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Abstract: For the numerical simulation of compressible flows，normally different mesh sizes are expected in different
regions. For example，smaller mesh sizes are required to improve the local numerical resolution in the regions where
the physical variables vary violently（for example，near the shock waves or in the boundary layers） and larger
elements are expected for the regions where the solution is smooth. h-adaptive mesh has been widely used for complex
flows. However，there are two difficulties when employing h-adaptivity for high-order discontinuous Galerkin（DG）
methods. First，locally curved elements are required to precisely match the solid boundary，which significantly
increases the difficulty to conduct the“refining”and“coarsening”operations since the curved information has to be
maintained. Second，h-adaptivity could break the partition balancing，which would significantly affect the efficiency of
parallel computing. In this paper，a robust and automatic h-adaptive method is developed for high-order DG methods
on locally curved tetrahedral mesh， for which the curved geometries are maintained during the h-adaptivity.
Furthermore，the reallocating and rebalancing of the computational loads on parallel clusters are conducted to maintain
the parallel efficiency. Numerical results indicate that the introduced h-adaptive method is able to generate more
reasonable mesh according to the structure of flow-fields.
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CLC number：V211.3 Document code：A Article ID：1005⁃1120（2020）05⁃0702⁃11

0 Introduction

Many flow fields have multiscale structures
which are difficult to numerically capture since it is
impossible to give a proper mesh before the compu⁃
tation. Adaptive meshing techniques are introduced
to increase the solution accuracy，as well as to re⁃
duce the computational time and computer memory.
There are three typical adaptive meshing tech⁃
niques：r-adaptivity，h-adaptivity and p-adaptivity.
The r-adaptivity makes the mesh distribution match
the flow structures by changing the positions of the
grid points［1-6］. The h-adaptivity refines the region in⁃

cluding small structures by dividing the original ele⁃
ments into smaller elements，and coarsens the re⁃
gion where the solution is smooth enough by ag⁃
glomerating smaller elements into larger ele⁃
ments［7-11］. The p-adaptiviy methods are only suited
to high-order methods and they employ different or⁃
ders in different regions instead of changing the
mesh［12-17］. Besides，the three adaptive meshing tech⁃
niques can be used simultaneously. For example，
the h-adaptivity changes grids and the p-adaptivity
uses different orders for different elements.

Due to the limit of the number of elements and
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the highest order，the r-adaptivity and the p-adaptiv⁃
ity methods may not be able to provide sufficiently
accurate solutions for complex flows. Therefore，
the h-adaptivity is adopted in this paper. Babuska in⁃
troduced h-adaptivity to finite element method to im ⁃
prove the accuracy in 1975［7］. Lentini and Pereyra
combined h-adaptivity and finite difference method
in the same year［18］. Then，h-adaptivity is widely
used for the finite volume method［19-21］. In recent
years，some researchers have applied h-adaptivity
and discontinuous Galerkin（DG）methods to solve
2D flows［22-29］. Wu and Yu［30］ employed h-adaptivity
and DG method to solve the steady-state 3D Euler
equations.

Compared with the traditional finite volume
method，there are extra difficulties to implement the
h-adaptivity for high-order DG methods on tetrahe⁃
dral mesh. The curved geometry has to be main⁃
tained during the refining and coarsening operations.
Furthermore， re-balancing operation is necessary
for ensuring the efficiency of the parallel computa⁃
tion. In this paper，a 3D h-adaptive high-order DG
method with a re-balancing parallel strategy is intro⁃
duced to solve compressible flow problems on local⁃
ly curved tetrahedral mesh. The details of the com⁃
putation scheme are given，which includes the nu⁃
merical method，h-adaptivity indicator，3D h-adap⁃
tivity and the parallel computing. Then，the numeri⁃
cal results are displayed.

1 Computation Scheme

1. 1 Numerical method

1. 1. 1 Governing equations

The Navier-Stokes equations in conversation
form are given by

∂U
∂t +∇ ⋅F c (U )- ∇ ⋅F v (U,∇U )= 0 (1)

where U are the conversation variables. F c (U ) and
F v (U，∇U ) are the inviscid and viscous flux terms，
respectively.
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where ρ is the density，p the pressure，E the total
internal energy per unit mass，h the total enthalpy
per unit mass，and τ the stress tensor. u，v，and w
are the velocity components.
1. 1. 2 DG discretization

Employing the well-known BR2 scheme［31］ ，

Eq.（1）can be discretized as
∂
∂t ∫Ωe φiU hdΩe + ∫∂Ωe φiH (U h

-,∇U h
- +

r e -,U h
+,∇U h

+ + r e +,n ) dσ- ∫Ωe∇φi ⋅
F (U h,∇U h+ R ) dΩe= 0

1≤ i≤ N ( p ) (2)

where φi are the basis functions， ∫Ωe φi r edΩe =

∫e φi (U 0- U ) ndσ and R= ∑
e∈ ∂Ωe

r e. H = H c+ H v，

where

H c (U -
h ,U +

h ,n )=
1
2 [ F c (U -

h )+ F c (U +
h ) ]⋅ n-

1
2 α (U

+
h - U -

h )

H v (U h
-,∇U h

- + r e -,U h
+,∇U h

+ + r e +,n )=
1
2 [ F v (U h

-,∇U h
- + r e - )+

F v (U h
+,∇U h

+ + r e + ) ]⋅ n
The final discrete system can be written as
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L ( u )=M
du
dt + R (u) = 0

The above system can be solved using the fol⁃
lowing implicit relaxation method.
u( 0 ) = u( n )
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Δu= R ( uk )- M
Δt ( u

k- u0 ) ( 3a )

uk+ 1 = uk+ cΔu ( 3b )
k= 1,⋯,kmax

un+ 1 = u( kmax )

1. 2 h⁃adaptivity indicator

In order to capture the shocks，an artificial vis⁃
cosity approach［29］ is employed for transonic and su⁃
personic cases，for which an artificial viscosity term
is introduced to the original governing equations
∂U
∂t +∇ ⋅F c (U )- ∇ ⋅F v (U,∇U )= ∇ ⋅( ε∇U )(4)

where ε is defined as the artificial viscosity coeffi⁃
cient in element e

εe=

ì

í

î

ï
ï
ï
ï

0 se< s0 - κ
ε0
2 ( )1+ sin π ( se- s0 )

2κ s0 - κ≤ se ≤ s0 + κ

ε0 se> s0 + κ
(5)

where se= log10Se，ε0 =De/p，s0 = log10 ( 1/p4 )，κ is
an constant and De the size of element e. Se is given as

Se=
(U -~U,U -~U ) e

(U,U ) e
(6)

Since ε tends to 0 in smooth region and be⁃
comes larger in the region with great gradient such
as the region near shocks，it can be used as an h-

adaptivity indicator. For the viscous flows without
shocks，the magnitude of the vorticity can be em⁃
ployed as the h-adaptivity indicator.

1. 3 h⁃adaptivity

Tetrahedron elements are employed in the en⁃
tire computational domain here，and the h-adaptivi⁃
ty operations consist of refining and coarsening.
Fig.1（a）displays the refining procedure，where the
original“father”element on the left is divided into
eight“child”elements on the right. To ensure the
accuracy of the solid boundaries，the elements near
the solid boundaries are usually curved. Fig.1（b）
demonstrates the way to divide a curved element in⁃

to smaller ones，where“child”elements are also
curved to accurately match the geometry of“father”
element. The coarsening procedure is exactly the in⁃
verse operation of those shown in Fig. 1. Note that
the way to describe curved elements is not unique.
For example，we can use both high-order polynomi⁃
als and governing points located on the edges and
faces of an element to define the element geometry.
In this paper， high-order polynomials are used，
from which all required curved information can be
computed，thereby maintaining the curved geome⁃
tries during the refining and coarsening operations.

A generation label is created for each element
over the computational domain. All of the original
elements are labelled 0 and the“child”elements
generated after refining n times will be labelled n.
To avoid the significant difference of the neighbor⁃
ing elements in size，the difference in the generation
label of the neighboring elements are limited to be 1.
For example，once the element“e”in Fig. 2 is re⁃
fined，the element“f”will also be refined to keep
the local mesh size relatively smooth.

Fig.2 Refining the neighboring elements

Fig.1 Element refining
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The elements over the computational domain
are numbered as shown in Fig.3. Once the element
E in Fig.3（a）is refined into eight“child”elements，
one inherits the number E and the others are num⁃
bered from N+1 to N+7. Fig.3（b）indicates the in⁃
verse operation，where the elements E and f1—f7
are agglomerated back to their“father”element E.
This dynamic ordering rule maintains the chain
structure of the original mesh，for which the compu⁃
tational module does not need to be modified during
the h-adaptivity.

1. 4 Parallel computing

It is well known that DG methods are well suit⁃
ed for parallel computing. The computation in this
paper starts from partitioning the initial mesh into N
partitions which have nearly equal number of ele⁃
ments with each other. However，after conducting
h-adaptivity， the partition load balance would be
broken，which means that the number of elements
of each partition may be quite different. The unbal⁃
anced partition load would result in poor efficiency
of the parallel computing.

This paper re-balances the mesh partitions after
h-adaptivity. First， the elements to be refined or
coarsened are marked. Second， all the processes

send the marked h-adaptivity information to the first
process. Third，the first process conducts the refin⁃
ing and coarsening over the entire domain. Finally，
the first process redivides the entire computational
domain into N partitions and distributes them to the
corresponding processors. Then the computation
continues on the new mesh.

2 Numerical Results

2. 1 Inviscid flow around ONERA M6 wing

To validate the h-adaptivity method for the
shock capturing，the typical inviscid transonic flow
around the ONERA M6 wing is numerically simu⁃
lated， for which Ma∞ = 0.84，α= 3.06. The 3D
Euler equations are solved using the DG method
（p=2），where the artificial viscosity term is added
into the Euler equations to capture the shocks，as
shown in Eq.（3）.

Fig.4 presents the results computed on the ini⁃
tial mesh. Fig.4（a）shows the mesh distribution and
there are 31 044 tetrahedral elements in total over
the entire domain. The contours of the pressure co⁃
efficient are displayed in Fig.4（b）. The distribution
of ε is given in Fig.4（c），which matches the shocks
well. In the region where ε is relatively large，the el⁃
ements are going to be refined to improve the resolu⁃
tion of the shocks.

Using the h-adaptivity method developed previ⁃
ously，a more accurate numerical result is obtained
after only one time h-adaptivity. Figs.5（a），（b）dis⁃
play the final mesh distribution on the surface of the
wing and the refined elements in the space，respec⁃
tively. Fig.5（c） presents the new contours of the
pressure distribution，where the shocks are much

Fig.3 Data structure of elements during refining and coars⁃
ening

Fig.4 Numerical results obtained on the initial mesh of ONERA M6 wing
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more accurately captured than that in Fig.4（b）. The
distributions of the pressure coefficients on different
spanwise profiles are given in Fig.6，where the

shocks obtained after the h-adaptivity are sharper
than those captured on the initial mesh and match
better with the experimental results.

2. 2 Inviscid flow around pitching NACA0012

wing

To verify the applicability of the introduced h-

adaptivity method to unsteady flows，the inviscid
flow around a periodically pitching NACA0012
wing is numerically simulated，for which the infinite
Mach number is 0.755. The wing pitches around
Z=0.25 periodically and the attack angle varies as
α ( τ )= α0 + αm sin ( 2Kτ )，where α0 = 0.016°，αm=
2.51°，K=0.081 4. The DG method of 3rd-order ac⁃
curacy（p=2） is employed and the explicit Runge-
Kutta time-stepping is used.

Fig.7 displays the global view and the local
view of the initial mesh，for which there are 20 312
elements in total. Fig.8 gives the contours of Mach
number obtained on the initial mesh at different time
steps during one periodic cycle. Note that significant
numerical oscillation can be observed near the

Fig.5 Numerical results obtained on the final mesh of ONERA M6 wing

Fig.6 Distributions of pressure coefficients at different spanwise profiles of ONERA M6 wing

Fig.7 Initial mesh of oscillating NACA0012 wing
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shocks，which means the numerical solution is not
accurate enough. The mesh distributions with h-

adaptivity during the pitching in one period cycle are
presented in Fig.9，where the maximum time of re⁃
finement is limited as two. In Figs.9（a），（b），the
elements on the upper surface of the wing near the
shocks are refined. Figs.9（c），（d）display the mesh
distributions when the shocks appear on the lower
surface，for which the elements near the shocks are
refined and the previously refined regions in Figs. 9
（a），（b） are coarsened. Fig.10 displays the Mach
contours at different time steps. During the h-adap⁃
tivity，the total number of the elements over the en⁃

tire computational domain remains less than 42 000
since the refining and the coarsening operations are
conducted simultaneously.

Fig.11 displays the distributions of the pressure
coefficient on the Z=0 profile at different attack an⁃
gles，where the results computed on the adaptive
mesh match better with the experiments than those
obtained on the initial mesh，and the numerical oscil⁃
lations near the shocks are significantly reduced by
the h-adaptivity. The comparison of the hysteresis
loops is given in Fig. 12，where the one computed
on adaptive mesh is closer to the experimental one
than the result obtained on the initial mesh.

Fig.8 Mach contours computed on the initial mesh of oscil⁃
lating NACA0012 wing

Fig.9 Refined mesh of oscillating NACA0012 wing
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2. 3 Viscous flow around sphere

For the viscous flows without shocks，we use
the magnitude of vorticity as an h-adaptivity indicator.
Here we use the 3rd-order DG（p=2）to solve the vis⁃
cous flow around sphere，for which Ma∞=0.5 and
Re=118. The governing equations are the N-S equa⁃
tions without the artificial viscosity term in Eq.（3）.

The initial mesh is given in Fig. 13 which con⁃
tains 2 412 elements. The steady-state flow field is

Fig.10 Mach contours computed on the final mesh of oscillating NACA0012 wing

Fig.11 Comparisons of pressure coefficient profiles at different time steps

Fig.12 Comparison of hysteresis loops
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solved using the widely used Newton method. The
pressure contours and the streamlines obtained on
the initial mesh are displayed in Fig. 14（a），where
the pressure distribution is not smooth enough. The
distribution of the magnitude of the vorticity is given
in Fig.14（b），where the magnitude of the vorticity
in the region near the solid surface and part of the

wake zone is relatively large.
The initial mesh is refined one time according to

the distribution of the vorticity. Figs. 15（a），（b）dis⁃
play the final mesh in the symmetric profile and in the
spaces，respectively. The Mach contours in Fig.16（a）
are smooth and the accuracy of the pressure distribu⁃
tion is improved compared to that in Fig.14（a）.

Fig.13 Initial mesh for sphere Fig.15 The final mesh

Fig.16 Numerical results on the final meshFig.14 Numerical results on the initial mesh
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3 Conclusions

（1） An h-adaptive DG method on locally
curved tetrahedral mesh is developed，which con⁃
tains both refining and coarsening operations. The
curved geometry is well maintained during both re⁃
fining and coarsening，which ensures the applicabili⁃
ty of the obtained mesh to high-order DG methods.

（2）To ensure the parallel efficiency，a re-bal⁃
ance strategy for parallel computing is conducted af⁃
ter the h-adaptivity，which can provide a nearly
equivalent computational load on different proces⁃
sors. However，one possible disadvantage of the re-
balance method is that it may be time-consuming
when the number of elements is large since only one
processor is used to conduct the h-adaptivity and the
re-balancing.

（3）Both steady-state and unsteady-state cases
are numerically tested. Numerical results indicate
that the accuracy can be significantly improved with
the introduced h-adaptive method at a relatively low
expense since only local regions are refined accord⁃
ing to the given h-adaptivity indicators. Further⁃
more， the choice of the h-adaptivity indicators is
flexible.

Typical test cases are numerically computed to
validate the introduced h-adaptive DG method. In
the future，we should consider further improving the
efficiency of the h-adaptivity and the re-balancing op⁃
eration for more complex computational fluid dy⁃
namics（CFD） problems，such as the large eddy
simulation（LES）for complex geometries.
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基于局部弯曲四面体网格的可压流自适应高阶间断伽辽金方法

安 慰 1，2，3，黄增辉 1，吕宏强 1

（1.南京航空航天大学航空学院，南京 210016，中国；

2.中国空气动力研究与发展中心，气动噪声控制重点实验室，绵阳 621000，中国；

3.中国空气动力研究与发展中心，空气动力学国家重点实验室，绵阳 621000，中国）

摘要：对于可压缩流的数值模拟，通常需要在不同的计算区域采用不同尺度的网格单元。在诸如激波、附面层等

物理量变化剧烈的区域通常需要小尺度的网格单元来提高数值模拟的精度，在物理量相对光滑的区域采用较大

尺度的网格单元即可。虽然对于复杂流动自适应网格已被广泛应用，但对于高阶间断伽辽金方法仍然存在两个

困难。首先，高阶间断伽辽金方法需要的局部弯曲网格显著提升了网格单元细分和粗化的难度，因为弯曲的信

息需要始终被保持。其次，对于并行计算，网格自适应会破坏分区负载平衡，从而导致并行效率显著下降。本文

基于局部弯曲的四面体网格针对高阶间断伽辽金方法发展了一种鲁棒、自动的网格自适应方法，在自适应的过

程中物面的弯曲信息可以被很好地保持。另外在每次网格自适应后，采用了重新分配分区负载的策略保证并行

效率。数值结果表明，所提出的网格自适应方法能够根据流场结构生成更合理的网格。

关键词：网格自适应；间断伽辽金方法；弯曲网格；四面体网格；可压缩流
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