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Abstract: The problem of joint direction of arrival（DOA） and polarization estimation for polarization sensitive
coprime planar arrays（PS-CPAs） is investigated，and a fast-convergence quadrilinear decomposition approach is
proposed. Specifically，we first decompose the PS-CPA into two sparse polarization sensitive uniform planar
subarrays and employ propagator method（PM）to construct the initial steering matrices separately. Then we arrange
the received signals into two quadrilinear models so that the potential DOA and polarization estimates can be attained
via quadrilinear alternating least square（QALS）. Subsequently，we distinguish the true DOA estimates from the
approximate intersecting estimations of the two subarrays in view of the coprime feature. Finally，the polarization
estimates paired with DOA can be obtained. In contrast to the conventional QALS algorithm，the proposed approach
can remarkably reduce the computational complexity without degrading the estimation performance. Simulations
demonstrate the superiority of the proposed fast-convergence approach for PS-CPAs.
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0 Introduction

Polarization characteristic of electromagnetic
wave has played an important role in target detec⁃
tion and recognition［1］. Polarization sensitive arrays
（PSAs） have been widely utilized in vital applica⁃
tions such as radar，navigation and wireless commu⁃
nications［2］. Compared with the traditional arrays
with scalar sensors，PSAs with electromagnetic vec⁃
tor sensors（EMVSs）offer desirable improvements
in array performance［3］. Various angle-polarization
estimation methods for PSAs have been pro⁃
posed［4-5］ ， including multiple signal classification
（MUSIC） algorithm［6］，estimating signal parame⁃

ters via rotational invariance techniques （ES⁃
PRIT）［7］，etc. However，the compact structures of
most PSAs with inter-element spacing no more than
half-wavelength restrict the resolution.

Recently， the coprime arrays［8-11］， a newly
emerged typical sparse array structure，have attract⁃
ed more and more concerns for their inherent advan⁃
tages over the uniform arrays，e. g. enlarged array
aperture， increased degrees of freedom and im⁃
proved estimation performance. Varieties of meth⁃
ods have been developed for conducting direction of
arrival（DOA） estimation for coprime arrays. In
Ref.［9］，a representative method of phase ambigui⁃
ty elimination is proposed. The traditional MUSIC
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algorithm for uniform arrays is extended to coprime
planar arrays in Ref.［10］，whereas the two-dimen⁃
sional（2D）total spectral search（TSS）brings a tre⁃
mendous amount of computing. In order to reduce
the computational burden，Ref.［11］ converts the
2D TSS into one-dimensional partial spectral search.

However，the existing studies mainly take the
scalar coprime arrays into account，where the signif⁃
icant polarization characteristic of the electromagnet⁃
ic wave is neglected. Moreover，the subspace-based
methods usually omit the structural characteristic of
received signals. Tensor algebra-based tools are ef⁃
fective in improving the estimation performance due
to its excellent anti-noise capacity［12］. Parallel factor
（PARAFAC） technique［13］，a typical tensor-based
decomposition，has been turned out to be computa⁃
tionally efficient in multi-parameter estimation by
factorizing the tensor data and employing the least
squares（LS） estimation. Quadrilinear decomposi⁃
tion algorithm［14］，has been successfully applied in
DOA and polarization estimation. Unfortunately，
the conventional quadrilinear decomposition-based
algorithm suffers from heavy computational burden.

In this paper，we investigate the problem of
joint multi-parameter estimation for polarization sen⁃
sitive coprime planar arrays（PS-CPAs）and derive
a fast-convergence quadrilinear decomposition ap⁃
proach. The main contributions are as follows：
（1）We take the polarization sensitive coprime pla⁃
nar arrays into consideration，which can take full ad⁃
vantages of coprime arrays and polarization sensitive
arrays to enhance the array performance and achieve
better engineering applicability.（2）We develop a
connection between the DOA and polarization esti⁃
mation problem for PS-CPAs and quadrilinear de⁃
composition problem，which utilizes the structural
characteristic of received signal data and thereby
construct it as two quadrilinear models.（3）We pro⁃
pose a fast-convergence quadrilinear decomposition
approach for PS-CPAs，where an initial estimation
with PM is exploited to construct the initial matrices
and significantly reduces the complexity. Further⁃
more，the proposed approach outperforms ESPRIT
and PM in parameter estimation.

1 Data Model

Suppose that a PS-CPA configuration consists
of two uniform planar subarrays（UPAs）with Mi×
Mi ( i= 1，2 ) crossed short dipoles. The distances of
adjacent sensors of the subarray with M 1×M 1 sen⁃
sors is d 1 =M 2 λ/2，while the other with M 2×M 2

sensors is d 2 =M 1 λ/2， where M 1 and M 2 are
coprime integers and λ is the wavelength. The two
subarrays share the same element at the origin of co⁃
ordinates. A PS-CPA configuration is displayed in
Fig.1 as an example.

Assume K ( K<min { M 2
1，M 2

2 } ) far-field un⁃
correlated signals impinge on the PS-CPA from
{( θk，φk ) |k= 1，2，⋯，K }. Define that θk ∈[ 0，π/2 ]
is the elevation angle，φk ∈[ 0，π ] the azimuth an⁃
gle. γk ∈[ 0，π/2 ] and ηk ∈[-π，π ] are polarization
parameters of the k-th signal. Define a transforma⁃
tion as uk= sinθk cosφk，vk= sinθk sinφk for simplifi⁃
cation.

Considering that the PS-CPA can be decom⁃
posed into two polarization sensitive uniform planar
arrays（PS-UPAs），we process the signal data with
the two PS-UPAs separately and elaborate on the
proposed approach with the subarray of Mi×Mi

( i= 1，2 ) crossed short dipoles.
The output of the i-th subarray can be present⁃

ed by［5］

X i=[ a i,1 ⊗ s1,a i,2 ⊗ s2,⋯,a i,K ⊗ sK ] BT + N i=
( A i⊙S ) BT + N i=( A i,y⊙A i,x⊙S ) BT + N i

(1)
where B=[ b1，b2，⋯，bK ]∈ C L× K represents the sig⁃
nal matrix，b k=[ bk ( 1 )，bk ( 2 )，⋯，bk ( L ) ]T；L the
number of snapshots； N i ∈ C 2M 2

i × L the received
noise which is zero-mean white Gaussian indepen⁃

Fig.1 PS-CPA configuration with M 1 = 3 and M 2 = 4
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dent with signals. A i=[ a i，1，a i，2，⋯，a i，K ]∈ CM 2
i × K

the steering matrix，where a i，k= a i，y ( vk )⊗ a i，x ( uk )
is the steering vector；⊗ and ⊙ denote the Kro⁃
necker product and the Khatri-Rao product，respec⁃
tively； ( · )T is the operation of transpose；A i，x=
[ a i，x1，a i，x2，⋯，a i，xK ] and A i，y=[ a i，y1，a i，y2，⋯，a i，yK ]
represent the steering matrices corresponding to the
x- and y-axis direction，respectively. And a i，x ( uk )
and a i，y ( vk ) are the steering vectors and can be ex⁃
pressed as

a i,x ( uk )=[ 1,e-j2πdiuk/λ,⋯,e-j2π(Mi- 1)diuk/λ ]T (2)
a i,y ( vk )=[ 1,e-j2πdivk/λ,⋯,e-j2π(Mi- 1)divk/λ ]T (3)

and S=[ s1，s2，⋯，sK ]T ∈ C 2× K is the polarization
matrix，where the polarization vector sk is

sk=
é

ë
êê

ù

û
úú

cosθk cosφk -sinφk
cosθk sinφk cosφk

é

ë
êê

ù

û
úú

sinγkejηk

cosγk
(4)

Eq.（1）can be written as

X i=

é

ë

ê

ê

ê
êê
ê

ù

û

ú

ú

ú
úú
ú

X i,1,1

X i,1,2

⋮
X i,Mi,Ni

=

é

ë

ê

ê

ê
ê
êê
ê

ê
ù

û

ú

ú

ú
ú
úú
ú

ú

SD 1 ( A i,x ) D 1 ( A i,y )
SD 1 ( A i,x ) D 2 ( A i,y )

⋮
SDMi

( A i,x ) DNi ( A i,y )

BT + N i(5)

where Ni=Mi in the subarrays of PS-CPA consid⁃
ered；Dm ( A ) produces a diagonal matrix formed by
the m-th row of A. To describe the quadrilinear
model more exhaustively，we use the subarray with
Mi× Ni EMVSs to illustrate it. X i，m，n in Eq.（5）can
be denoted as the quadrilinear model［14］

xi,m,n,p,l= ∑
k= 1

K

ai,m,k ai,n,k sp,kbl,k+ n i,m,n,p,l

m= 1,⋯,Mi; n= 1,⋯,Ni; p= 1,2; l= 1,⋯,L
(6)

where ai，m，k，ai，n，k represent the（m，k）-th，（n，k）-th
items in A i，x，A i，y，respectively；sp，k stands for the
（p，k）-th element of S is；bl，k the（l，k）-th element
of B；and n i，m，n，p，l the（m，n，p，l）-th element of N i

which is regarded as a four-array matrix. The other
rearranged matrices can be derived from the structur⁃
al characteristics of the quadrilinear model as

U i=( S⊙A i,x⊙B ) AT
i,y+ N i,u (7)

V i=( B⊙S⊙A i,y ) AT
i,x+ N i,v (8)

W i=( A i,y⊙B⊙A i,x )ST + N i,w (9)

2 The Proposed Approach

To accelerate convergence and reduce complex⁃

ity effectively，instead of initializing the loading ma⁃
trices randomly like the conventional QALS meth⁃
od，we first make an initial estimation with PM to
construct the initial A i，x and A i，y，and then iterative⁃
ly update the four loading matrices in turn according
to QALS until the convergence. The coprime rela⁃
tionship between the two subarrays is exploited to
remove the ambiguity. Finally，the polarization pa⁃
rameters can be obtained with the previous esti⁃
mates.

2. 1 Initialization with PM

Define G i= A i⊙S and partition G i ∈ C 2M 2
i × K

into G i= [G T
i，1，G T

i，2]
T. G i，1 ∈ C K× K is nonsingular

and G i，2 ∈ C ( 2M 2
i - K )× K，where ( · )H is the conjugate

transpose operation. There exists a linear transfor⁃
mation P H

i G i，1 = G i，2，where P i ∈ C K×(2M 2
i - K ) is de⁃

fined as the propagator matrix and can be calculated
by［15］

P̂ i=( X i,1X H
i,1 )-1X i,1X H

i,2 (10)
where X i，1 means the first K rows of X i；and X i，2 the
remaining rows. Define

P̂ i,c=[ IK P̂ H
i ]T (11)

where P̂ i，c ∈ C 2M 2
i × K；and IK ∈ C K× K is an identity

matrix. In the noise-free case，G i= P̂ i，cG i，1. P̂ i，c can
be written as

P̂ i,c= G iG -1
i,1 =

é

ë

ê

ê

ê
êê
ê

ù

û

ú

ú

ú
úú
ú

S
SΦ i,p

⋮
SΦM 2

i - 1
i,p

G -1
i,1 (12)

where Φ i，p= diag { pi，1，pi，2，⋯，pi，K } and pi，k=
e-j2πdivk/λ. diag ( · ) represents a diagonal matrix con⁃
sisting of the included elements as diagonal ele⁃
ments. Then we have P i，b= P i，aG i，1Φ i，pG -1

i，1 by par⁃
titioning P̂ i，c， where P i，a and P i，b are the first
2Mi (Mi- 1 ) rows and the last 2Mi (Mi- 1 ) rows
of the matrix P̂ i，c，respectively. The initial estimates
v̂ i，k0 of v̂ i，k can be sequentially achieved，which refers
to the k-th eigenvalue of P †

i，a P i，b，where || · ||† stands
for pseudo-inverse. Meanwhile，we can obtain the
eigenvectors Ĝ i，1. In the noise-free case， Ĝ i，1 =
G i，1Π，Φ̂ i，p=ΠΦ i，pΠ-1，where Π is a permuta⁃
tion matrix，and Π-1 =Π. Accordingly，the esti⁃
mate of G i is
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Ĝ i = P̂ i,cĜ i,1 = G i Π (13)
Reconstructing Ĝ i by rows reorganization，we

have

Ĝ i,r= G i,rΠ=

é

ë

ê

ê

ê
êê
ê

ù

û

ú

ú

ú
úú
ú

S
SΦ i,q

⋮
SΦM 2

i - 1
i,q

Π (14)

where Φ i，q= diag { qi，1，qi，2，⋯，qi，K } and qi，k=
e-j2πdiuk/λ. Similarly，we achieve the initial estimates
û i，k0 of û i，k by partitioning Ĝ i，r and get Φ̂ i，q=
ΠΦ i，qΠ-1.

Note that Φ̂ i，p and Φ̂ i，q have the same permuta⁃
tion ambiguity，which means that û i，k0 and v̂ i，k0 are
automatically paired. To decrease computational
complexity， here we only initialize A i，x，A i，y

with û i，k0，v̂ i，k0.

2. 2 Quadrilinear decomposition

Herein，we initialize the steering matrices A i，x

and A i，y with û i，k0 and v̂ i，k0 to speed the convergence.
And the initial polarization matrix S and signal ma⁃
trix B are constructed randomly.

According to Eq.（1），the costing function of B
in the quadrilinear model is

min
A i,x,A i,y,S,B

 X͂ i- ( )A i,y⊙A i,x⊙S BT
F

(15)

where X͂ i represents the noisy signal；|| · ||F the Fro⁃
benius norm. And the LS update for B is

B̂T = ( Â i,y⊙Â i,x⊙Ŝ )† X͂ i (16)
where Â i，x，Â i，y and Ŝ represent the previously ob⁃
tained estimates of A i，x，A i，y and S，respectively.
According to the symmetry of the quadrilinear mod⁃
el，the LS fitting for A i，y is

min
A i,x,A i,y,S,B

 U͂ i-( S⊙A i,x⊙B ) AT
i,y

F
(17)

where U͂ i is the noisy signal. And the LS update for
A i，y can be expressed as

AT
i,y=( Ŝ⊙Â i,x⊙B̂ )†U͂ i (18)

where Ŝ，Â i，x and B̂ are estimated in the previous
update process.

According to Eq.（8），the LS fitting for A i，x is
min

A i,x,A i,y,S,B
 V͂ i-( B⊙S⊙A i,y ) AT

i,x
F

(19)

where V͂ i represents the noisy signal. Then the up⁃
dated estimates of A i，x based on LS is

AT
i,x=( B̂⊙Ŝ⊙Â i,y )†V͂ i (20)

where B̂，Ŝ and Â i，y are previously estimated.
In a similar way，the LS fitting for S is

min
A i,x,A i,y,S,B

 W͂ i-( A i,y⊙B⊙A i,x )ST
F

(21)

where W͂ i is the noisy signal. The LS update for S is
ŜT = ( Â i,y⊙B̂⊙Â i,x )†W͂ i (22)

where Â i，y，B̂ and Â i，x are the previous estimats.
The sum of squared residuals（SSR）is defined

as SSR k = ∑
r = 1

2Mi

∑
l= 1

L

|| crl 2，where r，l represent the（r，

l） -th elements of matrix C = X i-( A i⊙S ) BT.
The convergence rate is denoted as SSRrate =
( SSR k- SSR k- 1 ) SSR k- 1. According to Eqs.
（16），（18），（20）and（22），we repeatedly perform
the updating process of B̂，Â i，x，Â i，y and Ŝ with LS un⁃
til SSRrate < ε，where ε is a certain small value［16］.

Thereafter，we achieve the estimates as
B̂″i = B iΠ i Δ i,1 + V i,1 (23)
Â″i,x= A i,xΠ i Δ i,2 + V i,2 (24)
Â″i,y= A i,yΠ i Δ i,3 + V i,3 (25)
Ŝ″i = Ŝ iΠ i Δ i,4 + V i,4 (26)

where Π i represents a permutation matrix，which
may lead to permutation ambiguity. And Δ i，1，Δ i，2，

Δ i，3，Δ i，4 are the diagonal scaling matrices satisfying
Δ i，1 Δ i，2 Δ i，3 Δ i，4 = IK，which may lead to scale ambi⁃
guity. V i，1，V i，2 ，V i，3 and V i，4 represent the estima⁃
tion errors. Since the permutation matrix Π i in
Eqs.（23）—（26）is the same，the permutation ambi⁃
guity makes no difference to parameters pairing. And
the scale ambiguity can be resolved via normalization.

2. 3 Least squares estimation

Define a″i，xk，a″i，yk as the k-th columns of

Â″i，x，Â″i，y， respectively. By normalizing a″i，xk，a″i，yk，

we have
h i,uk=-angle ( a″i,x ( uk ) )=

[ 0,2πdi uk /λ,…,2πdi (Mi - 1 )duk /λ ]T
(27)

h i,vk=-angle ( a″i,y ( vk ) )=
[ 0,2πdi vk/λ,…,2πdi (Mi- 1 )dvk/λ ]T

(28)

where angle ( · ) represents the operation of getting
the phase angle. Then we use LS criterion to esti⁃
mate uk and vk. The LS fitting is Q ic i，1 = h i，uk and

Q ic i，2 = h i，vk， where c i，1 = [ c′i，1，c″i，1]
T
， c i，2 =
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[ c′i，2，c″i，2]
T and

Q i=

é

ë

ê

ê

ê
êê
ê

ù

û

ú

ú

ú
úú
ú

1
1
⋮
1

0
2πdi/λ
⋮

(Mi- 1 )2πdi/λ

(29)

According to LS criterion，we can obtain
c i,1 = (QT

i Q i )-1QT
i ĥ i,uk (30)

c i,2 = (QT
i Q i )-1QT

i ĥ i,vk (31)
Then the estimates of ( uk，vk ) can be achieved by

û i,k= ĉ″i,1 (32)
v̂ i,k= ĉ″i,2 (33)

The ( û i，k，v̂ i，k ) obtained in Eqs.（32），（33） is
not necessarily true estimates as a result of the
phase ambiguity problem caused by the enlarged ele⁃
ment spacing.

2. 4 Ambiguity elimination

We elucidate the generation and elimination
method of phase ambiguity in this section.

Assume a single source impinges on the subar⁃
ray with Mi×Mi EMVSs from the direction
( θt，φt ). Denote ( θa，φa ) as one of the ambiguous
DOAs. The period of exponential function 2π im⁃
plies that［11］

2πdi ( ut- ua ) /λ= 2ki,uπ (34)
2πdi ( vt- va ) /λ= 2ki,vπ (35)

where ut= sinθt cosφt， vt= sinθt sinφt， ua=
sin θa cosφa， va= sinθa sinφa， di=Mj λ/
2( i，j∈ { 1，2 }，i≠ j )，ki，u ∈ Z，ki，v ∈ Z. Constraints
ut，ua ∈[-1，1 ]， vt，va ∈[ 0，1 ]， 0< u2t + v2t < 1，
0< u2a+ v2a< 1 have to be satisfied.

From Eqs.（34），（35），we have
k1,u
M 2

= k2,u
M 1
, k1,v
M 2

= k2,v
M 1

(36)

As M 1 and M 2 are coprime integers， there
uniquely exist k1，u= k2，u= 0 and k1，v= k2，v= 0
making Eq.（36） valid，which reveals that the true
DOA estimates can be uniquely distinguished from
the intersecting estimations of the two subarrays.
Since it is impractical for two subarrays containing
completely coincident estimates， the closest ones
are exactly required. Similar conclusions can be ob⁃
tained in the case of multi-source.

2. 5 Parameter estimation

With the unambiguous estimates defined as

û fink ，v̂ fink ，we obtain the true estimates ( θ̂ k，φ̂ k ) via

θ̂ k= arcsin ( ( û fink )2 +( v̂ fink )2 ) (37)
φ̂ k= angle ( û fink + jv̂ fink ) (38)

Since the ambiguity elimination process makes
the pairing of Â″i，x，Â″i，y and Ŝ″i invalid，we must de⁃
termine the pairing of θ̂ k，φ̂ k and Ŝ″i before calculat⁃
ing the polarization parameters.

Construct Â fin
x with θ̂ k and φ̂ k. Considering that

û i，Â″i，x and Ŝ″i are well paired，and so are ûfin and
Â fin

x ，we just need to match the column vectors of
ûfin and û i，which essentially determines the pairing
of Â fin

x and Ŝ″i . Denote û fink ( k= 1，2，⋯，K ) as the k-
th element of ûfin，and û i，j ( j= 1，2，⋯，K ) as the j-
th element of û i. Consequently，we ascertain the
correspondence between the k and j by

jk= arg
j= 1,2,⋯,K

min  û i,j- û fink
2

k= 1,2,⋯,K (39)
By this means， the pairing of ûfin and û i is

achieved，so are θ̂ k，φ̂ k and Ŝ″i . Define Ŝ fini as the po⁃
larization matrix paired with θ̂ k，φ̂ k. Since the two
subarrays correspond to the same polarization ma⁃
trix，we adopt an average operation as

ŝ fin ( θk,φk,γk,ηk )=
ŝ
fin

1 ( θk,φk,γk,ηk )+ ŝ
fin

2 ) ( θk,φk,γk,ηk )
2 (40)

where ŝ fini ( θk，φk，γk，ηk ) is the k-th column of Ŝ fini .
Subsequently，the polarization parameters can

be determined from
γ̂ k= arctan ( |ξ̂ k | ) (41)
η̂ k= angle ( ξ̂ k ) (42)

where

ξ̂ k=
r̂ k cos φ̂ k+ sin φ̂ k

cos θ̂ k ( cos φ̂ k- r̂ k sin φ̂ k )
(43)

and r̂ k= ŝ fink ( 1 ) /ŝ fink ( 2 )， ŝ fink ( 1 ) and ŝ fink ( 2 ) are the
first and second elements of ŝ fin ( θk，φk，γk，ηk )，re⁃
spectively.

3 Performance Analysis

3. 1 Convergence analysis

We compare the convergence performance of

782



No. 5 XU Xiong, et al. Blind Joint DOA and Polarization Estimation for Polarization Sensitive Coprime…

the proposed approach and the conventional QALS
algorithm and illustrate the iteration times of the
two subarrays in Fig.2，where we set SNR= 10 dB，
L= 100. Define DSSR= SSR n- SSR c， where
SSR n denotes the value of SSR corresponding to the
n-th iteration and SSR c the value of SSR at conver⁃
gence.

It is explicitly indicated in Fig.2 that the pro⁃
posed approach requires fewer iterations to converge
than the conventional QALS algorithm. A faster
convergence speed can lead to a lower computation⁃
al complexity.

3. 2 Complexity analysis

As the two subarrays of the PS-CPA possess
the similar complexity form，the complexity calcula⁃
tion of the subarray with Mi×Mi sensors of our ap⁃
proach is shown as follows. The initialization with
PM costs about O ( 2K 2L+3Mi (Mi- 1 )K 2 +
3Mi (Mi- 1 )K 2 + 5K 3 +( 2M 2

i - K )KL ) ( i=
1，2 ). Each iteration of QALS needs O ( K 2 ( 2M 2

i +
M 2

i L+4MiL+ 2Mi+ L+ 2 )+4K 3 + 8M 2
i KL ).

We list the complexity of the proposed approach and
the conventional QALS algorithm in Table 1，
where n1 and n2 are the number of iterations of the
former and the latter，respectively.

Fig.3 displays the complexity comparison be⁃
tween PM and each iteration of QALS in the PS-

CPA. We can conclude that although PM process is
involved in initialization，the complexity of PM is
lower than that of one iteration of QALS. Fig.4 dis⁃
plays the complexity comparison versus snapshots，
where K= 2，n1 = 5，n2 = 100. It is observed from
Figs.3，4 that the proposed approach can reduce the
complexity remarkably.Fig.2 Convergence comparison of different algorithms

Table 1 Computational complexities of different algorithms

Algorithm

The proposed approach

Conventional QALS algorithm

Computational complexity
O ( 2K 2L+ 3Mi (Mi- 1 )K 2 + 5K 3 + 3Mi (Mi- 1 )K 2 +

( 2M 2
i - K )KL+

n1 ( K 2 ( 2M 2
i +M 2

i L+ 4MiL+ 2Mi+L+ 2 )+ 4K 3 +
8M 2

i KL ) )
O ( n2 ( K 2 ( 2M 2

i +M 2
i L+ 4MiL+ 2Mi+ L+ 2 )+ 4K 3 +
8M 2

i KL ) )

Fig.3 Complexity comparison between PM and each itera⁃
tion of QALS in the PS-CPA

Fig.4 Complexity comparison of different snapshots be⁃
tween the proposed algorithm and the conventional
QALS algorithm
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3. 3 Advantages

（1）The proposed approach achieves a fast con⁃
vergence by employing PM as the initialization，
which remarkably reduces the computational com⁃
plexity.

（2）The proposed approach obtains the same
parameter estimation performance as the convention⁃
al QALS algorithm but owns much lower computa⁃
tional burden，and outperforms PM and ESPRIT.

（3）The proposed approach in PS-CPA has a
higher estimation accuracy than that in PS-UPA，

owing to the larger array aperture.

4 Simulation Results

In this section，we perform 500 Monte-Carlo
simulations to evaluate the parameter estimation per⁃
formance. The root mean square error（RMSE） is
defined by

RMSE= 1
500K ∑l= 1

500

∑
k= 1

K

( αk- α̂ k,l )2 (44)

where α̂ k，l is the estimate of DOA/polarization pa⁃
rameter corresponding to the k-th signal in the l-th
simulation.

Suppose that K= 2 signals impinge on the PS-

CPA from ( θ1，φ 1 )=(10°，30° )，( θ2，φ 2 )=( 20°，40° )，
and their corresponding polarization parameters are
( γ1，η1 )= ( 7°， )15° ，( γ2，η2 )= (17°，25° ).

4. 1 Parameter estimation results

We examine the validity of the proposed ap⁃
proach and the scatter plots of parameter estimation
is shown in Fig.5，where M 1 = 4，M 2 = 5，L= 200
and SNR= 20 dB. As illustrated in Fig. 5，the ap⁃
proach is effective in estimating multi-parameters.

4. 2 RMSE comparison of different algorithms

We present the parameter estimation perfor⁃
mance comparison of the proposed approach，the
conventional QALS，ESPRIT，PM algorithms and
the Cramer-Rao Bound［17］ in Fig.6，where M 1 = 7，
M 2 = 9 and L= 300. It is clear from Fig.6 that the
proposed approach has the same estimation perfor⁃
mance as the conventional QALS algorithm but
with a faster convergence，which shows that the
proposed approach can guarantee estimation accura⁃
cy while reducing complexity effectively. By con⁃
trast，the proposed approach outperforms ESPRIT
and PM，as it utilizes the structural characteristic of
received signal and applies the quadrilinear alternat⁃
ing least square method.

4. 3 RMSE comparison with different arrays

We give the RMSE results of the proposed ap⁃
proach in PS-CPA and PS-UPA in Fig.7 to com⁃
pare array performance，where M 1 = 4，M 2 = 5，
L= 300. Consider a PS-UPA with 5× 8 sensors so
that the two arrays have the same number of ele⁃
ments for fair. As depicted in Fig.7，the approach in
PS-CPA has superior estimation performance to
that in PS-UPA，as the PS-CPA enables a larger ar⁃
ray aperture with the same number of elements.Fig.5 Estimation results of the proposed approach

Fig.6 Parameter estimation performance of different algo⁃
rithms
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5 Conclusions

This paper focuses on PS-CPAs and proposes
a fast-convergence quadrilinear decomposition ap⁃
proach for DOA and polarization estimation with the
PS-CPAs. To accelerate convergence of the conven⁃
tional quadrilinear decomposition algorithm， the
proposed approach first employs PM as the initializa⁃
tion，and then arranges the receive data into two
quadrilinear models to perform QALS. Thereafter，
the phase ambiguity can be eliminated and the polar⁃
ization estimates paired with DOA can be achieved
by utilizing the previous estimations. Simulations
demonstrate the superiority of the proposed ap⁃
proach in terms of computational complexity and es⁃
timation performance.
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极化敏感面阵波达方向和极化的联合估计⁃快速收敛四线性

分解算法

许 雄 1，沈金清 1，2，朱倍佐 1，2，张小飞 1，2

（1.电子信息系统复杂电磁环境效应国家重点实验室，洛阳 471003，中国；

2.南京航空航天大学电子与信息工程学院，南京 211106，中国）

摘要：调查了极化面阵中的波达方向估计（Direction of arrival，DOA）与极化估计问题，并提出了一种快速收敛的

四线性分解算法。具体来说，首先把互质面阵分解为两个均匀面阵并利用传播算子算法得到了初始的方向矩阵

估计。然后，将接受信号置于四线性模型，利用四线性交替最小二乘来估计所有可能的 DOA与极化估计结果。

接着，根据互质解模糊的原理，从所有的结果中提取出真正的估计值，消除了模糊估计结果。对比于传统的四线

性交替最小二乘算法，本算法可以在不损失估计性能的前提下，极大程度地降低复杂度。仿真结果证明了极化

互质面阵下本快速收敛算法的优越性。

关键词：极化敏感阵列；互质面阵；波达方向估计；极化估计；四线性分解；快速收敛
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