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Abstract: Through taking uncertain mechanical parameters of composites into consideration, this paper carries out
uncertain modal analysis for an unmanned aircraft landing gear. By describing correlated multi-dimensional mechanical
parameters as a convex polyhedral model, the modal analysis problem of a composite landing gear is transferred into a
linear fractional programming (LFR) eigenvalue solution problem. As a consequent, the extreme-point algorithm is
proposed to estimate lower and upper bounds of eigenvalues, namely the exact results of eigenvalues can be easily
obtained at the extreme-point locations of the convex polyhedral model. The simulation results show that the proposed

model and algorithm can play an important role in the eigenvalue solution problem and possess valuable engineering
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significance. It will be a powerful and effective tool for further vibration analysis for the landing gear.
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0 Introduction

As an important part of aircraft, the landing
gear 1s a special device for taking off, landing, taxi-
ing and parking. Therefore, it plays an important

role in aircraft structural design'"

. The landing gear
should not only meet certain static strength design
standards and requirements, but also meet the dy-
namic quality requirements under a series of work-
ing conditions such as take-off, landing and taxiing,
etc.'”. Especially, under the action of periodic dy-
namic load, the main component of the landing
gears may have strong resonance due to unreason-
able structural design or coupling between the natu-
ral frequencies of the system and the aircraft body,
which will seriously affect the reliability and stability
of the landing gear. As a result, in the process of dy-
namic design of landing gear structure, as the key
parameter of structural vibration performance, it has
very obvious engineering significance to accurately
predict the eigenvale, natural frequency and modal

shape of the landing gear structure™* .

*Corresponding author, E-mail address:307923480@qq.com.

Article ID: 1005-1120(2020)05-0694-08

On the other hand, owing to the advantages of
high specific strength, high specific stiffness and
good design-ability, advanced composite materials
have been widely applied in the field of aerospace
and aviation. And it is gradually moving towards the
structural design direction of the landing gear”™®.
Generally speaking, the landing gear accounts for
3%—6% of the takeoff weight of an aircraft. There-
fore, it is of great significance to apply advanced
composite materials into the structural design of
landing gear. However, it should be noted that
there exists a large amount of uncertainties in the de-
sign and service process of composite structures,
mainly due to material properties, geometric dimen-
sions and working loads, etc. It will seriously affect
the safety and reliability of composite structures'” .
Therefore, in order to make full use of the superior
performance and continuously tap its material poten-
tial, it is necessary to quantify these uncertain fac-

tors accurately in structural mechanical response

analysis and structural optimization design®', includ-
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ing probabilistic analysis approaches and non-proba-

bilistic ones™ "

. Especially, when the available un-
certain information is limited or insufficient, the
probabilistic methods will no longer be applicable.
On the contrary, the non-probabilistic methods will
show great advantages. Generally speaking, these
non-probabilistic methods consist of interval models
(or hyper-rectangles) , ellipsoid models (or hyper-
ellipsoid models) and convex polyhedral models.
For example, Qiu et al.'"” treated the uncertain pa-
rameters of composite materials as uncertain-but-
bounded variables, and then made use of the ellip-
soid methods and interval methods to study the un-
certain buckling problem of composite structures.
Wang et al.'” dealt with the performance parameters
of composite materials as hyper-ellipsoid models or
hyperrectangle models by using the methods of
minimum hyper-ellipsoid and minimum hypercube,
and then studied the vibration and buckling problem
of composite shells. Of course, the convex polyhe-
dral model can also be an effective method to de-
scribe the uncertain-but-bounded mechanical param-
eters of composite materials, which have two as-
pects of advantages and will be very important and
meaningful for engineering problems with uncertain-
ties. One is that it can deal with dependent uncer-
tainties and avoid the over-conservatism phenome-
non compared to interval models or hyper-rectangle
models. The other is that it has the advantage of low
computational loss because of the linear structural
form compared with the ellipsoidal ' or hyper-ellip-

soidal models'*!!

. Therefore, in the aspects of un-
certain response analysis and eigenvalue prediction
for engineering structures, how to take good advan-
tages of the convex polyhedral model is still a hot is-
sue worthy of discussion and research.

This paper carries out the modal analysis of the
composite landing gear structure for an unmanned
aircraft vehicle, where uncertainties of the compos-
ite mechanical properties are taken into consider-
ation. As a consequence, a more credible natural fre-
quency range can be obtained and it can provide nec-

essary data support for further structural design and

modal test verification. Here, the uncertain mechan-
ical parameters can be represented as a convex poly-
hedral model, which is described by some linear in-
equality constraint equations. The upper and lower
bounds of the natural frequency interval can be ob-
tained by using the proposed extreme-point solution
algorithm. The results show that the proposed mod-

el and method are feasible and of great significance.

1 Establishment of FEM for Un-

manned Composite Landing

Gear

The tail landing gear of an unmanned aircraft is
mainly composed of fuselage mounting plates, com-
posite buffer beam, wheel fork, wheel axle, wheel
and tire. The landing gear mainly absorbs energy
through the deformation of tire and buffer beam,
with simple structure, high reliability and good
maintainability. The landing gear structure is shown

in Fig.1.

/jMounﬁng plate 1
v Mounting plate 2
)

.

Composite buffer beam
Wheel fork
Wheel and tire

Fig.1 Sketch map of unmanned aircraft composite landing

gear

The buffer beam structure of the landing gear is
the fiberreinforced composite structure with the
sandwich materials. The core material is a foam
structure, and the carbon fiber layer is reinforced on
the upper and lower surfaces of the core body. The
corresponding layer sequence (1-1-—1-16) is shown

in Fig.2.

Fig.2 Sketch map of composite layer for buffer beam
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Here, the composite material is the T300/ . AT
P x;+cosl,+ x;-sind, < 7.5- +
QY8911 carbon fiberreinforced unidirectional tape N
_ . . i - cosl, + - sind
and the density is 1.62 g/cm®. The laminate informa- Lir COSTL T+ SINT )
. . . . AZ}HX (2)
tion of the composite structure is [45/—45/0/0] s —x;- 088, — x;-sind, < 7.5- —
with 16 plies and the ply thickness is 0.125 mm. x8+cosl, — x¢ - sind,

The other parts are 7050 aluminum alloy.

Four elastic mechanical parameters of compos-
ites are considered including the longitudinal tension
elastic modulus E,, the transverse tension elastic
modulus E,, the Poisson’ s ratio vy, and the shear
modulus G,.

These mechanical parameters can be measured
by tension test or shear test of composite materials,
which shows that they are actually dispersive or un-
certain. In the process of structural mechanical re-
sponse analysis and reliability evaluation, it is neces-
sary to consider the influence of uncertain mechani-

cal parameters on the results.

2 Mathematical Characterization

of Composite Uncertain Mechan-

ical Parameters

Owing to their special structural form and supe-
rior mechanical properties, fiber-reinforced compos-
ite laminates have been widely applied in the fields
of aerospace and successfully used in the structural
design of the landing gear. In fact, the composite
laminated structure is a series of laminas, which is
composed of the reinforced phase (fibers) and the
matrix phase (resin matrix). However, due to the
complex manufacturing process and the inherent dis-
persion of component materials, the mechanical
properties of composite laminates usually show
great uncertainty and intrinsic correlation'"*’. Fur-
thermore, based on grey mathematical theories,
these uncertain mechanical parameters can be dealt
with as interval models or convex polyhedral mod-
els. They can be expressed as

T, <<xi+3-s;
i=1,2,--,m (1)

—x, <35, — 1%

i=1,2,,m; j=i+1,--,m
where m is the number of uncertain mechanical pa-
rameters, x¢ the mean value of uncertain mechanical
parameters, s, the corresponding standard variance,

and 0, the polar angle of any two mechanical param-

eters.
N
x—zvr[] i=1,2,--,m (3)
j=1
A:rnx
s,—Z.S-T =1,2,-,m 4)

where z; 1s the available experimental sample point,
which has already been validated and sorted by the
ascending order. N is the number of valid experi-
mental sample points, and A, the maximum differ-
ence between the mean-value accumulated sequence
and the accumulated data sequence, namely

k
kex;— Ex,_,

i=1

A = maX(

) k=1,2,---,N (5)

It can be seen that Eqs.(1), (2) are actually a
series of linear inequality constrained equations.

They can be written as
Ax<b
A GRJ\/IXW“IERm’bGRM

where A=(a;) w15 the M X m dimensional coef-

(6)

ficient matrix, and M the number of linear inequali-
ties constraints. Furthermore, the feasible region S
of uncertain mechanical parameters can be denoted
as
S={x€R"|Ax<b)} (7)
It is a closed and bounded convex polyhedral
model. Then according to the Krein-Milman theo-
rem, in the uncertainty region, every point x of a
closed, bounded and notnull convex polyhedral
model can be represented as
= IZa,y[ [Zai =1l,0,=20;i=1,2,-
= =i
where y, are the extreme points of the convex poly-

hedral model, L is the number of all extreme
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points, and a; == 0 is the coefficient.

3 Convex Polyhedral Model of Un-

certain Eigenvalue Problem

Considering that the eigenvalue problem with-
out damping effects can be expressed as the follow-
ing form for composite landing gear with uncertain
mechanical parameters

K(z)u=M(x)u 9)
where K and M are the structural stiffness matrix
and mass matrix, respectively. u is the eigenvector
or the mode shape for structural vibrations, and A
the corresponding eigenvalue or the square of natu-
ral frequency. Furthermore, one can take good ad-
vantages of optimization theories or numerical algo-
rithm to determine upper and lower bounds, name-
ly, the maximum and minimum values. According
to the knowledge of the convex polyhedral model,
the structural stiffness matrix K () and mass ma-
trix M (x ) can be expressed as the following convex
combination form.

K(x)=K(a)= ia,-K,-

i=

M(x)=M(a)= > a,M, (10)

L

i=1
L

Za, =1,0,=20;i=1,2,---,L

=
where K,, M, are the extreme-point of the stiffness
matrix and mass matrix in the uncertain region, re-
spectively. a={(a;) is the corresponding coefficient
vector. Then Eq.(9) can be rewritten as
K(a)u=2M (a)u (11)
When the structural stiffness matrix K and
mass matrix M vary in uncertain ranges, the chang-
ing region of structural eigenvalues can be expressed
as
A={2K(a)u=M (a)u| K, MED} (12)
where @ is a closed and bounded convex polyhedral
model, namely
b= {(K,M)K(x)= iazK,-,M(x): ia,M,-
= =
i

2(1,-21;0(,20;1':1,2,---,1,

i=1

Then the maximum and minimum values of
structural eigenvalues can be written as

Ao <A <A< A <2, (14)

where A, and A, are the minimum and maximum

values of the eigenvalues, respectively. Further-

more, they can be expressed as

. {uTK(a)u}
Apin = MIN{—————
u"M(a)u
(15)
' K(a)u
Amax:max T T ass N
{uTM(a)u}

By substituting Eq.(10) into Eq.(15), the fol-
lowing equation can be obtained as
W K(a)u=u" (K, +a.K,+ -+, K )u=
" Kiu+ cu"Kout -+ a,u" K, =
aprtasp,t ot a p.=—pa (16)
u'M(a)u=u" (a M, +a.M,+ -+ a, M,)u=
" Mut o u" Mou+ -+ " M, u—
aqtayg, + -t aq —=q a (17)
i=1,2,---,L (18)

Therefore, Eq.(15) can be rewritten as

. .
pTa} Anax = maX{‘bTa}
q a q a

L
>la, 1} @, =0;i=1,2,- L

pi—=u" Ku,q;—=u"Mu

A min —— MIN

(19)

ac = {a
i=1

Generally speaking, Eq.(19) can be viewed as
a linear fractional programming (LFP) problem.
Here, the mass matrix M and the stiffness matrix K
have nonnegative decompositions. That is to say,
one can have

pi—=u"'Ku>0,q,=u"Mu>0
i=1,2,-,L
Then Eq.(19) can be called as the convex poly-

(20)

hedral model of structural eigenvalue problems with

uncertain parameters.

4 Extreme-Point Solution Algo-
Polyhedral

Model for Eigenvalue Problems

rithm of Convex

For the sake of predicting lower and upper
bounds of structural eigenvalues efficiently and accu-
rately, the extreme-point solution algorithm is pro-
posed for the convex polyhedral model. Let

ula)=pa,v(a)=q a (21)

Suppose that
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A TA _|p"A, 5 Iculation Results and Discus-
aEA/;:pTA/:mm pTA =121l (22 Calcula esults a scus
RO ARt 7 4 sions
where A;,i=1,2, -+, L is the extreme point in the

uncertain-but-bounded region £2 and
A;=(0,--+,0,1,0,-+-,0)" (23)
Only the i-th element is one when other ele-
ments are zero. Besides, every extreme point A, 1s
corresponded to the extreme point y, for the feasible
region S of dependent uncertain-but-bounded param-
eters. Then one can have
u(ADv(A)<u(A)v(A,) i=1,2,---,L(24)
Through multiplying a,(a;,=0,i=1,2, -+, L)
on both sides of Eq.(24) and accumulating all linear

inequlities, the following formula can be obtained as
L L
w(A) Nav(A)<v(A) Dau(A) (25)
i=1 i=1

Because

2,++, L, then

ia[u(A,-)—pT(ia,-Ai) =pa=u(a) (26)

M(Ai):PTAn U(A,):(]TA{, =1,

ia{v(A,-): qT(iafA,-) =q a=v(a) (27)

Substituting Eqs.(26),(27) into Eq.(25), one

can obtain that

u(ADvia)<v(A)ula) (28)
Namely

u(A,) ula)

o(A) S u(a) 0% (29)

That is to say, the eigenvalues can achieve the
minimum values at the location of extreme points
for convex polyhedral models. Similarly, the eigen-
values can also achieve the maximum values at the
location of extreme points for convex polyhedral
models. Furthermore, the eigenvalue bounds of the
composite landing gear can be obtained as

Amm_mm{pl,pz m}

q (]27 ’([1,
(30)

a2 22 L)
91 q: qr

Then the proposed extreme-point solution algo-
rithm for the convex polyhedral model can be effi-
ciently and accurately applied in the eigenvalue esti-

mation problem.

The large-scale finite element analysis software
ANSYS is made use of to establish the finite ele-
ment analysis model of composite landing gear as
shown in Fig.3. The shell 181 element is used to
simulate the composite buffer beam and the solid 45
or solid 95 element is used to simulate the other
parts. The shell 181 element is a 4-node three-di-
mensional shell element, whose node has 6 degrees
of freedom. More than 250 layers of material are al-
lowed in the element and the layer information can
be defined by the section command. The fixed sup-
port constraint is applied to the upper end surfaces
of the fuselage mounting plate 1 and mounting plate
2. In addition, in order to consider the influence of
the mass of wheel and tire on the structural mode, a
mass point of 0.5 kg is coupled in the center of the
wheel axle by the multi-point constraint. The whole
finite element model of the landing gear structure

contains about 40 000 nodes and 90 000 elements.

)

Fig.3 Finite element model of composite landing gear

In order to consider the influence of uncertain
mechanical parameters on the analysis results, the
uncertainty analysis method is used to quantify the
uncertainty of test data points'”’. Here, the test data
points of elastic mechanical parameters of T300/
QY8911 carbon fiber-reinforced unidirectional tape
are shown in Table 1.

Through non-probabilistic analysis methods,
the interval model and convex polyhedral model can
be obtained for uncertain mechanical parameters of
composite materials, as shown in Fig.4. Besides,

the characteristic parameters of mechanical parame-
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Table 1 Experimental points of elastic mechanical pa-
rameters for T300/QY8911

Table 2 Characteristics parameters for uncertain me-

chanical parameters

No. E,/GPa E,/GPa Vo G,,/GPa Parameter E,/GPa E,/GPa v, G,/GPa
1 129.20 9.34 0.30 5.23 Nominal value 131.30 9.22 0.329 5.13
2 131.59 9.53 0.33 4.97 Standard variance 2.67 0.25 0.013 0.14
3 130.63 9.08 0.33 5.16 Lower bound 123.28 8.46 0.289 4.70
4 132.01 9.34 0.33 5.15 Upper bound 139.32 9.98 0.368 5.56
5 131.04 8.94 0.34 5.15
6 127.69 8.99 0.32 o1 Furthermore, using ANSYS finite element
7 133.65 9.36 0.35 5.08 ) f .
8 132.19 9.07 0.30 7 85 analysis software, the first-order and second-order
9 132.00 9.73 0.35 5.00 natural frequencies of composite landing gear struc-
10 130.39 9.21 0.34 5.34 ture are 51.04 Hz and 65.20 Hz, respectively. The
1 128.28 8.67 0.33 4.98 modal shapes are shown in Fig.5, which are vertical
12 135.30 9.18 0.32 5.13 . . .
bending and lateral waving, respectively.
13 137.33 9.28 0.33 5.25
14 126.91 9.39 0.33 5.45

ters are shown in Table 2. Among them, the red
hollow point is the test data sample point and the
red solid point is the nominal value of uncertain me-
chanical parameters. The area enveloped by pink
lines is the uncertain interval model of elastic param-
eters and the area enveloped by blue curves is the

uncertain convex polyhedral model.

10.0F
9.8
9.61
9.4r
M92F
9.01
8.8
8.61

124 126 128 130 132 134 136 138 140
E,
(a) Quantification region of elastic modulus E, and E,

5.6

55t .
54}
53t ¢
52t ° °
. s
(o]

© s51f
50F 6 o
49F
[o]

481
T ol — S ———R—rR—
0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37

vy,

(b) Quantification region of gear modulus G,, and
Poisson’s ratio v,,

Fig.4 Uncertain quantification regions of composite me-

chanical parameters

ANSYS]

BT 21.0523 T.e35 42:1647
,,,,,

(b) The second-order mode shape
Fig.5 Mode shapes of composite landing gear
Furthermore, the uncertain intervals including
the lower bound (LB) and upper bound (UB) can
be obtained for the natural frequencies of the landing

gear structure by using the proposed extreme-point

solution algorithm, as shown in Table 3.

Table 3 Natural frequencies of composite landing gear

First-order Second-order
LB UB LB UB

Interval model 49.53 52.49 63.36 66.95

MCS for interval model ~ 49.53  52.49 63.36 66.95

Convex polyhedral model 50.01 52.01 63.77 66.53

MCS for convex

Natural frequency

50.01 52.01 63.77 66.53
polyhedral model
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Here, the interval model does not consider the
correlations between uncertain mechanical parame-
ters, while the convex polyhedral model can consid-
er the correlations between mechanical parameters.
Through comparisons of the results, the following
conclusions can be found: (1) When considering
the parameter correlations (convex polyhedral mod-
el), the estimation interval of natural frequencies is
more compact than that without considering parame-
ter correlations (interval model). In other words, a
more precise and compact range of structural me-
chanical responses can be obtained when consider-
ing correlation of mechanical properties. (2) The
lower and upper bounds of natural frequencies pre-
dicted by the proposed algorithm and Monte Carlo
simulation (MCS) method are identical. Here, the
number of sample points used in the proposed algo-
rithm is 2'=16 (interval model) or 360 (convex
polyhedral model) , and the number of sample
points in the MCS method is 10 000. It can be seen
that when the amount of calculation is far less than
that of MCS method (360<< 10 000) , the calcula-
tion results by the extreme-point solution algorithm
have the same accuracy with the MCS method.

In summary, the proposed extreme-point solu-
tion algorithm can be as an efficient and accurate
method to solve natural frequencies, where the un-
certain-but-bounded mechanical properties of com-
posites can be represented as a convex polyhedral

model.

6 Conclusions

This paper i1s aimed at taking good use of the
non-probabilistic approach, namely, the convex
polyhedral model to mathematically characterize the
uncertain mechanical parameters of an unmanned
aircraft composite landing gear. Furthermore, the
proposed extreme-point solution algorithm of the
convex polyhedral model is applied into carrying out
uncertain modal analysis of composite landing gear
structure, where uncertain mechanical parameters

can be described as a series of linear inequality equa-

tions. Compared with the Monte Carlo simulation
method, the proposed algorithm can greatly reduce
the calculation cost while ensuring the calculation ac-
curacy. The results show that the proposed method
can play an important role in the uncertain eigenval-
ue problem of landing gear structure, and be a pow-

erful calculation tool in further vibration analysis.
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