
Aug. 2020 Vol. 37 No. 4Transactions of Nanjing University of Aeronautics and Astronautics

An Improved Gaussian Particle Filter Algorithm Using

KLD⁃Sampling

ZHOU Zhaihe*，ZHONG Yulu，ZENG Qingxi，TIAN Xiangrui

College of Automation Engineering，Nanjing University of Aeronautics and Astronautics，Nanjing 211106，P.R. China

（Received 26 June 2019；revised 27 December 2019；accepted 25 July 2020）

Abstract: To adjust the samples of filtering adaptively，an improved Gaussian particle filter algorithm based on
Kullback-Leibler divergence（KLD）-sampling（KLGPF）is proposed in this paper. During the process of sampling，
the algorithm calculates the KLD to adjust the size of the particle set between the discrete probability density
function of particles and the true posterior probability density function. KLGPF has significant effect when the noise
obeys Gaussian distribution and the statistical characteristics of noise change abruptly. Simulation results show that
KLGPF could maintain a good estimation effect when the noise statistics changes abruptly. Compared with the
particle filter algorithm using KLD-sampling（KLPF），the speed of KLGPF increases by 28% under the same
conditions.
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0 Introduction

Nonlinear filtering problems may occur in
many fields， including target tracking［1］ ， strap-

down inertial navigation system（SINS），and atti⁃
tude estimation［2］. The particle filter（PF） algo⁃
rithm proposed by Doucet is a filtering algorithm
based on the Monte Carlo method，whose dimen⁃
sion，confidence，sampling and many other issues
have received extensive attention and research［3-4］.
The resampling strategy in PF algorithm will direct⁃
ly affect the performance of filtering. Based on the
framework of PF，Gaussian particle filter（GPF）［5］

uses the Gaussian distribution to approximate the
prior and posterior distribution of the state，which is
a kind of resampling-free filtering algorithm and has
better real-time performance than PF［6］.

In fact，the noise of the system is not constant
all the time［7］. For example，in attitude estimation，
the noise of gyroscope is affected by air pressure and
temperature. Similarly，in speech recognition［8］，it

is affected by the surrounding environment. In such
cases，GPF and PF frequently have divergence due
to the sudden change of noise. Over the past years，
adaptive particle filters which use the Kullback-

Leibler divergence（KLD）-sampling have been ap⁃
plied in many areas［9-11］. Hereinafter，the method is
called KLPF. However，when it is applied to other
occasions，due to the resampling of PF，the real-
time performance of KLPF is poor.

Aiming at solving the above problem，an im⁃
proved Gaussian particle filter algorithm named
KLGPF is proposed using KLD-sampling in this pa⁃
per. By introducing the KLD-sampling strategy，the
algorithm calculates the KLD between the discrete
probability density function and the true posterior
probability density function，which is represented
by the particle to adapt to the number of samples［12］.
In contrast to KLPF，the proposed algorithm is inte⁃
grated into GPF so that the real-time performance
has great improvement.

The remainder of this paper is organized as fol⁃
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lows. In the next section，the background informa⁃
tion about KLGPF is reviewed. In Section 2，the
improved Gaussian particle filtering using KLD-

sampling is introduced. Simulation results are pre⁃
sented in Section 3 and the conclusions are drawn in
Section 4.

1 Background

1. 1 Gaussian particle filter

For the abovementioned nonlinear filtering
problem，most dynamic state space（DSS）model
with such problems can be written as［13］

{x n= f ( x n- 1,un ) Process equation
yn= h ( x n,vn ) Observation equation

(1)

where x n and yn are state and observational vari⁃
ables，respectively；and un and vn white noises. The
nonlinear functions of the system are represented by
f ( · ) and h ( · ). n is a timestamp depicting system
time.

The PF method is to get M particles from the
importance probability density π ( · ). Samples
{ x in } Mi= 1 can be used to describe the importance prob⁃
ability density function π ( · ) of the state x n at n
time［14］.

From w ( i ) = ( p ( x in ) /π ( )x in )，the weighted val⁃
ue of the particles can be obtained，where p ( x n ) is a
posterior distribution. The posterior distribution can
be represented by a sample set {x，W}.

The estimate of state x n

Ep ( x n )= ∫x n p ( x n ) dx n (2)

can be calculated as

ÊP ( x n )=
∑
i= 1

M

w ( i )x ( )in

∑
i= 1

M

w ( i )
(3)

It is obtained from the strong law of large num⁃
bers that ÊP ( x n ) → Ep ( x n ) with M →∞. Then the
approximation of the posterior probability density
can be written as

p ( x n )≈ w i
nδ ( x n- x in ) (4)

where δ ( · ) is a Dirac delta function.
Assume that the distribution of state x n at ini⁃

tial time is p ( x 1 y0 ) =N ( x 1；μ̄ 1，
-
Σ 1 )， where

N ( · ) is a Gaussian distribution that can be ex⁃
pressed as

N ( x;μ,Σ )=

(2π) -m/2 | Σ |-1/2 exp (- 1
2 ( x- μ )T Σ-1 ( x- μ ) )(5)

where μ̄ 1 and
-
Σ 1 are decided by prior information.

In general，GPF is divided into two processes
including measurement update and time update，
which will be introduced in the following section.
1. 1. 1 Measurement update

Each particle of set {x ( i )n }
M

i= 1
is given a weight

obtained from the importance probability density
π ( x n | y0：n ).

-w
( i )
n =

p ( yn |x ( i )n )N ( x n= x ( i )n ;
-
μ
n
,-Σ n )

π ( x ( i )n | y0:n )
(6)

Then，the weights are normalized as Eq.（7）to
ensure the correctness of the weighted sum.

w ( i )
n =

-w
( i )
n ∑

i= 1

M -w
( i )
n (7)

Finally，the posterior distribution of the state
x n is approximated to the Gaussian distribution，and
the mean and variance of the Gaussian distribution
are calculated as

ì

í

î

ïï
ïï

μ n= ∑
i= 1

M

w ( i )
n x ( i )n

Σ n= ∑
i= 1

M

w ( i )
n ( μ n- x ( i )n ) ( μ n- x ( i )n )H

(8)

1. 1. 2 Time update

Update the state of each particle of set {x ( i )n }
M

i= 1

to get the updated particle，which is obtained from
the posterior probability distribution N ( x n；μ n，Σ n ).
The predicted probability density function is approxi⁃
mated to the Gaussian distribution，and the mean
and variance of the Gaussian distribution are calcu⁃
lated as

ì

í

î

ïï
ïï

μ n=
1
M ∑i= 1

M

x ( i )n

Σ n=
1
M ∑i= 1

M

( μ n- x ( i )n ) ( μ n- x ( i )n )H
(9)

1. 2 KLD⁃sampling

The KLD-sampling method keeps the KLD be⁃
tween two probability density functions under a
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threshold，where KLD is defined as

DKL ( P∥ Q )= ∑
i= 1

k

P ( i) log P ( )i
Q ( )i (10)

Therefore， the posterior distribution is first
viewed as a discrete piecewise function. From this
discrete distribution，M samples x

~
= ( x 1，x2，…，xk )

are obtained，which falls into a different interval.
Obviously，x̃ conforms to multinomial distribu⁃

tion that is denoted as x
~
∼ PN (M：p

~
)，where p

~
=

p1，p2，…，pk is the corresponding probability for
each bins. The maximum likelihood estimate of pi is
p̂ i= xi M，i= 1，2，⋯，k.

Substitute the maximum likelihood estimation
probability and the real posterior distribution into
the KLD equation as

DKL ( p̂
~
∥ p̂

~
)= ∑

i= 1

k

p̂ ( i) log p̂ ( )i
p ( )i (11)

For M →∞，Eq.（11）can be written as
2MDKL ( p̂

~
∥ p̂

~
)→ χ 2k- 1 (12)

where χ 2k- 1 is a chi-square distribution with k- 1 de⁃
grees of freedom.

After performing interval estimation，the parti⁃
cle size M can be computed by

M = 1
2e χ

2
k- 1,1- δ (13)

A good approximation was provided by the
Wilson-Hilferty transformation［15］，which yields

M = 1
2e χ

2
k- 1,1- δ≈

k- 1
2e {1- 2

9( )k- 1
+

2
9( )k- 1

z1- δ} (14)

where z1- δ is the upper 1- δ quantile of the stan⁃
dard normal distribution and e the threshold of the
KLD.

2 Gaussian Particle Filter Using

KLD⁃Sampling

Under the framework of GPF，the KLGPF ob⁃
tains particles when the time update process is con⁃
ducted. KLGPF sets an interval range by introduc⁃
ing Mahalanobis distance，which includes almost
the range of the prior distribution of each state at

any time. Then，the interval is divided into several
subsections. The prior distribution is selected as an
importance probability density function，from which
the particles are extracted. Finally，KLGPF counts
the number of particles falling into different inter⁃
vals，so as to calculate the number of particles need⁃
ed in real time and adjust them accordingly.

2. 1 Setting the range of interval

As the mentioned above，the Mahalanobis dis⁃
tance is used to set the range of the interval. The
Mahalanobis distance between the sample and the
ensemble is defined as

MD ( x i,x )≜[( x i- μ )T Σ-1 ( x i- μ ) ]1/2 (15)
Set the boundary value as x i ( max ) = μ± aBb，

and the probability of the sample that falls within the
boundary at any time is 1- θ，where a is unknown
quantity and Σ= BBT. μ and Σ are the mean and
variance of the ensemble. Then

P ( ( x- μ )T Σ-1 ( x- μ )≤
( aBb )T Σ-1 ( )aBb )= 1- θ (16)

Since x conforms to normal distribution，
Eq.（16）can be written as

P ( χ 2γ ≤( aBb )T Σ-1 ( )aBb )= 1- θ≐
P ( χ 2γ ≤ χ 2γ,1- θ )= 1- θ (17)

where b is a vector of those with the same dimen⁃
sion as B，χ 2γ a chi-square distribution with γ de⁃
grees of freedom，and χ 2γ，1- θ the 1- θ quantile of
the chi-square distribution. From Eq.（17），it is ob⁃
tained that

( aBb )T Σ-1 (aBb) = χ 2γ,1- θ ⇔

a2 ⋅ γ= χ 2γ,1- θ ⇒ a2 = χ 2γ,1- θ

γ
(18)

According to the rightmost term of Eq.（18），a
gradually decreases with the increase of γ and thus

gets a maximum value of χ 21，1- θ when γ= 1. To
sum up，the range of interval can be obtained by
substituting the boundary value into Eq.（15），

which can be written as

( )0, ( )aBb
T
Σ-1 ( )aBb = ( )0, a2γ =

( )0, χ 21,1- θ ⋅ γ

Therefore，a small enough θ value needs to be
set to ensure that the probability of KLD-sampling
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particles that falls into interval (0， χ 21，1- θ ⋅ γ ) is
large enough，where γ is set to the dimension of the
state vector.

2. 2 Counting the number of subintervals into

which particles fall

According to the selected interval range in Sec⁃
tion 2.1，it is evenly divided into m subintervals and
the size is Δ= χ 21，1- θ ⋅ γ m，as shown in Fig.1.

An interval mapping table is presented in Ta⁃
ble 1.

Then an interval mapping function is built by
using Eq.（15）as

index= é

ë
ê
MD ( x in,x n )

Δ
+ 1ù

û
ú
floor

(19)

where [ ·] floor is a floor function，and index is an in⁃
dex of subintervals. A detailed description of the
KLGPF algorithm is given as follows.

The implementation of KLGPF：
Step 1 Initialize the particle set { x i0 } Mi= 1 based

on the prior information.
Measurement update：
Step 2 Compute the weights by -w

( i )
n =

p ( yn |x ( i )n ) and normalize the respective weights by

w ( i )
n =

-w
( i )
n ∑

j= 1

M -w
( i )
n .

Step 3 Estimate the mean and variance at the
current time

μ n= ∑
i= 1

M

w ( i )
n x ( i )n

Σ n= ∑
i= 1

M

w ( i )
n ( μ n- x ( i )n ) ( μ n- x ( i )n )H

Time update：
Step 4 Get particles { x in } Mi= 1 from the posteri⁃

or distribution N ( x n；μ n，Σ n ).

Step 5 Obtain the updated particle set
{ x in+ 1 } Mi= 1 by using the process equation to update
the state of each particle.

Step 6 Calculate the mean and variance of the
updated particle set by

μ n+ 1 =
1
M ∑i= 1

M

x ( i )n+ 1

Σ n+ 1 =
1
M ∑i= 1

M

( μ n+ 1- x ( i )n+ 1 ) ( μ n+ 1- x ( i )n+ 1 )H

KLD⁃sampling：

Step 7 Set the interval range as (0， χ 21，1- θ ⋅γ )
according to the state dimension and divide the inter⁃
val into m subintervals.

Step 8

（1）Draw a particle from the importance proba⁃
bility density function and M =M + 1，where M
describes the number of particles. At the same
time，calculate the Mahalanobis distance between
particles and the ensemble.

（2）If x in fall into an empty subinterval，then add
one to the non-empty subinterval，i.e.，k= k+ 1.

（3）If M < 1
2e χ

2
k- 1，1- δ，then go to Step 8（1），

otherwise go to Step 8（2）.

3 Simulation Results

In this paper，KLGPF，KLPF，GPF，and PF
algorithms are separately applied to one-dimensional
nonlinear model for numerical simulation. The mod⁃
el is a basic univariate nonstationary growth model
（UNGM），which is a strongly nonlinear model. It
can be described by DSS equation［16］ as
ì

í

î

ï
ïï
ï

ï
ïï
ï

xn=0.5xn-1+
25xn-1
1+ x2n-1

+ 8cos( 1.2 ( )n-1 )+Qn

Process equation

yn=
x2k
20 +Rn Observation equation

(20)
where n= 1，2，…，N，Qn ∼N ( 0，σ 2Q) and Rn ∼
N ( )0，σ 2R are process and measurement noises，
x0 = 0 ，and N = 100 are specified. The simulation
step size is set as 1.Some key parameters in KLPF
are set，i.e.，e= 0.15，Δ= 0.2，and δ= 0.99. The
parameters of KLGPF are set that e= 0.15，δ=

Fig.1 Interval segmentation method

Table 1 Interval mapping table

index
Value

0
[ 0,1Δ)

1
[ 1Δ,2Δ)

2
[ 2Δ,3Δ)

3
[ 3Δ,4Δ)

…

…

m
[ (m-1) Δ,mΔ )
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0.99，θ= 1× 10-9，and the subinterval numbers
m=[ 20Σn ] ceil. The simulation parameters are set
based on Ref. 10 where Σn is a variance of the prior
distribution at n time and [ ·] ceil is a ceiling function.
The statistical property of process noise and mea⁃
surement noise are specified by σ 2Q= 1，σ 2R= 1 un⁃
der normal conditions. The prior information of the
initial state of the filter is p ( x 0 ) ∼N ( 3，32)，and
the particles of PF and GPF are the average number
of KLGPF particles. In some abnormal cases，how⁃
ever，these noises will mutate. Therefore，it is first⁃
ly assumed that the system is under normal condi⁃
tions，and then the noise is suddenly changed at
some span. Fig.2 shows the true states and the esti⁃
mates obtained using GPF and PF with fixed parti⁃
cle numbers and the estimates obtained using KLG⁃
PF and KLPF with adaptive particle numbers under
normal conditions. It can be seen that the estimation
of KLGPF is not much different from that of GPF，
which uses the framework of GPF，and so are the
KLPF and PF. The particles used by these algo⁃
rithms are plotted in Fig.3. FIR result is used to dis⁃
play the outline information of the change in the
number of particles of KLGPF. The changes in par⁃
ticle number of KLGPF and KLPF should also be
noticed that the number of KLGPF particles chang⁃
es with a priori probability，whereas that of KLPF
changes with a posteriori probability. Then，KLG⁃
PF introduces the Mahalanobis distance and the size
of the interval is automatically set，while KLPF
does not. The time elapsed by using these algo⁃
rithms are shown in Table 2. KLGPF inherits the

characteristics of GPF that eliminates the process of
resampling， whose complexity is O (N). Since
KLGPF is an algorithm that adjusts the number of
the particle online in real time， the computation
time increases a little compared to GPF.

Fig.4 presents the estimation results of the four
approaches. The process noise is mutated to 500Qn

at time 20―30 and time 50―60 mutation period，
which is 500 times that of normal conditions. As
shown in Fig.4，KLGPF could remain stable at the
mutation period，which is the same with KLPF.
Fig. 5 further illustrates this point that the errors of

Fig.2 True state value and state estimation of KLGPF,
GPF, PF, and KLPF under normal conditions

Fig.3 Changes in particle number of KLGPF, KLPF,
GPF, and PF under normal conditions

Table 2 Computation time of KLGPF, KLPF, GPF, and

PF under the same simulation condition

Algorithm
KLGPF
KLPF
GPF
PF

Time/s
0.115 493
0.161 318
0.076 724
0.124 189

Fig.4 True state value and state estimation of KLGPF,
GPF, PF, and KLPF under abnormal conditions
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GPF and PF both exceed their 3σerror line at muta⁃
tion period. The change of particle number is shown
in Fig. 6. It is obvious that the number of particles
changes significantly during the mutation period，
and the number of particles used by KLGPF is more
than that of KLPF. However， since KLGPF is
within the framework of GPF， the computation
time for KLGPF is less than KLPF，as shown in
Table 3.

The comparison of the root mean square error
（RMSE）value of the four algorithms is presented
in Fig. 7，in which the RMSE value of KLGPF is
lower than those of GPF and PF. However，the per⁃

formance of KLGPF in terms of RMSE value is
slightly inferior to that of KLPF. This is because the
RMSE value for GPF is marginally higher than that
of PF. When the process noise mutates to 1 000Qn

at the mutation period，both GPF and PF are diver⁃
gent so that the filter could not be carried out，as
shown in Fig. 8. In Table 4，the concrete average
RMSE value is listed for 500Qn process noise muta⁃
tion and 1 000Qn process noise mutation. Similarly，
the computation time is presented in Table 3.

From the above information，it can be conclud⁃
ed that the KLGPF greatly improves the filtering
speed while slightly losting its algorithm accuracy

Fig.7 RMSE values of KLGPF, KLPF, GPF, and PF un⁃
der abnormal conditions (500Qn)

Fig.6 Changes in particle numbers of KLGPF, KLPF,
GPF, and PF under abnormal conditions (500Qn)

Table 3 Average computation time of 100 random real⁃

izations under different abnormal conditions

Algorithm

KLGPF
KLPF

Time/s
500Qn

3.170 330
7.067 693

1 000Qn

8.556 011
13.395 819

Fig.8 RMSE values of KLGPF, KLPF, GPF, and PF un⁃
der abnormal conditions (1 000Qn)

Table 4 Average RMSE value of 100 random realiza⁃

tions under different abnormal conditions

Algorithm

KLGPF
KLPF
GPF
PF

RMSE
500Qn

6.546 8
5.351 3
8.168 8
8.001 9

1 000Qn

6.591 0
5.488 9
8.635 1
9.325 2

Fig.5 Estimation error and 3σ line of KLGPF, KLPF,
GPF, and PF under abnormal conditions (500Qn)
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compared with KLPF. In Fig.9，the noise of muta⁃
tion is gradually increased. KLGPF and KLPF both
maintain good estimates，while the divergence fre⁃
quently occurs for GPF and PF when the noise mu⁃
tation value exceeds 700Qn.

4 Conclusions

KLGPF is proposed in this paper to cope with
the divergence problems in the case of system noise
changes. On one hand，the algorithm which com⁃
bines GPF with KLD-sampling can adjust the size
of particle sets in real time during the span of system
noise changes. Therefore，the KLGPF can remain
stable when the system is subjected to strong inter⁃
ference and the process noise experiences sudden
changes.

On the other hand，the speed of KLGPF is
much faster than that of KLPF，albeit the RMSE
value of KLGPF is marginally higher. This is be⁃
cause the improved algorithm has the feature of
GPF that it does not require the systematic resam ⁃
pling procedure with complexity O（N）. The predic⁃
tive distribution is approximated by Gaussian distri⁃
bution in KLGPF，which results in higher RMSE
value than KLPF. Moreover，KLGPF introduces
the Mahalanobis distance to set the interval that is
independent of the original data unit，so the KLG⁃
PF can be easily combined with other applications.
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基于KLD采样改进的高斯粒子滤波算法

周翟和，钟雨露，曾庆喜，田祥瑞
（南京航空航天大学自动化学院，南京 211106，中国）

摘要：为了自适应地调整滤波样本，本文提出了一种基于 Kullback ⁃Leibler散度（Kullback ⁃Leible divergence，
KLD）⁃抽样的改进高斯粒子滤波算法（Gaussian particle filter algorithm based on KLD，KLGPF）。在采样过程

中，算法通过计算 KLD来调整粒子集的大小，使其介于粒子的离散概率密度函数和真实的后验概率密度函数之

间。当噪声服从高斯分布，且噪声的统计特性发生突变时，KLGPF具有显著的效果，仿真结果表明，KLGPF在

噪声统计量突变时仍能保持良好的估计效果。在相同条件下，KLGPF的运算速度相比基于 KLD采样的粒子滤

波算法（Particle filter algorithm based on KLD，KLPF）的运算速度提高了 28%。
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