reduce the total score and increase the calcula-
tion time. In summary, the CBBA extension algo-
rithm proposed in this paper can converge to a con-
flict-free and feasible solution for decentralized
multi-agent task planning problem with obstacle

avoidance.

6 Further Work

In recent years, we have carried out related
technical research and flight tests in the fields of in-
telligent UAV, autonomous control of UAV swarm
and other fields, and have achieved valuable results.
Our key research interests include: (1) Low-speed
and high-speed UAV platform design, (2) UAV
miniaturization design, (3) UAV intelligent per-
ception and cognition, (4) UAV swarm collabora-
tive planning and autonomous decision-making,
(5) highly reliable self-organizing network commu-
nication for UAV swarm, (6) human-machine col-
laborative intelligent control, and (7) self-organiza-
tion control for large-scale UAV swarm.

We carried out the formation experiment of
nine fixed-wing UAVs with an air ad hoc network
(Fig.10).The tests mainly verified (1) UAV auton-

Fig.10 Formation experiment of nine fixed-wing UAVs

with an air ad hoc network
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omous air assembly, (2) UAV formation mainte-
nance and transformation, (3) UAV dense forma-
tion security control and emergency planning
(Fig.11) , (4) air ad hoc network communication
link, and (5) online task assignment and trajectory

planning for UAVs.

Fig.11 Dense formation security control and emergency

planning experiment of nine fixed-wing UAVs

In the near future, a swarm flight test of UAVs
will be carried out to perform relevant technical

tests in a restricted and jammed environment.
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