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Abstract: An algorithm integrating reduced order model（ROM），equivalent linearization（EL），and finite element
method（FEM） is proposed to carry out geometrically nonlinear random vibration analysis of stiffened plates under
acoustic pressure loading. Based on large deflection finite element formulation，the nonlinear equations of motion of
stiffened plates are obtained. To reduce the computation，a reduced order model of the structures is established. Then
the EL technique is incorporated into FE software NASTRAN by the direct matrix abstraction program（DMAP）.
For the stiffened plates，a finite element model of beam and plate assembly is established，in which the nodes of beam
elements are shared with shell elements，and the offset and section properties of the beam are set. The presented
method can capture the root-mean-square（RMS） of the stress responses of shell and beam elements of stiffened
plates，and analyze the stress distribution of the stiffened surface and the unstiffened surface，respectively. Finally，
the statistical dynamic response results obtained by linear and EL methods are compared. It is shown that the proposed
method can be used to analyze the geometrically nonlinear random responses of stiffened plates. The geometric
nonlinearity plays an important role in the vibration response of stiffened plates，particularly at high acoustic pressure
loading.
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0 Introduction

Stiffened plates and shells are common structur⁃
al forms used in the aerospace industry［1］，owing to
their many advantages over unstiffened plates，such
as their very high stiffness to weight ratio. Stiffened
panel usually consists of a basic structure and local
reinforcement elements called stiffeners are added to
improve the static and dynamic characteristics of the
structure. The behavior of stiffened plate structures
subjected to linear random vibrations under low lev⁃
els of acoustic excitation is readily determined be⁃
cause approximate solutions of the equations of mo⁃
tion are readily obtained under these conditions.

However，stiffened plates readily sustain large am⁃
plitude vibrations when subjected to excessive
acoustic excitation. In this case，the structural stiff⁃
ness employed in the equations of motion governing
a plate is dependent upon the magnitude of deflec⁃
tion，making the equations of motion nonlinear，and
difficult to solve. In addition，the structural disconti⁃
nuity and anisotropy are induced by stiffeners. This
unique characteristic makes the nonlinear random vi⁃
bration response analyses much more complicated
than those of the unstiffened plate. For these rea⁃
sons，the equations of motion are far more complex
in the case of nonlinear random vibrations，and ob⁃
taining approximate solutions in a computationally
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efficient manner is very difficult. Therefore，the de⁃
velopment of theoretical models and computational⁃
ly efficient approaches for obtaining reasonably accu⁃
rate approximate solutions of nonlinear motion equa⁃
tions is essential for achieving a thorough under⁃
standing of the nonlinear random vibration response
of stiffened plates under acoustic loads.

Numerous studies of the vibration characteris⁃
tics of stiffened plates have been conducted using
various theoretical models and solution approaches.
Ma et al.［2］ investigated the nonlinear forced vibra⁃
tion of the stiffened plates with four clamped edges
based on the Lagrange equation and the energy prin⁃
ciple. Chen et al.［3］ investigated the strongly nonlin⁃
ear free vibration of four edges simply supported
stiffened plates with geometric imperfections. Cho
et al.［4］ dealt with numerical procedure for the vibra⁃
tion analysis of rectangular plates and stiffened pan⁃
els subjected to point excitation force and enforced
displacement at boundaries. Sheikh and Mukhopad⁃
hyay［5-6］ investigated the geometric nonlinearity of
stiffened plates by the spline finite strip method，
and applied this method to analyze linear and nonlin⁃
ear transient vibration of plates and stiffened plates.
Mitra et al.［7］ studied the influence of stiffener posi⁃
tion，plate aspect ratio，and stiffener to plate thick⁃
ness ratio on the large amplitude dynamic behavior.
Qing et al.［8］ developed a novel mathematical model
for free vibration analysis of stiffened laminated
plates by separate consideration of plate and stiffen⁃
ers based on the semi-analytical solution of the state-
vector equation theory. Li et al.［9］ proposed the Kar⁃
hunen-Loeve expansion （KLE）， finite element
method（FEM）， and boundary element method
（BEM）（KLE/FEM/BEM） to carry out vibro-

acoustic analysis of stiffened panel under stationary
and non-stationary random excitations. Dogan［10］

used the Galerkin type approach to study the nonlin⁃
ear vibration of clamped functionally graded material
plates under random excitation，but it is difficult to
apply this method to the systems with complex ge⁃
ometry and boundary conditions.

One of the most widely used approximation
techniques for the random problem is the equivalent

linearization（EL） that the nonlinearities in system
are replaced by effective linear systems. The advan⁃
tage of the EL method is that it can be combined
with FEM and applied to nonlinear systems with
complex geometry and boundary conditions. Robin⁃
son et al.［11］ predicted the nonlinear random re⁃
sponse of structures using an EL technique by
means of the direct matrix abstraction program
（DMAP）modifications in NASTRAN. While it is
possible to perform an EL analysis in the physical
degrees-of-freedom，it is desirable to transform the
problem into modal coordinates to simplify the prob⁃
lem.

One approach for reducing the computational
burden associated with solving ordinary differential
equations is to reduce the order of the equations us⁃
ing the mode summation method. Here，a physical
multiple degree of freedom system is translated into
a modal system，which is convenient for analyzing
its nonlinear random vibrations. The appropriate se⁃
lection of modal basis vectors and the determination
of nonlinear stiffness coefficients in the reduced-or⁃
der equations are essential aspects of this approach.
Rizzi and Przekop［12］ investigated the effect of modal
basis selection on geometric nonlinear response pre⁃
diction using a reduced-order nonlinear modal simu⁃
lation. Przekop et al.［13］ examined three procedures
for guiding the selection of an efficient modal basis
in a nonlinear random response analysis. Kim et al.［14］

developed nonlinear structural dynamic reduced-or⁃
der models of beams and plates，and established
their validity. Mignolet et al.［15］ presented an exten⁃
sive review of indirect methods for the construction
of reduced-order models employed for the prediction
of the vibration responses of geometrically nonlinear
structures represented by finite element models.
Parandvar and Farid［16］ studied the large amplitude
vibration of functionally graded material plates sub⁃
jected to combined random pressure and thermal
loadings using the finite element modal reduction
method. Przekop and Rizzi［17］ adopted a reduced-or⁃
der method to investigate the geometrically nonlin⁃
ear response of structures exposed to combined load⁃
ings，and investigated the effect of modal basis se⁃
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lection on the quality of the results obtained.
The numerical results for a thin simply-support⁃

ed aluminum plate［18］ are in good agreement with
previously reported data in Refs.［19-20］，which
confirms that the proposed method has reasonable
precision and high efficiency. But the implement
method is not applied to stiffened plate. It should be
pointed out that Solution 106 cannot analyze the
large deformation of the stiffened plate with offset
and the nonlinear nodal forces cannot be obtained.
So，the nonlinear nodal forces of the stiffened plate
need to be solved in Solution 400. In this paper the
implementation method proposed in Ref.［18］is im⁃
proved，and then it is applied to stiffened plates.

This paper is organized as follows. In Section
1，the large deflection finite element formulations of
stiffened plates are briefly introduced to establish
the general nonlinear equations of motion. In Sec⁃
tion 2，the EL method for geometrically nonlinear
random vibration is introduced，and an improved im⁃
plementation of the EL method is presented. In Sec⁃
tion 3，a numerical example，including linear and
geometrically nonlinear random vibration analyses
of stiffened plates，is given. Finally，the main con⁃
clusions are summarized in Section 4.

1 Reduced Order Model of Geo⁃

metrically Nonlinear Structures

The system mass，damping and stiffness matri⁃
ces are generally obtained using a commercial finite
element software. But the nonlinear stiffness which
is related to ΓT，is not available within a commer⁃
cial finite element software. The equations of mo⁃
tion of a multiple degree-of-freedom， viscously
damped geometrically nonlinear system can be writ⁃
ten in the form

MẌ ( t) + CẊ ( t) + KX ( t) +
( Κ 1X ( t) + Κ 2XX T ( t) ) X ( t) = P ( t) (1)

or in more general form，as
MẌ ( t) + CẊ ( t) + KX ( t) + Γ (X ( t ) ) = P ( t) (2)
where the matrices M，C and K are the mass，pro⁃
portional damping，and linear stiffness matrices，re⁃
spectively. X ( t) is the displacement response vector

and P ( t) the force excitation vector. The coeffi⁃
cients K 1 and K 2 are the system first and second-or⁃
der nonlinear stiffness coefficients. For the problems
of interest，the nonlinear restoring force vector Γ
can be adequately represented by quadratic and cu⁃
bic order terms in X.

Performing an EL analysis in the physical de⁃
grees-of-freedom is very difficult. To reduce the
computational cost and time，a modal equation with
reduced degrees-of-freedom is obtained by applying
the modal coordinate transformation

X ( t) =Φq ( t) (3)
to Eq.（2），a modal equation of motion can be writ⁃
ten as
~
M q̈ ( t) + ~C q̇ ( t) +~K q ( t) +~Γ ( q1,q2,…,qL )=

~
P ( t) (4)

where
~
M =ΦTMΦ= [ I] ~

C =ΦTCΦ=[ 2ζrωr ]
~
K =ΦTKΦ= [ω 2r] ~

Γ =ΦTΓ
~
P =ΦT P (5)

where q1，q2，…，qL are the components of q，and q
is the vector of modal coordinates. ζr is the viscous
damping factors，ωr the undamped natural frequen⁃
cies，and Φ generally the subset of the linear eigen⁃
vectors obtained from Eq.（2）without Γ. A normal
modes analysis was performed to obtain the modal
matrixes， from which modes with relatively high
modal effective mass fraction were selected as the
modal base vectors to reduce order of the equations
of motion［21］.

The nonlinear restoring force components in
modal space are replaced by the product of quadratic
and cubic nonlinear modal displacements multiplied
by unknown nonlinear modal stiffness coefficients.
In the present paper，the assumed form of the non⁃
linearities will be cubic based upon previous studies
of aircraft structural response［22］. Thus， it can be
written as

~Γ r ( q1,q2,…,qL )= ∑
j= 1

L

∑
k= j

L

∑
l= k

L

brjkl qj qk ql

r= 1,2,⋯,L (6)
where L is the number of modal base vectors. This
form is sufficient for characterizing the type of non⁃
linearity of interest in this paper and facilitates the
subsequent solution of the equivalent linear system.
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The particular displacement fields are given for a se⁃
ries of inverse linear and nonlinear static analysis to
determine the coefficients bjkl［19，23］. The total nodal
force FT may be written in physical coordinates as

FT = FL + FNL = KX c + Γ ( X c ) (7)
where X c is a prescribed physical nodal displacement
vector，and FL and FNL are the linear and nonlinear
contributions to the total nodal force. FL is first ob⁃
tained by prescribing X c in the linear static solution.
FT is then obtained by prescribing X c in the nonlin⁃
ear static solution which includes both the linear and
nonlinear contributions. Note in linear analysis，as⁃
suming the displacements are small and the nonlin⁃
ear terms are negligible，the nodal force vector is
FL = KX c. Finally，the nonlinear contribution FNL

is obtained by subtracting FL from FT，or
FNL = Γ ( X c )= FT - FL (8)

One can begin by prescribing the displacement
fields

X c =+ϕ 1q1 (9)
where ϕ i is mode shape vector（eigenvector）. The
nonlinear nodal force contributions FNL are deter⁃
mined using Eq.（8）after solving the linear and non⁃
linear static solutions. These may be written in mod⁃
al coordinates as
~
F NL =ΦTFNL =ΦTΓ (+ϕ 1q1 )= [br111] q1q1q1(10)
where the sought stiffness coefficients [br111] are vec⁃
tors of length L. Note that the other nonlinear terms
do not appear in Eq.（10） since qj= 0 for j≠ 1.
Since q1 is a known scalar，the coefficients [br111] for
r= 1，2，⋯，L can be determined from the resulting
system Eq.（10）of L linear equations. The remain⁃
ing coefficients [ brjjj ] for ( j= 2，3，⋯，L ) can be de⁃
termined in an analogous manner.

A similar technique can be used to determine
stiffness coefficients with two unequal lower indi⁃
ces，e.g. [br112]and [br122]. Coefficients of this type ap⁃
pear only if the number of retained eigenvectors is
greater than or equal to two(L≥ 2). Prescribing the
displacement fields

X c1 =+ϕ 1q1 + ϕ 2q2
X c2 =+ϕ 1q1 - ϕ 2q2

(11)

results in the following equations
~
F NL1 =ΦTFNL1 =ΦTΓ (+ϕ 1q1 + ϕ 2q2 )=

[br111] q1q1q1 + [br222] q2q2q2 +
[br112] q1q1q2 + [br122] q1q2q2

~
F NL2 =ΦTFNL2 =ΦTΓ (+ϕ 1q1 - ϕ 2q2 )=

[br111] q1q1q1 - [br222] q2q2q2 -
[br112] q1q1q2 + [br122] q1q2q2

(12)

The first equation of Eq.（12）plus or minus the
second，results in
~
F NL1 +

~
F NL2 =+2[br111] q1q1q1 + 2[br122] q1q2q2

~
F NL1-

~
F NL2 =+2[br222] q2q2q2 + 2[br112] q1q1q2

(13)

From Eq.（13），the coefficients [br112] and [br122]
may be determined from the 2× L system of equa⁃
tions. In this manner，all coefficients of the type
[ brjjk ] and [ brkkj ] for j，k= 1，2，⋯，L may be found.
For cases when the number of retained eigenvectors
is greater than or equal to three (L≥ 3)，coeffi⁃
cients with three unequal lower indices，e.g. [br123]，
may be determined by prescribing the displacement
field

X c =+ϕ 1q1 + ϕ 2q2 + ϕ 3q3 (14)
The resulting equation

~
F NL =ΦTFNL =ΦTΓ (+ϕ 1q1 + ϕ 2q2 + ϕ 3q3 )=

[br111] q1q1q1 + [br222] q2q2q2 + [br333] q3q3q3 +
[br112] q1q1q2 + [br221] q2q2q1 + [br113] q1q1q3 +
[br331] q3q3q1 + [br223] q2q2q3 + [br332] q3q3q2 +
[br123] q1q2q3 (15)

contains one column of unknown coefficients [br123].
All coefficients of type [ brjkl ] ( j≠ k≠ l ) can be
found in this manner.

The nonlinear stiffness coefficients bjkl in Eq.（6）
were obtained using a Fortran computer code denot⁃
ed as nonlinear stiffness evaluation（NLSE）. As a
result，the implicit geometrically nonlinear equation
of motion is represented as an explicit equivalent
nonlinear equation of motion in modal coordinates.
For a random loading，the solution of Eq.（4）with
the nonlinear terms can be undertaken through nu⁃
merical simulation or EL method. In this study the
EL method is considered below.
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2 Force Error Minimization of

Equivalent Linearization Method

for Random Loading

2. 1 Theoretical foundation

Eq.（2）has no general solution when the excita⁃
tion is random. An approximate solution can be ob⁃
tained by using formation of an equivalent linear sys⁃
tem

MẌ ( t) + CẊ ( t) +[ K+ K e ] X ( t) = P ( t) (16)
where K e is the equivalent linear stiffness matrix.
While it is possible to perform an EL analysis in the
physical degrees of freedom，it is desirable to recast
the problem in modal coordinates to simplify the
problem. The equivalent linear analog of Eq.（4）
may be found by applying Eq.（3）to Eq.（16）

~
M q̈+ ~C q̇+[~K +~K e ] q=

~
P (17)

where the modal equivalent linear stiffness matrix
~
K e is given by

~
K e =ΦTK eΦ (18)

The traditional force-error minimization meth⁃
od of EL was adopted to seek the minimizing be⁃
tween the nonlinear force and the product of the
modal equivalent linear stiffness and displacement
response vector. The error in the approximate sys⁃
tem is defined as

Δ= ~Γ -~K eq (19)
Since the error is a random function of time，

the required condition is that the expectation of the
mean square error be a minimum. This is expressed
as

E [ΔT Δ] → min (20)
where E [ ⋅ ] represents the expectation operator. Eq.
（20）will be satisfied if

∂E [ ]ΔT Δ

∂~K eij

= 0 i,j= 1,2,⋯,N (21)

where ~K eij is the elements of matrix
~
K e and N the

number of physical degrees of freedom. Substituting
Eq.（19）into Eq.（21），and interchanging the expec⁃
tation and differentiation operators，we have

E [ ~Γ qT ]= E [ qTq ] ~K
T
e (22)

Using the fact that the matrix E [ ~Γ qT ] is non-

singular，the matrix~K e can be determined

~
K e = E [ qTq ]-1E [ ~Γ qT ] (23)

The matrix ~K e defined in Eq.（23） can be di⁃
rectly obtained in a finite element code if the stiff⁃
ness coefficients a and b are available and the expec⁃
tation operator can be evaluated. It is generally as⁃
sumed that a Gaussian excitation also has a Gauss⁃
ian response. By using the formula for the expected
value of a Gaussian vector q，the following relation
can be obtained.

E [ ~Γ qT ]= E [ qTq ] E [ ∇~Γ ] (24)
where ∇ is the gradient operator. In this method，
the equivalent linear stiffness in modal coordinates
may be written as

~
K e =

é

ë
êêE

é

ë
êê
∂~Γ
∂q

ù

û
úú
ù

û
úú (25)

where ~Γ is defined by Eq.（6） using the nonlinear
modal stiffness coefficients. ~K e is an equivalent lin⁃
ear function of the displacement vector q，which is
one order less than the nonlinear system stiffness
matrix~Γ.

2. 2 Iterative solution for modal equivalent lin⁃

ear stiffness matrix

Because the matrix ~K e is a function of the un⁃
known modal displacement response （covariance
matrix），the solution to Eq.（17） takes an iterative
form，i.e.

~
M q̈m+ ~C q̇m+[~K +~K

m- 1
e ] qm= ~

P (26)
where superscript m is the iteration number. At the
start of the first iteration~K e is equal to zero. Assum⁃
ing stationary excitation，a stationary response is
sought precluding the need for initial conditions.
Note that in modal coordinates，the order of these
matrices is not large，so it is not difficult to calculate
the frequency response matrix H (ω) at each fre⁃
quency，i.e.
H m- 1 = (-ω2~M + iω~C +~K +[ α~K

m- 1
e +

β~K
m- 2
e ] )-1 (27)

The introduction of the weightings α and β is to
aid in the convergence of the solution，with the con⁃
dition that α+ β= 1. As discussed in Ref.［18］，

the weightings α and β played a significant role in
the convergence of the iterative procedure. The ap⁃
propriate values for α and β were adopted at various
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acoustic pressure levels. In this paper，two variable
values of α and β for optimizing the convergence
rate at high acoustic pressure levels are developed to
decrease the step size and avoid divergence.

For the random vibration of linear system Eq.
（26），the spectral density matrices of the modal re⁃
sponse S qq and excitation

~
S ff are related by

Smqq= H m- 1 (ω)~S ff (
-
H

m- 1 (ω) )T (28)
where ~S ff is the spectral density matrix of the load in
modal coordinates，it can be written as

~
S ff=ΦTS ffΦ (29)

The spectral density matrix of the loading in
physical degrees of freedom is the product of fre⁃
quency response load vector f multiplied by its com⁃
plex conjugate transpose -

f
T

S ff= f
-
f
T (30)

where the over-bar in Eqs.（28，30） indicates the
complex conjugate，and f is the frequency response
load vector. The zero-time-lag covariance matrix
components E [ qr qs ] are calculated from the re⁃
sponse spectral density matrix using the Wiener-Kh⁃
inchin formula. For the r，s components， this is
written as

E [ qr qs ]m= ∑
n

SmqrqsΔωn (31)

Again，we note that the orders of matrices are
not large in modal coordinates，so it is not difficult
to calculate the covariance matrix by a simple nu⁃
merical integration over frequency. After having
done so，the updated ~K e may be calculated as a
function of the response covariance matrix

~
K

m

e = f ( E [ qj qk ]m- 1 ) (32)
For example，~K e for the m-th iteration of the

force-error minimization approach is determined
from Eq.（25）as

~
K

m

e =
é

ë
êê

ù

û
úúE

é

ë
êê

ù

û
úú

∂~Γ
∂q

m

=

é

ë

ê

ê

ê

ê

ê

ê

ê

ê
êê
ê

ê

ê

ê

ù

û

ú

ú

ú

ú

ú

ú

ú

ú
úú
ú

ú

ú

ú
E
é

ë

ê
ê

ù

û

ú
ú

∂{ }~Γ 1

∂{ }q1
⋯ E

é

ë

ê
ê

ù

û

ú
ú

∂{ }~Γ 1

∂{ }qL
⋮ ⋱ ⋮

E
é

ë

ê
ê

ù

û

ú
ú

∂{ }~Γ L

∂{ }q1
⋯ E

é

ë

ê
ê

ù

û

ú
ú

∂{ }~Γ L

∂{ }qL

m

(33)

Substitution of Eq.（6）into Eq.（33）yields
~
K

m

e =

é

ë

ê

ê

ê

ê

ê
êê
ê
ê

ê

ù

û

ú

ú

ú

ú

ú
úú
ú
ú

ú
∑
j= 1

L

∑
k= j

L

b1jk1E [ qj qk ] ⋯ ∑
j= 1

L

∑
k= j

L

b1jkL E [ qj qk ]

⋮ ⋱ ⋮

∑
j= 1

L

∑
k= j

L

bLjk1E [ qj qk ] ⋯ ∑
j= 1

L

∑
k= j

L

bLjkL E [ qj qk ]

m- 1

(34)

The iterations continue until the following con⁃
vergence criterion is met

∑
j= 1

L

∑
k= 1

L |
|
||

|
|~K

m

ejk-
~
K

m- 1
ejk

L2 |
|
||

|
|~K

m

e
max

< e (35)

where |~K m

e |
max
is the entry of~K e with the largest ab⁃

solute value，and the value of e is typically 0.001.
Following convergence in~K e（and thus in E [ qq ]），

the N × N covariance matrix of the displacements
in physical coordinates is recovered by the transfor⁃
mation

E [ xi xj ]=ΦE [ qr qs ] ΦT (36)
and RMS values are the square roots of the diagonal
terms in Eq.（36）. Further post-processing to obtain
power spectral densities of displacements，stresses，
strains，etc.，may be performed by substituting the
converged equivalent stiffness matrix ~

K e into
Eq.（17）and solving in the usual linear fashion.

2. 3 Implementation of equivalent linearization

solution

The whole implementation process is referred
to Ref.［18］. It should be noted that the process of
determining the nonlinear stiffness coefficient of
stiffened plate is different from that of flat plate.

The present computer codes NLSE which men⁃
tioned in Ref.［18］was verified to be valid in plane
structure. However，the implement method is not
applicable to the stiffened plate. The Solution 106，
which is called in the method，cannot analyze the
large deformation problem of the stiffened plate，
and the nonlinear node-force of its finite element
model cannot be obtained. In order to solve this
problem，the Solution 400 should be called and the
options of“large deformation and large strain”and

“stiffness varies with deformation”should be select⁃
ed in the parameter setting to obtain the nonlinear
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node-force of the finite element model of the stiff⁃
ened plate［24］. Here，the improved NLSE is applied
to stiffened plates. The nonlinear stiffness coeffi⁃
cients are determined by performing a series of in⁃
verse linear static（Solution 101）and nonlinear stat⁃
ic（Solution 400）solutions using particular displace⁃
ment fields as previously described.

In this paper，we treat the acoustic excitation
as random pressure acting on the surface of the
plate. It is taken as uniformly distributed and varies
in time. Acoustic pressure RMS and spectral densi⁃
ty value corresponding to different sound pressure
levels from 106 to 160 dB are shown in Table 1.

3 Numerical Example

3. 1 Finite element model of stiffened plate and

nonlinear stiffness coefficient

We consider a simply-supported rectangular
aluminum stiffened plate. The plates and beams of
the stiffened plates structure are discretized into two-

dimensional plane elements and one-dimensional
beam elements respectively for analysis. Beam and
plate can share nodes and beam offset distance can
be set. The stiffness matrices of the stiffened plates
are composed by the addition of the respective plate
and beam element stiffness matrices. The dimen⁃
sions and material parameters of the plate are provid⁃
ed in Table 2. A NASTRAN model of the stiffened

plate is built with a uniform 20×28 mesh composed
of 560 CQUAD4 elements 48 beam elements and
609 nodes. The finite element model of the stiffened
plate is shown in Fig.1（a），and the cross-sectional
area of the beam is shown in Fig.1（b）. The beam，

plane element and joint at central position of the
stiffened plate are shown in Fig.2. The mode
shape，frequency（f）and modal effective mass frac⁃
tion（η）of metal stiffened plates are shown in Table
3. It can be seen that the modal effective mass frac⁃
tion of symmetrical modes（1，5，7，11） is larger.

Table 2 Dimensions and material properties of stiffened

plate

Parameter
Length of the plate / m
Width of the plate / m

Thickness of the plate / m
Cross section of beam b×h / (mm×mm)

Elastic modulus E / Pa
Poisson’s ratio ν

Mass density of aluminum ρ / (kg·m-3)

Value
0.355 6
0.254
0.001

1×2.968 2
7.3× 1010

0.3
2 763

Fig.1 Stiffened plate model

Fig.2 Beam and shell elements at the center position

Table 1 Acoustic pressure RMS and spectral density val⁃

ue corresponding to different sound pressure

levels

SPL/
dB

106
112
118
124
130
136
142
148
154
160

Acoustic
pressure
RMS/Pa

4
8
16
32
64
128
256
512
1 024
2 048

Single⁃sided value
of spectral density/

(Pa2·Hz-1)
0.015 625
0.062 5
0.25
1
4
16
64
256
1 024
4 096

Single⁃sided value
of spectral density/
(Pa2·rad-1·s-1)
0.002 486 8
0.009 947 2
0.039 788 7
0.159 154 9
0.636 619 8
2.546 479 1
10.185 916
40.743 665
162.974 66
651.898 65
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In this paper，the order of the equations of motion
was reduced using the first two symmetric modes
（mode 1 and mode 5）.

Accordingly，Eq.（34）can be written as

~
K e =

é

ë

ê

ê

ê

ê

ê

ê

ê

ê

ê
êê
ê
ê

ê

ê

ê

ù

û

ú

ú

ú

ú

ú

ú

ú

ú

ú
úú
ú
ú

ú

ú

ú

3b1111E [ q1q1 ]+
2b1112E [ q1q2 ]+
b1122E [ q2q2 ]

b1112E [ q1q1 ]+
2b1122E [ q1q2 ]+
3b1222E [ q2q2 ]

3b2111E [ q1q1 ]+
2b2112E [ q1q2 ]+
b2122E [ q2q2 ]

b2112E [ q1q1 ]+
2b2122E [ q1q2 ]+
3b2222E [ q2q2 ]

(37)

To ensure the symmetry of the matrix ~K e and

through comparison of terms with like powers in qj
and qk（and taking into account that qj and qk can be
arbitrary），relationships between the nonlinear cu⁃
bic coefficients are found.

3b2111 = b1112
b2112 = b1122
b2122 = 3b1222

(38)

The nonlinear stiffness coefficients are shown
in Table 4，which are in good agreement with
Eq.（38）. The validity of the method is verified
again. The modal linear stiffness，equivalent stiff⁃
ness，and total equivalent stiffness matrices at 160
dB are given in Table 5.

Table 3 Mode shape, frequency and modal effective mass fraction of metal stiffened plate

Mode
number

1

2

3

4

5

6

f/Hz

68.65

139.60

206.86

230.64

269.99

354.27

η/%

73.92

0

0

0

8.46

0

Mode shape
Mode
number

7

8

9

10

11

12

f/Hz

419.50

426.72

435.16

466.40

731.31

731.72

η/%

6.12

0

0

0

6.72

0

Mode shape

Table 4 Modal nonlinear cubic stiffness coefficient of metal stiffened plate

Modal
1
2

q31
b1111=3.959 5×1012

b2111=-2.991 2×1011

q21q2
b1112=-8.675 5×1011

b2112=2.360 0×1013

q1q22
b1122=2.357 2×1013

b2122=3.299 7×1012

q32
b1222=1.098 0×1012

b2222=6.334 9×1013
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3. 2 Result and analysis

The RMS fringe of displacement and accelera⁃
tion responses obtained by linear analysis and EL
analysis are shown in Table 6. The stiffened plate
model in this paper has the same mass as the alumi⁃
num plate model in Ref.［18］. The part of the mate⁃
rial where the thickness of the stiffened plate de⁃
creases relative to the aluminum plate is used as the
stiffeners. Compared with the displacement re⁃
sponse of the metal plate in Ref.［18］，the linear and
EL analysis results are reduced by 0.32×10-2 m
and 0.10×10-3 m，respectively，since the stiffeners
increase the stiffness of the structure. The center dis⁃
placement is obtained by linear and EL analyses.
The frequencies corresponding to the resonant
peaks obtained in the EL analysis continuously shift
upward with the increasing pressure loading，and
the difference between the fundamental and second

mode frequencies is not constant，which is similar to
the laminated plates in Ref.［18］. So，in this paper
only the displacement response power spectral densi⁃
ty（PSD） in the direction of Z of Node 165 in the
center of stiffened plate is shown in Fig.3 at acoustic
pressure loads of 160 dB. The acceleration response
PSD in the direction of Z of the Node 165 in the cen⁃
ter of stiffened plate under 160 dB is shown in Fig.4.

Fig.3 Comparison of displacement PSD in Z direction of
Node 165 obtained by linear and EL analyses of stiff⁃
ened plate at 160 dB

Table 5 Modal linear stiffness, equivalent stiffness, and total equivalent stiffness matrices obtained for the stiffened plate

at an acoustic load of 160 dB

Modal linear stiffness matrix
é
ë
ê

ù
û
ú

1.860 0× 105 0
0 2.877 3× 106

Equivalent stiffness matrix
é
ë
ê

ù
û
ú

3.892 1× 106 -7.825 1× 104
-8.725 1× 104 9.646 7× 106

Total equivalent stiffness matrix
é
ë
ê

ù
û
ú

4.078 1× 106 -7.825 1× 104
-8.725 1× 104 1.252 4× 107

Table 6 Displacement and acceleration response RMS of metal stiffened plates by linear and EL analyses at 160 dB

acoustic load

Fringe

Displacement
response
RMS

Acceleration
response
RMS

Linear analysis

Max: 1.00×10-2 m

Max: 3.17×103 m/s2

EL analysis

Max: 2.18×10-3 m

Max: 1.02×104 m/s2
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It is found from Table 7 that the stress re⁃
sponse of the beam element predicted by the linear
analysis is larger than that by the EL analysis，that
is， the linear analysis overestimates the response
value. The finite element model for beam and plate
assembly established in this paper can analyze the
stress response at different locations of cross section
of the beam element. As shown in Fig.1（b），the re⁃

sponse results of point C and point D on the cross
section of beam element are significantly different
from the middle surface. The stress response RMS
value of point C，which is far from the middle sur⁃
face of the plate，is greater than that of point D，

which is near the middle surface of the plate. The
PSD distribution of stress response at point C and
point D in the cross⁃section of beam element 608
（along the direction of the short side）obtained from
linear and EL analyses are shown in Figs.5，6. The
PSD distribution of stress response at point C and
point D in the cross-section of beam element 575
（along the long side direction） obtained by linear
and EL analyses are shown in Figs.7，8. By contras⁃
tive analysis from Figs. 5—8，it is found that the
stress response value of beam element 608，which
is in short-side direction，is larger than that of beam
element 575，which is in long-side direction.

Fig.4 Comparison of acceleration PSD in Z direction of
Node 165 obtained by linear and EL analyses of stiff⁃
ened plate at 160 dB

Table 7 Beam stress responses RMS fringe by linear and EL analysis at 160 dB acoustic load

Fringe

Stress response
RMS at point C

Stress response
RMS at point D

Linear analysis

Max: 3.76×108 Pa, Min: 3.50×107 Pa

Max: 5.15×107 Pa, Min: 2.48×107 Pa

EL analysis

Max: 8.10×107 Pa, Min: 9.80×106 Pa

Max: 1.42×107 Pa, Min: 7.92×106 Pa

Fig.5 PSD distribution of stress response at point C in
cross-section of beam element 608 obtained from lin⁃
ear and EL analyses at 160 dB acoustic load

Fig.6 PSD distribution of stress response at point D in
cross-section of beam element 608 obtained from lin⁃
ear and EL analyses at 160 dB acoustic load
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The stress response RMS of shell elements
with/without stiffeners，obtained by linear analysis
and EL analysis at 160 dB acoustic pressure are list⁃
ed in Table 8. The Von-Mises stress responses of
the shell elements with/without stiffeners are signifi⁃
cantly different. Because of the beam element bear⁃

ing part of the stress，the maximum stress of the
shell elements with stiffeners is not in the middle.
The stress response PSD distribution results of shell
element 140 obtained by linear and EL analyses are
shown in Fig. 9，where -Z is the unstiffened sur⁃
face and +Z is the stiffened surface.

4 Conclusions

The present study proposed an improved
ROM-EL-FEM method to predict the geometrically
nonlinear random response of simply-supported rect⁃
angular stiffened plates. The conclusions can be
drawn as follows.

（1）The statistical dynamic response of shell el⁃
ements and beam elements in the stiffened plates

Fig.8 PSD distribution of stress response at point D in
cross-section of beam element 575 obtained from lin⁃
ear and EL analyses at 160 dB acoustic load

Fig.7 PSD distribution of stress response at point C in
cross-section of beam element 575 obtained from lin⁃
ear and EL analyses at 160 dB acoustic load

Table 8 Stress responses RMS fringe on surface with/without stiffeners of metal stiffened plates by linear and EL analy⁃

ses at 160 dB acoustic load

Fringe

Von⁃Mises stress
RMS of surface shell
without stiffeners

Von⁃Mises stress
RMS of surface shell
with stiffeners

Linear analysis

Max: 6.72×107 Pa, Min: 6.35×106 Pa

Max: 5.95×107 Pa, Min: 8.61×106 Pa

EL analysis

Max: 1.81×107 Pa, Min: 1.49×106 Pa

Max: 1.49×107 Pa, Min: 2.77×106 Pa

Fig.9 Von-Mises stress responses PSD of shell element
140 by linear and EL analyses at 160 dB acoustic load
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can be obtained，respectively. The stiffeners have
significant influence on vibration modes of thin
plate. There are obvious differences between the
stress response of the shell element at the stiffened
surface and unstiffened surface. Because the stiffen⁃
ers enhance the stiffness of the structure，the dis⁃
placement response of the stiffened plates is reduced
compared with that of the unstiffened plates of the
same mass in Ref.［18］.

（2）Because the stiffened plate present in this
paper belongs to weak stiffened plate，its nonlinear
characteristic is similar to that of thin plate. Nonlin⁃
earity in the vibration response of the stiffened
plates is due to transverse deflection and in-plane
stretching，which increases the stiffness of the struc⁃
ture，and consequently diminishes the displacement
response. So，the frequencies corresponding to the
resonant peaks obtained by EL analysis are higher
than those obtained by linear analysis. The linear
analysis do not account for this effect，which results
in the prediction of exaggerated displacement re⁃
sponses under high acoustic pressure loading，lead⁃
ing to excessively conservative designs.

（3）The geometric nonlinearity plays an impor⁃
tant role in the random vibration response of stiff⁃
ened plates，particularly at high acoustic pressure
loading. For the prediction of nonlinear random vi⁃
bration response of stiffened plates，the basic model
data have been given in this paper，which can con⁃
tribute to analysis of the geometrically nonlinear ran⁃
dom response for similar structures.
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噪声作用下加筋板的几何非线性随机响应

杨少冲 1，李有晨 1，杨庆生 2，王建民 3

（1.河北大学建筑工程学院，保定 071002，中国；2.北京工业大学工程力学系，北京 100124，中国；

3.北京强度环境研究所可靠性与环境工程技术重点实验室，北京 100076，中国）

摘要：提出了一种降阶模型、等效线性化和有限元相结合的方法，对噪声荷载作用下加筋板的几何非线性随机振

动进行分析。基于大挠度有限元公式，得到加筋板的非线性运动方程。为了减少计算量，建立了结构的降阶模

型，然后通过 DMAP语言编程将等效线性化技术集成到NASTRAN有限元软件中。针对加筋板建立了梁⁃板组

合的有限元模型，梁单元与壳单元共用节点，并确定梁的偏置和截面属性。本方法可以分别获得梁、板单元的应

力响应均方根值，并可得到加筋板有/无加筋面各自的应力分布。最后对比分析了分别由线性和等效线性化方

法得出的统计动态响应结果。结果表明，该方法可用于分析加筋板的几何非线性随机响应。几何非线性因素在

加筋板随机振动响应预测中起着重要的作用，尤其是在强噪声载荷下。

关键词：加筋板；噪声载荷；几何非线性；随机振动；等效线性化
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