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Abstract: Anomalous trajectory detection and traffic flow classification for complicated airspace are of vital
importance to safety and efficiency analysis. Some researchers employed density-based unsupervised machine learning
method to exploit these trajectories related to air traffic control (ATC) actions. However, the quality of position data
and the tiny density difference between traffic flows in the terminal area make it particularly challenging. To alleviate
these two challenges, this paper proposes a novel framework which combines robust deep auto-encoder (RDAE)
model and density peak (DP) clustering algorithm. Specifically, the RDAE model is utilized to reconstruct denoising
trajectory and identify anomaly trajectories in the terminal area by two different regularizations. Then, the nonlinear
components captured by the encoder of RDAE are input in the DP algorithm to classify the global traffic flows. An
experiment on a terminal airspace at Guangzhou Baiyun Airport (ZGGG) with anomaly label shows that the proposed
combination can automatically capture non-conventional spatiotemporal traffic patterns in the aircraft movement. The

superiority of RDAE and combination are also demonstrated by visualizing and quantitatively evaluating the
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experimental results.
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0 Introduction

The foreseen air traffic demand'"’ of sustainable
and limited capacity will impose new challenges on
efficiency, bringing security risks to the already con-
gested terminal areas, especially busy airports like
Beijing and Guangzhou. The Civil Aviation Admin-
istration of China is planning to improve the current
air traffic management system in an intelligent
way'?'. Particularly, the rise of machine learning
technology and accessible data from the automatic
dependent surveillance broadcast system (ADS-B)
can accelerate the improvement by data extraction
of operational anomalies and air traffic control
(ATC) action patterns in terminal maneuvering ar-
eas (TMAs).
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Currently, several tactical initiatives on aircraft
route focus on maintaining TMA situations, such as
circumnavigation, holding, and direct fly. These
tactical ATC actions can associate to the recorded
ADS-B data. The actual trajectories that are com-
posed of spatiotemporal points have different charac-
teristics and meanings™”’. In detail, trajectories with
rare occurrence or a certain degree of anomaly can
present significant events in TMAs. Anomalous tra-
jectory data can be regarded as valuable analysis ma-
terials for airspace safety. And trajectories that are
already patterned but different from standard routes
correspond to controllers’ preference of frequent tac-
tical ATC actions on the standard procedure'*’. The
extraction of non-conventional patterns can enhance

the accuracy of the controller workload assessment,
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design of flight procedure and calculation of airspace
complexity. Both two types of traffic flows have re-
spective data features different from standard
routes, so that unsupervised machine learning algo-
rithms are able to classify them automatically.

In previous literature, anomaly detection based
on clustering (ADCluster) identified nominal trajec-
tories and regarded the rest not belonging to any
cluster as anomalous flights. There were two main
methods in the research of ADCluster. The first fo-
cused on clustering through statistical or priori fea-
tures, such as the local average velocity of the tra-
jectory, the density of the aircraft, and the distance
between the aircraft and the reference point*'. Eck-

stein'™

decomposed the trajectory into various seg-
ments, which was defined as the spatial measure-
ment of significant changes in the trajectory position
or direction, and then used clustering results to mon-
itor the anomalous behaviors of the aircraft. Gariel
et al.'”! summarized and improved the first methods.
First, the spatial turning points were clustered to ob-
tain discrete sequence. Second, the main traffic flow
was identified by clustering the sequence contained
spatial variation. Since these methods do not direct-
ly use trajectory data, they may have limited appli-
cation in the development of real-time trajectory
based operations (TBO) tools in the future.

Gariel proposed the second widely used meth-
od for clustering trajectories at the level of position
measurement. It consists of two well-differentiated
steps. Firstly, principal component analysis (PCA)
was used to eliminate redundant information on the
resampling data. Secondly, density-based clustering
algorithm (DBSCAN) identified anomalous trajec-
tories and clustered them at the linear dimensionali-
ty reduced vector. The position-based data can be
utilized to classify traffic flows in real time'®!, which
is the principle behind air traffic flow modeling'®’.
Some researchers used position measurement and
the differentiated method to identify the nominal tra-
jectory pairs in en-routes or terminal areas''***,

In spite of the good quality results, limitations
in ADCluster with the position measurement have

[13-14

been pointed out in studies"*"*': The poor sensitivi-

ty to short duration anomalies. These researchers

utilized recurrent neural networks (RNNs) and vec-
tor autoregressive (VAR) method to model the
surveillance data and identify the anomaly trajecto-

1.7 utilized auto-en-

ries. Alternatively, Olive et a
coder networks, a kind of deep learning which has
been proved successful at anomaly detection, to
identify anomalous trajectories in en-route. Howev-
er, aircraft trajectories in terminal areas have short-
er duration anomalies than those in en-routes. With-
out the enhancement in anomaly detection, the stan-
dard DAE model cannot carry out this work fairly
well. And the noise in ADS-B data will further im-
pair anomaly in trajectories. Thus, this paper intro-
duces two regularization methods based on robust
deep auto-encoder (RDAE) model to smooth the
data noise and detect anomaly trajectories.
Moreover, other research direction of the tra-
jectory clustering has not been neglected. A state-of-
the-art application by trajectory clustering is extract-
ing the non-conventional pattern trajectories from

the actual aircraft operations. Conde et al."""

separat-
ed the weatherrelated non-conventional patterns
from all non-conforming behaviors in en-routes, and
then provided a reference for airspace resource man-
agement. However, Andrienko et al.""” found classi-
cal DBSCAN algorithm cannot simultaneously ex-
tract nominal and non-conventional trajectories in
en-routes with only one set of parameters. Theoreti-
cally, hierarchical DBSCAN-based algorithms can
better cluster dataset with different densities than
classical DBSCAN. But in fact, Gallego et al.™*
found that quantitative cluster values went down

DBSCAN-based algorithms

when hyper-parameters were finely tuned to enable

though hierarchical

discrimination between small clusters. He attributed
this phenomenon to special nature of the data sam-
ples being a result of the PCA application to actual
flight trajectories. The dimensionality reduction
method was not improved. On the contrary, a pa-
rameter adjustment model has been established to
customize the extraction of clusters with RDB-
SCAN.

Note that, there are two limitations in the tra-
jectory clustering for the non-conventional traffic
patterns: (1) Using the PCA method to reduce po-
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sition data dimension will damage the necessary de-
tails. (2) DBSCAN-based methods are sensitive to
the hyper-parameters when clustering the non-con-
ventional traffic patterns. We further utilize the en-
coder of trained RDAE model as substitute for PCA
method due to the preferable dimensionality reduc-
tion ability to extract key information. Then, a DP
clustering algorithm is combining with RDAE en-
coder to classify the nominal trajectories and non-
conventional tactical traffic flows simultaneously.
The evaluation results show that the proposed
framework of the combination of RDAE model and

DP algorithm outperforms baseline models.

1 ADS-B DATA

The aircraft trajectory dataset used in this pa-

per is denoted as: 7, -+, 7y . Each trajectory con-

sists of a set of time and position ordered data, i.e.
T ={(t;, Z;, yi, %) }(i =1, -+, Ny ), where the time

is ¢, € Z . and the measurements are z,, y;, 2, € R.
1.1 Dataset and separation

The ADS-B data contain the following informa-
tion: timestamp, flight number, departure airport,
target airport, current location (using the longitude
and latitude of WGS-84 coordinates) , sea level alti-
tude (m), heading, ground speed, and vertical
speed. The experiment trajectory data come from
the TMA of Guangzhou Baiyun Airport, and it is
separated from the national flights data by the fol-
lowing methods.

First, the essence of the deep learning model is
to construct a main traffic flow model in the terminal
area through trajectory data. The actual trajectory
timestamp cannot form traffic flows, so we shift-
time so that the first time measurement in each tra-
jectory is always at = 0. Second, by the Mercator
projection method with the center of the ZGGG run-
way, the latitude and longitude coordinates are con-
verted into eastnorth-up (ENU) coordinates (rep-
resented by xyz). Finally, we intercepte trajectory
points within a rectangle of —120km << <<120km
and — 120 km << y << 120 km (the rectangle is great-
er than TMA). And the target airport of all trajecto-

ries 18 ZGGG. However, some aircraft do not up-

date the target airport in time after landing, and the
ADS-B receiver does not revise it when recording,
so the intercepted data contain aircraft trajectories in
other operation states. Therefore, for the intercept-
ed data, a heuristic method is used to further distin-
guish the landing, takeoff, and overflying trajecto-
ries in the terminal airspace.

For each trajectory, we set the index of the
closest point to the center of the runway as ¢=

arg min,“pi ”2, and the index of the farthest point as
f=arg max,-”pf”Z. The time of the last measure-

ment in the trajectory is T = max,?,, and the aver-
age descent speed is 2,,,. The trajectory is then di-
vided as:

Landing  if  ([|p.]|, <<3km)A(]]po ]|, >
100 km )A( 2, <<—100m/ min )A(z./T > 0.95)

Takeoff  if  (||p.]| << 3km)A(|[p], >

100 km )A( 2., =100 m/ min)A(z./T << 0.05)
(Hp/H2> 100km) A

Overflying if
(—100 m/ min << z,

avg

0.05)V (/T >0.95))
The length of the runway at ZGGG airport is

<100 m/min ) A(( ¢,/T <<

about 3 km, and the longest distance between the
surrounding approach sector boundary and the run-
way center is about 100 km. This method works
well with ADS-B data in Central South China.

For these three types of trajectories, the over-
flying aircraft have only a slight effect on the capaci-
ty in the terminal area. The departure aircraft use
lots of performance on the initial climb process.
Even if the terminal area capacity is limited due to
the increased traffic complexity or severe weathers,
the control methods of the departure aircraft are of-
ten limited to ground delay procedure (GDP) or pre-
departure, and the probability of ocurrence of anom-
alous trajectories is extremely low.

In order to keep sustainable operations in the
terminal area, the approaching aircraft are usually
tactically controlled based on the standard proce-
dure. The control behavior reflects the complexity

of the airspace'"

. Therefore, we choose the ap-
proach trajectory as the experimental data. Since the

trajectories containing ATC actions occur in the air-
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borne phase, the point after the approach trajectory
data index ¢ is deleted. So far, it is assumed that the
experimental data has been separated independently.
An example of ZGGG area navigation (RNAV)
standard arrival procedure in the terminal area is
shown in Fig.1 (available on the e AIP China'"*'), in
which the black lines with arrows represent the air-

craft standard routes.
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Fig.1 ZGGG’s RNAV procedure for RWY 19/20L/20R"

1.2 Preprocessing

For the part of the anomalous trajectory detec-
tion, the key criterion is the reconstruction error,
which is related to the number of trajectories. There-
fore, the time is divided equally to get the same
amount of trajectory points. The other preprocess-
ing is to scale each measurement by a standardiza-
tion. The data set is restored and rescaled separately
in each experiment to eliminate the effect of noise
and anomalous trajectories on the remaining data. In
the experiment of trajectory clustering, in order to
clarify the difference between trajectories, Gariel’s
strategy is duplicated to add three dimensions to
each trajectory point'”’

Tz\ugm:[l‘ Ty=z R cosa Sina]

where R=\/(x,—xL ) +(y,—yl) is the top left
corner with coordinates of ( &1, yr)=(—80, 80 ) km.
a = arctan ( yl»/x,. ) is the angular position in cylindri-

cal coordinates.

2 Model Learning

This section outlines the steps of anomaly de-

tection model and traffic flow classification. The
steps are to reconstruct the trajectories, identify

anomalies, and then cluster the rest trajectories.
2.1 Trajectory reconstruction

There are multi-deficiencies with the trajecto-
ries in ADS-B data. First, the measurements are
noisy. Second, the trajectories can have any number
(including zero) measurements at a given time
range. Third, trajectories have to share the same
number of points. If we used linear interpolation to
solve the third problem directly, the influence of
noise would be increased. The deep auto-encoder
(DAE) is widely used for denoising and anomaly

detection

through compressive reconstruction of
raw data. A standard DAE structure is shown in
Fig.2, composed of encoder and decoder, which
has the same number of units in the output layer and
the input layer. And the number of middle hidden
layer units is less than the number of both layer

units.

Backpropagation (X-X)
Input data X Output data X

(elelelelelel®

(elelelelelel®

Hidden layers

Input layer Output layer

Fig.2 Structure of standard DAE network

In the encoding stage, the input data X is com-
pressed into the hidden layer A to eliminate outliers.
The connection function follows the standard prac-
tice'”"’, which uses the logit function to connect units

h=FEy ,(X)=logit(WX + b;) (1)
where W is the weight connecting the input layer
and the hidden layer and & the bias of the input lay-
er. Similarly, the decoding function is defined as

Dy, (h)=logit(W"h+ b,) (2)
where W is the weight connecting the hidden layer
and the output layer and b, the bias of the hidden
layer. So, the objective function of DAE model is

denoted as
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min[| X = Du, (Ev (X)) (3)

However, the DAE model needs to train clear
data, which is difficult to achieve due to the error of
the hardware system. Thus, the RDAE model is
used to reconstruct the trajectories to smooth noisy
data. In the RDAE model, the outlier S and the part
of the input data L, that is well represented by the
hidden layer model are separated into two parts:
X=L,+S. The outlier S contains the noise and
anomalous vectors that are difficult to reconstruct.
Then, the RDAE model can execute denoising and
anomaly detection through employing different regu-
larization in the loss function. In order to sparse the
noise as much as possible, the loss function should
be set as the sum of the reconstruction error L, and

the normalization term of the ||.S ||o But for the cal-

culation reason, one can relax the combinatorial
term of the optimization by replacing it with a con-

vex relaxation ||S ||1 The objective function can be

denoted as
2
mip[l Lo = Dw s (Ews (L), + 48T, @)
where || ||I 1s the Frobenius norm of a matrix. As

the parameter of L, is regularized, a smaller A, will
promote more data to be isolated into S as noise,
and therefore minimize the reconstruction error.

We construct the L, to regularize RDAE (L,-
RDAE) model. The number of input layer units and
output layer units is the dimension of the data. The
number of units in the middle of the hidden layer is
determined by the method of eigen-dimensional esti-
mation. The same A, value is selected for all nput
trajectories to maintain the consistency of denoising.
We choose appropriate parameters in RDAE model
that have the lowest reconstruction loss on the test
data. Fig.3 shows the L,-RDAE reconstructed tra-
jectories that are generated by varying A,, and the
result of the standard DAE network with the same
layers and units of RDAE.

(a) Raw trajectory

A

(c) L, -RDAE 4,=0.1

(d) DAE

Fig.3 Trajectory reconstruction

Fig.3(a) is the original noisy trajectories. A
low A, leads to smooth trajectories (Fig.3(c))
whereas high A, leads to intact trajectories (Fig.3

(b) ). These trajectories are too smooth with A, =

0.1, and several anomaly trajectories are eliminated
in the bottom right corner of Fig.3(c¢) , which in-
creases the reconstruction loss value to 8.85. The

optimal validation loss value is 6.71, achieved by
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A, = 2. Fig.3(d) is the result of DAE, which faith-

fully, but inappropriately, reproduces the noise.
2.2 Anomaly detection

The anomalous trajectories have different for-
mats with the noise removed in Section 2.1. In
Fig.4, a few trajectories interfered by noise are rep-
resented in blue, noise position in red circles, anom-
alous trajectories in green, and the remaining trajec-
tories in light gray. It can be intuitively seen that
noise appears as a break point in the trajectories,
and anomaly trajectories have some different seg-

ments with nominal trajectories.

Noise

Anomaly Data X

Fig.4 Visualization of noise and anomaly

The reconstructed trajectory data is processed
to a n X 300 matrix through linear interpolation.
Each row has 75 equal time position points of a
flight, and each column is the measurement value of
the trajectory in time and spatial dimensions. Anom-
alous trajectories reflect aircraft behaviors caused by
unhealthy airspace'”’, corresponding to the row vec-
tor of the data matrix. And the noise is distributed in
each trajectory, corresponding to the column vector
of the matrix. According to this feature, this paper
combine L, regularization and RDAE model (L, -

RDAE) to identify anomalous trajectories. The
L, regularization formula is as follows

1/2
”X”2,1 = ZHxJHZ - Z(E’IU 4) ()
=

j=1\i=1
It can be regarded as a L,norm regularizing

member of each column, which amplifies the influ-

ence of anomalies in the group to make anomalous
vectors obvious. Then L, regularization is used be-
tween each row to reduce the anomalous vectors’ ef-
fect on low dimensional manifold, which enhances
the robustness of the deep network. The anomalous
trajectory data in this paper is reflected on the row
vectors, so X needs to be transposed. The objective

function is as follows

2
Lp— DW./)(EW,/)(IJD))”F + As

min
W.,b

s*l,, 6)

However, the objective is not convex, and it is
difficult to guarantee to converge the method to a
global minimum. So we employ the block-wise soft-
[20]

thresholding function

. x4
8
.Ii, - Az

], >
. (7)
0 ka </12

2

Ly

(prox,, ., (x))=

where g is a group index, j a within-group index,
and A, the regularization parameter of the objective
function L, ,. There are anomalous labels marked by
the controller. We use false alarm rates to tune pa-
rameters. Fig.5 shows the experiment steps of
anomaly detection.

In fact, such a semi-supervised training method

(o5 e

Trajectory of arrival flight (with noise)

!

RDAE model (L, -regularization) |

| Reconstructed trajectory |

l

| Linear interpolation

l

RDAE model (L, -regularization)

| Anomaly trajectory |

Fig.5 Anomaly detection method based on RDAE
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makes proper A, chosen according to the already pat-
tern instances. Thus, the RDAE model trained on
L, contains enough information to reconstruct the
main traffic flows. Foreshadowing our results in Sec-
tion 3.1, we note that the linear dimension reduc-
tion of PCA on the data may lead to insufficient tra-
jectory details. Meanwhile, deep auto-encoder mod-
el can abstract low-dimensional codes that work
much better than PCA as a tool to reduce the dimen-
sionality of data"**'. Using the trained L, ,-RDAE en-
coder to output nonlinear vectors may produce bet-
ter result of traffic flow classification than PCA.
Thus, in the following clustering section, the com-
bination of RDAE+DBSCAN is added as a com-
parative experiment to examine this opinion. For the
density difference in the trajectory data, we intro-
duce the DP clustering algorithm as a substitute for
DBSCAN.

2.3 Clustering by DP method

DP algorithm is a recently published method"*"
for density clustering. The density calculation of
each point is related to the density of neighbors. The
steps are as follows.

First, the neighbors can be recognized by a soft
threshold like the Gaussian kernel function or a hard
threshold as defined in Eq. (8). In order to reduce
the computational complexity, we employ a hard

threshold to calculate the local density
{Oz:EI(DijidL) (8)
J

Suppose that a descending order { p,} ;= represents
the subscript order {¢,} =), that is: 0, =p, =

= OyN-

Second, the distance parameter of each data
point is calculated, which is measured by the mini-
mum distance between the point and other high-den-
sity points. However, the distance of the trajectory
point with the highest density is the maximum value
of its distance from all the other high-density points,
that is

min {D,,} (=2

¢ =1
0, = 9)
" max {0,} i=1

T

Therefore, each point is given two quantities: Lo-

cal density and distance. Points with high local den-
sity and distances far greater than the threshold (p,,
0,) can be identified as density peaks or cluster cen-
ters. The cluster centers in non-conventional pattern
should correspond to a small p, and a large 0.
Thus, we can set the reasonable parameters to iden-
tify the non-conventional trajectories near the edge
of the nominal trajectory data. After these density
peaks are found, other points are assigned to the
same cluster as their nearest neighbor of higher den-
sity.

By this way, DP method can cluster the data
contained various densities, which is the weakness
of the DBSCAN-cored clustering algorithm'**'. Fur-
thermore, the qualitatively setting of local density
and distance can also identify anomaly trajectories.
This is a direction of future work.

It is worth mentioning that the combination of
RDAE-+DP could improve the performance in the
trajectory clustering. Due to the presence of two reg-
ularizations, the effect of noise and anomalous tra-
jectories is constrained. Thus, there is a trend that
the trajectory data would converge in the low-dimen-
sional manifold, so that the non-conventional trajec-
tories have higher density locally. This makes small
clusters that are finely different from the classical da-
ta easier to be identified. Fig.6 shows the traffic
flow classification step of RDAE+DP algorithm.

Reconstructed trajectory of aircraft

Data augmentation

augm

The augmented trajectory T

Delete anomaly trajectory

Trained RDAE model encoder
(L,,-regularization)

lOutput

Non-linear vector

lClustering using DP

Cluster of trajectories

Fig.6  Trajectory
RDAE+DP

clustering  method based on
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3 Experimental Result & Discus-

sion

We carried out our method on 524 real trajecto-
ries at the Guangzhou terminal airspace on 2019-06-
16. Twenty-seven anomalous trajectory labels,
marked by licensed controllers, were collected for
evaluating the performance of our method. This is
typical imbalance dataset in the binary classification.
We used Fl-score to verify the anomaly detection
performance. Its definition is as follows

FL—2 precision - recall

. precision + recall (10)

where precision is the number of correct anomalous
results divided by the number of all anomalous re-
sults identified by the algorithm of anomaly detec-
tion, and recall is the number of correct anomalous
results divided by the number of all anomalous sam-
ples marked by controllers. A single high precision
or recall cannot correctly reflect the anomaly detec-
tion performance. Thus, we visualized the optimal
F1-score results of each algorithm to analyze the per-
formance difference.

In the traffic flow classification, we used the
same data set and selected the silhouette criterion
(SC) value as the evaluation metrics. The SC value
definition is as follows

b(i)—ali)
max {a(i)— b6(7)}
i=0,1,2, 0, (11)

where a(7) is the mean distance between i and all

S(i)=

other data points in the same cluster, and #(7) the
smallest mean distance of 7 to all points in any other

cluster.
3.1 Anomaly detection

In order to compare the RDAE performance in
anomaly detection, we repeated Gariel’ s strategy
(PCA+ DBSCAN) and trained a standard deep au-
to-encoder (DAE) model that had the same struc-
ture with RDAE. Fig.7 shows the precision, recall
and Fl-score with different parameters for RDAE
and PCA-+DBSCAN. Table 1 shows the anomaly
detection among three algorithms with the optimal
Fl-score. The optimal Fl-score of RDAE model

was 0.809 by 1, =7 X 10", The Fl-score of DAE
model that had same structure with RDAE was
0.632. The optimal Fl-score of PCA+DBSCAN
model was 0.593 under the parameters of e=1.5
and ¢ = 11, where € was the maximum distance be-
tween two samples, and ¢ the number of samples in
a neighborhood. The Fl-score of PCA+DBSCAN
and DAE model was approximately 36.4% and
28% worse than the value achieved by the RDAE.
At the respective optimal Fl-score, we found that
the detection results of both PCA+ DBSCAN and
DAE models were a subset of RDAE.

101 —Precision =Recall -~ F1-score

osl  0809—3

206
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(a) Anomaly recognition accuracy of RDAE
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Fig.7 Anomaly detection results

Table 1 Anomaly recognition results of three algorithms

Identified Correct
Methods F1-score
anomaly anomaly
PCA + DBSCAN 27 16 0.593
DAE 39 21 0.632
RDAE 32 24 0.809

Fig.8 displays the complementary set between
the results of PCA+DBSCAN and RDAE. They
are represented by green trajectories. These aircraft
routes shared a large number of segments with stan-
dard procedure. The anomaly degree in these trajec-
tories that PCA+DBSCAN could not recognize
were relatively small. The dimension reduction pro-

cess used PCA further decreased the difference be-
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tween anomaly and nominal trajectories, which
made DBSCAN difficult to find these anomaly tra-
jectories. Fig.7(¢) indicates that the standard DAE
model have the similar Fl-score with PCA+DB-
SCAN in this trajectory data set. The RDAE model
obtained a better result than DAE by amplifying the

effect of anomalous vectors through L, regulariza-

tion.
120
—I RDA _Z;P;LIHDBSCAN
80 — T Trone /
40 , 4B
s IGONO
£ o |
= N __
-40
-80
_12 1 1 1 1 !
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Fig.8 Anomaly complementary set of two algorithms

However, there were three trajectories that
still cannot be detected by RDAE. These trajecto-
ries are displayed in red in Fig.8. These aircraft flied
into the terminal area near the west GYA waypoint
at night. The TMA was in a low-density state. The
controller carried out a radar vectoring procedure for
saving time and assiged a direct route for these air-
craft to the final approach point. Unsuccessful identi-

fication of the three trajectories may be attributed to

that there are a large number of convergence behav-
iors from different directions before GY A waypoint.
The corresponding data vectors had a large fluctua-
tion range, which reduced the anomaly detection ac-
curacy of the RDAE model near this waypoint. The
situation simultaneously led to the poor anomaly de-
tection performance of the PCA-+DBSCAN model
on the west trajectories. The RDAE result of anom-
aly detection on the west trajectories was better than
the PCA+DBSCAN result, which seems to prove
the preferable robustness of the RDAE model. The
problem could be refined by using the trajectory
points before the convergence behavior. Andrienko
elaborated that different interception ranges would
affect the traffic flow classification'™”. It is feasible
to extract ADS-B data according to the spatial mea-

surement boundary of the terminal area.
3.2 Trajectory clustering

The quantitative results for the dataset are
shown in Table 2. The SC value which compares
the ratio of intra- and inter-cluster distances for eval-
uating compactness and separation between them,
is the most common metric for clustering valida-
tion'”’. The SC value indicated that RDAE-+DP
had the best clustering performance among the three
algorithms. But the SC value could not reflect the
separation of non-conventional traffic flows. So we
introduced visualization qualitative analysis method
in Fig.9.

Table 2 Trajectory clustering results

Method The number of classes  Silhouette coefficient Fl-score
PCA + DBSCAN(The optimal F1-score) 5 0.68 0.593
PCA + DBSCAN(The optimal SC value) 7 0.71 0.391
RDAE + DBSCAN 8 0.80 0.726
RDAE + DP 9 0.84 0.809

Although PCA+DBSCAN had the optimal
performance in identifying anomalous trajectories
(the optimal Fl-score) , the quantitative SC value
was not the optimal result of the algorithm. The vi-
sualization is shown in Fig.9(a). The trajectories
with obvious differences on the north side of the air-
port are identified as gray. At the optimal SC value,

the north trajectories were divided into three clus-

ters, with three standard RNAV arrival procedures
in Fig.1. But a large number of trajectories were cat-
egorized as the anomaly, which penalized the F1-
score value. There may be two reasons: One is that
linear dimension reduction process by PCA de-
creased necessary details in the trajectory, and the
other is that DBSCAN was difficult to precisely sep-

arate dataset with tiny density differences. The visu-
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\
(a) PCA+DBSCAN (The optimal F1-score) (b) PCA+DBSCAN (The optimal SC value)
ATAGA-1B / ATAGA-1B |
~u4 Y y
Non-conventional Non-conventional =
pattem(s) patterns A -
]
(c) RDAE+DBSCAN (The optimal SC value) (d) RDAE+DP (The optimal SC value)
Fig.9 Visualization of three algorithms
alization of RDAE-+DBSCAN is shown in ing, DBSCAN either clustered it of the same clus-

Fig.9(c), where a large number of trajectories were
not misidentified to anomaly (DBSCAN would re-
identify the anomaly, even if RDAE had excluded
the anomaly trajectories) , and the north trajectory
set was divided into four categories. The RDAE+
DBSCAN model was able to discriminate the stan-
dard RNAV arrival route ATAGA-1B in Fig.1,
which could not be separated in PCA+DBSCAN.
Meanwhile, the SC value was slightly better than
PCA+DBSCAN. The RDAE-+DBSCAN model
had better clustering performance of identifying the
nominal trajectory than PCA+DBSCAN.

with  RDAE-+DBSCAN,

combination further

the

improved the

Compared
RDAE-+DP
quantitative SC value, and separated non-conven-
tional pattern (orange trajectories in Fig.9(d)) from
standard RNAV route (dark blue trajectories in
Fig.9(d) ). This was a direct route only open at
night through which these aircraft flied over a re-
stricted area. So the number of cluster trajectories
was relatively few, corresponding to low density at

microscopic level. In the global trajectory cluster-

ter of the nominal trajectories (Figs.9(a) and (¢)),
or identified it as an anomaly (Fig.9(b) ). The
RDAE-+DP combination could better capture this
actual non-conventional pattern and the nominal tra-
jectory, which would contribute to the designing
and improvement of flight procedures in the terminal
area and provide support to traffic classification in

free airspace'®’.

4 Conclusions

(1) The combination of RDAE and L,-regular-
ization can well eliminate the noise in trajectories,
and it is easy to train. In fact, the performance of de-
noising can potentially be improved by the Huber
loss function or L,,,regularization'®’. This is a feasi-
ble improvement in the future. And we believe that
the trajectory reconstruction procedure could be use-
ful for trajectory smoothing a wide variety of vehicle
data.

(2) The method of combining L, regulariza-
tion and RDAE can effectively identify the anoma-

lous trajectories in the airspace. Compared with the



584 Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 37

PCA+DBSCAN and DAE algorithms, the meth-
od has 36 % and 28% performance in F1-score.

(3) The RDAE model can simultaneously cap-
ture non-linear components containing sufficient de-
tails in trajectories, so that the combination with
DBSCAN can
RNAYV aircraft routes. The last but not least, the
combination of RDAE+DP can identify both the

non-conventional spatiotemporal patterns and the

accurately cluster all standard

nominal trajectories, which could be further used to
train machine learning techniques aiming at improv-
ing the state-of-the-art of tactical deconfliction and

prediction algorithms.
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