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Abstract: The problem of joint direction of arrival (DOA) and polarization estimation for polarization sensitive
coprime planar arrays (PS-CPAs) is investigated, and a fast-convergence quadrilinear decomposition approach is
proposed. Specifically, we first decompose the PS-CPA into two sparse polarization sensitive uniform planar
subarrays and employ propagator method (PM) to construct the initial steering matrices separately. Then we arrange
the received signals into two quadrilinear models so that the potential DOA and polarization estimates can be attained
via quadrilinear alternating least square (QALS). Subsequently, we distinguish the true DOA estimates from the
approximate intersecting estimations of the two subarrays in view of the coprime feature. Finally, the polarization
estimates paired with DOA can be obtained. In contrast to the conventional QALS algorithm, the proposed approach
can remarkably reduce the computational complexity without degrading the estimation performance. Simulations
demonstrate the superiority of the proposed fast-convergence approach for PS-CPAs.
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0 Introduction

Polarization characteristic of electromagnetic
wave has played an important role in target detec-
tion and recognition'!’. Polarization sensitive arrays
(PSAs) have been widely utilized in vital applica-
tions such as radar, navigation and wireless commu-

nications'?.

Compared with the traditional arrays
with scalar sensors, PSAs with electromagnetic vec-
tor sensors (EMVSs) offer desirable improvements
in array performance'®’. Various angle-polarization
estimation methods for PSAs have been pro-
posed*” | including multiple signal classification

(MUSIC) algorithm'®' , estimating signal parame-
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(ES-

PRIT)', etc. However, the compact structures of

ters via rotational invariance techniques

most PSAs with inter-element spacing no more than
half-wavelength restrict the resolution.

Recently, the coprime arrays®'’,

a newly
emerged typical sparse array structure, have attract-
ed more and more concerns for their inherent advan-
tages over the uniform arrays, e.g. enlarged array
aperture, increased degrees of freedom and im-
proved estimation performance. Varieties of meth-
ods have been developed for conducting direction of
arrival (DOA) estimation for coprime arrays. In

Ref. [9], a representative method of phase ambigui-

ty elimination is proposed. The traditional MUSIC
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algorithm for uniform arrays is extended to coprime
planar arrays in Ref. [10], whereas the two-dimen-
sional (2D) total spectral search (TSS) brings a tre-
mendous amount of computing. In order to reduce
the computational burden, Ref. [11] converts the
2D TSS into one-dimensional partial spectral search.
However, the existing studies mainly take the
scalar coprime arrays into account, where the signif-
icant polarization characteristic of the electromagnet-
ic wave 1s neglected. Moreover, the subspace-based
methods usually omit the structural characteristic of
received signals. Tensor algebra-based tools are ef-
fective in improving the estimation performance due
to its excellent anti-noise capacity''*'. Parallel factor
(PARAFAC) technique, a typical tensor-based
decomposition, has been turned out to be computa-
tionally efficient in multi-parameter estimation by
factorizing the tensor data and employing the least
squares (LS) estimation. Quadrilinear decomposi-
tion algorithm'*, has been successfully applied in
DOA and polarization estimation. Unfortunately,
the conventional quadrilinear decomposition-based
algorithm suffers from heavy computational burden.
In this paper, we investigate the problem of
joint multi-parameter estimation for polarization sen-
sitive coprime planar arrays (PS-CPAs) and derive
a fast-convergence quadrilinear decomposition ap-
proach. The main contributions are as follows:
(1) We take the polarization sensitive coprime pla-
nar arrays into consideration, which can take full ad-
vantages of coprime arrays and polarization sensitive
arrays to enhance the array performance and achieve
better engineering applicability. (2) We develop a
connection between the DOA and polarization esti-
mation problem for PS-CPAs and quadrilinear de-
composition problem, which utilizes the structural
characteristic of received signal data and thereby
construct it as two quadrilinear models. (3) We pro-
pose a fast-convergence quadrilinear decomposition
approach for PS-CPAs, where an initial estimation
with PM is exploited to construct the initial matrices
and significantly reduces the complexity. Further-
more, the proposed approach outperforms ESPRIT

and PM in parameter estimation.

1 Data Model

Suppose that a PS-CPA configuration consists
of two uniform planar subarrays (UPAs) with M, X
M, (i=1, 2) crossed short dipoles. The distances of
adjacent sensors of the subarray with M, X M, sen-
sors is d, = M.,A/2, while the other with M, X M,
sensors is d,=M,A/2, where M, and M, are
coprime integers and A is the wavelength. The two
subarrays share the same element at the origin of co-
ordinates. A PS-CPA configuration is displayed in

Fig.1 as an example.

P (D), i=1,2, &

Fig.1 PS-CPA configuration with M, = 3 and M, =4

Assume K (K <min { M{, M;}) farfield un-
correlated signals impinge on the PS-CPA from
{(On @ )lk=1,2, -, K }. Define that 0,&[0,n/2]
is the elevation angle, ¢, &[0, n | the azimuth an-
gle. y,€[0,n/2] and », €[ —mx, n | are polarization
parameters of the 4-th signal. Define a transforma-
tion as u; = sind, cosg,, v, = sind, sing, for simplifi-
cation.

Considering that the PS-CPA can be decom-
posed into two polarization sensitive uniform planar
arrays (PS-UPAs), we process the signal data with
the two PS-UPAs separately and elaborate on the
proposed approach with the subarray of M, X M,
(i=1, 2) crossed short dipoles.

The output of the i-th subarray can be present-
ed by'”

X =[la, Ds,a,,Xs,,,a,kDsk]B"+ N, =
(A,OS)B"+N,=(A,,OA,,OS)B" + N,

(1)
where B=[ b, b,, -+, b ]€ C" " " represents the sig-
nal matrix, b, =[b,(1),6,(2),---,b6,(L)]"; L the
number of snapshots; N, € C™*" the received

noise which is zero-mean white Gaussian indepen-
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the steering matrix, where a,;, = a;,(v,)&a, ., (u;)

dent with signals. A,

is the steering vector; & and (O denote the Kro-
necker product and the Khatri-Rao product, respec-
tively; (+)" is the operation of transpose; A,, =
[@is @i sai,,] and A, ,=[a,,,a.,, ", a,,]
represent the steering matrices corresponding to the
x- and y-axis direction, respectively. And a,, (u;)
and a,,(v;) are the steering vectors and can be ex-
pressed as

@ (w)=[1 e " e e NI (2)

a, (v)=[1,e jZmI,vk/'/{’ e
and S=[ s, s,, *

matrix, where the polarization vector s, is

cosf, cosg,  —sing, sinykej”/‘ "
s p—
k COSQ, COSY,

cosd; sing,
Eq.(1) can be written as

j2r(M,; — 1)d;v,/2 ]'1‘ (3)

-, 5]t E€C* Y is the polarization

X SD.(A..)D.(A,,)
X1 SD,(A,)D,(A,.)

X, =| U= TR BT L N(5)
Xiwn,|  |SDy(A,)Dy(A,,)

where N; = M, in the subarrays of PS-CPA consid-
ered; D, (A) produces a diagonal matrix formed by
the m-th row of A. To describe the quadrilinear
model more exhaustively, we use the subarray with
M, X N; EMVSs to illustrate it. X,,,., in Eq.(5) can
be denoted as the quadrilinear model**'

K
Liomonpl — E a{,//z,kaz,n.ksp.kbl,/c + M mnp,l
=1

m=1, Msn=1,--- ,Nyp=1,2;/=1,--- L

(6)
where a; .+, a; .. represent the (m, k)-th, (n,%)-th
items in A, ,, A,,, respectively; s,, stands for the
(p, k) -th element of S is; b,, the (/, k) -th element
of B; and n,,,, . the (m,n,p,[)-th element of N,
which is regarded as a four-array matrix. The other
rearranged matrices can be derived from the structur-

al characteristics of the quadrilinear model as

U=(SOA, . OB)A!,+N,, (7)
V.=(BOSOA, ) A, + N, (8)
W, =(A,,0OBOA,,)S"+N,, 9)

2 The Proposed Approach

To accelerate convergence and reduce complex-

ity effectively, instead of initializing the loading ma-
trices randomly like the conventional QALS meth-
od, we first make an initial estimation with PM to
construct the mitial A, , and A, ,, and then iterative-
ly update the four loading matrices in turn according
to QALS until the convergence. The coprime rela-
tionship between the two subarrays is exploited to
remove the ambiguity. Finally, the polarization pa-
rameters can be obtained with the previous esti-

mates.
2.1 Initialization with PM

Define G,=A,()S and partition G, eC™M K
into G,-:[G,ﬂrl,G,f,‘g]T. G, , € C""" is nonsingular
and G,, € CP K where (+)" is the conjugate
transpose operation. There exists a linear transfor-
mation P'G,, = G.,, where P,€ C*"™ %) is de-

fined as the propagator matrix and can be calculated
by

Pi=(X. X") "X, X (10)
where X, means the first K rows of X;; and X, , the
remaining rows. Define

P =[1P'T (11)
where P,. € C™ "%, and I, €C*"* is an identity
matrix. In the noise-free case, G, :f’,‘,(G,,]. 13,‘ . can
be written as
S

~ _ -1 S@f,/) 1
Pi,(‘ Gz'Gi,l . Gi,l (12)

MP—1
SQ[,/)

Qi,p — dlag { pl',l’pz',Z’ '”’pi,K}

—j2nd v,/ 2 . . .
e " diag(+) represents a diagonal matrix con-

where and p,,=
sisting of the included elements as diagonal ele-
ments. Then we have P,,= P, .G, @, ,G, ' by par-
titioning f’m, where P,, and P,, are the first
2M;(M,;— 1) rows and the last 2M,;( M, — 1) rows
of the matrix }A’,,( , respectively. The initial estimates
0,4, 0f 0,4 can be sequentially achieved, which refers
to the £-th eigenvalue of P P.,, where ||+|" stands
for pseudo-inverse. Meanwhile, we can obtain the
eigenvectors GAZ_l. In the noise-free case, é,,l =
G . I, dA),-_p:HQ,,pH ', where IT is a permuta-
tion matrix, and I '=1II. Accordingly, the esti-

mate of G, is
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G, =P.G,=GII (13)
Reconstructing G, by rows reorganization, we
have
S

. So,,

G,=G, II= : I (14)
So), !

where @, ,=diag{q.1,q.2 **»q.xy and ¢, =

12nduy/A

. Similarly, we achieve the initial estimates
a;,, of u,, by partitioning é, and get )
no, im '

Note that 47, , and D,

tion ambiguity, which means that @, and 0,, are

g

., have the same permuta-
automatically paired. To decrease computational
complexity, here we only initialize A,., A,

with @, 4,0,
2.2 Quadrilinear decomposition

Herein, we initialize the steering matrices A, ,

and A, , with @, ,, and 0, ,, to speed the convergence.

And the mitial polarization matrix S and signal ma-
trix B are constructed randomly.
According to Eq.(1), the costing function of B

in the quadrilinear model is

i (0809
where X, represents the noisy signal; ||« ||s the Fro-
benius norm. And the LS update for B is
B'—=(A,,04,.08)" X, (16)
where A,,,, A,u\, and S represent the previously ob-
tained estimates of A,,, A,, and S, respectively.

According to the symmetry of the quadrilinear mod-
el, the LS fitting for A, , 1s
min HU,-*(SOA,;,,@B VAL, :

A A S B

(17)

where U, is the noisy signal. And the LS update for
A, can be expressed as
A6, =(SOA,.OB)' U, (18)
where §, A,,l. an
update process.
According to Eq.(8), the LS fitting for A, , is
min_[|[V.—(BOSOA, ) AL|  (9)

A A S B

d B are estimated in the previous

where V, represents the noisy signal. Then the up-

dated estimates of A, , based on LS is

AL =(BOSOA, )"V, (20)
where B s S and Az-,y are previously estimated.
In a similar way, the LS fitting for S is
min_[[W.—(4,,0B04.0s"| @D

A, A8
where W, is the noisy signal. The LS update for S is
S"=(A,,OBOA, )W, (22)

where fi,,y, B and A are the previous estimats.
The sum of squared residuals (SSR) is defined

L

r=1/=1

as SSR, = , where r, / represent the (r,

Cr

(A.(OS)B".
The convergence rate is denoted as SSR,.=
(SSR;— SSR; 1)/SSR; .
(16), (18),
the updating process ofé,fi,ul.,/i,._y and S with LS un-

/) -th elements of matrix C=X, —

According to Eqgs.
(20) and (22) , we repeatedly perform

til SSR,,.. < e, where ¢ s a certain small value!'®.

Thereafter, we achieve the estimates as

B'=BIIA,  +V,, (23)
A=A, ILA ,+V,, (24)
A” =A, IIA,+V,, (25)
S'=SIA, , + V., (26)

where II, represents a permutation matrix, which
may lead to permutation ambiguity. And A, A, »,
A, A, are the diagonal scaling matrices satisfying
A A LA A
guity. V.1, Vi,

= Ik, which may lead to scale ambi-
V. and V,, represent the estima-
tion errors. Since the permutation matrix IT, in
Eqs.(23)—(26) is the same, the permutation ambi-
guity makes no difference to parameters pairing. And

the scale ambiguity can be resolved via normalization.
2.3 Least squares estimation

Define aw,am as the 4Ath columns of

Al A!,, respectively. By normalizing a! e Ay
we have
h.. = —angle(a/, (u,))=
[0,2nd,u, /A, ,2nd;, (M
h, ., = —angle(a/,(v,))=
(28)
[0,2nd,v,/A,,2nd,(M,— 1)dv,/A "

where angle(*) represents the operation of getting

(2
1)611,{)//‘( ]T

the phase angle. Then we use LS criterion to esti-

mate u, and v,. The LS fitting is Q,¢c,; = h,,, and

T
. " _
where Ci1— [Ci,lo Cf.1] s Cio—

Q{CI.Z - hl‘U/l ’
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[¢/sncly] and

1 0
1 2nd,/ A
Q=" : (29)
1 (M,—1)2xnd,/A
According to LLS criterion, we can obtain
. =(QIQ)'Qlh,,, (30)
¢, =(QIQ) 'Qlh,, (31)
Then the estimates of (uy, v;) can be achieved by
;=< (32)
Dy ==/ (33)

The (&, 0,;) obtained in Eqgs.(32), (33) is
not necessarily true estimates as a result of the
phase ambiguity problem caused by the enlarged ele-

ment spacing.
2.4 Ambiguity elimination

We elucidate the generation and elimination
method of phase ambiguity in this section.

Assume a single source impinges on the subar-
ray with M, X M, EMVSs from the direction
(0., ¢,). Denote (0,,¢,) as one of the ambiguous
DOAs. The period of exponential function 2z im-
plies that'"

2nd; (u, — u,) /A= 2k, ,x (34)

2nd; (v, — v,) /A= 2k; ,7 (35)
where  u,=sin0, cosg,, v,=sind, sing,, wu,—
d: =M,/
2(i,je{1,2},i#j), k., EZ, k. ,EZ. Constraints
u u, €[ —1,11, v,v,€[0,1], 0<<u +v; <1,
0<<u’+ v> <1 have to be satisfied.

From Eqs.(34), (35), we have

Riu ko ki ko
M, M, M, M,

As M, and M, are coprime integers, there
ky,—0 and k,,=k,, =0
making Eq.(36) valid, which reveals that the true

sind, cosg,, v, = sind, sing,,

(36)

uniquely exist 4, , =

DOA estimates can be uniquely distinguished {rom
the intersecting estimations of the two subarrays.
Since it is impractical for two subarrays containing
completely coincident estimates, the closest ones
are exactly required. Similar conclusions can be ob-

tained in the case of multi-source.
2.5 Parameter estimation

With the unambiguous estimates defined as

a", 95", we obtain the true estimates (6,, ¢,) via
0, = arcsin(\/(al"F + (01"} ) (37)
¢, = angle(a;" + ;") (38)

Since the ambiguity elimination process makes
the pairing of A[f_,,/i[_&. and S”invalid, we must de-
termine the pairing of 4, ¢, and S” before calculat-
ing the polarization parameters.

Construct A™ with 4, and @,. Considering that
4., A and S! are well paired, and so are 4™ and
A}‘,‘,“, we just need to match the column vectors of
u™ and a;, which essentially determines the pairing
of A™ and S!. Denote &" (k=1, 2, ---, K ) as the %
th element of "™, and @,,;(j=1,2, -+, K ) as the j-
th element of #,. Consequently, we ascertain the
correspondence between the 4 and j by

~fin

jy= arg min“&,,j*u,;
j=1,2,- K

k=1,2,- K (39)

By this means, the pairing of ™ and a; is

achieved, so are (9}, ¢, and ,§[( Define gf‘” as the po-
larization matrix paired with ék,gﬁk. Since the two
subarrays correspond to the same polarization ma-
trix, we adopt an average operation as

s (04, Lrs Yk 7]&):

5?11 ( 04 Dies Y ks 77k)+ §;)( 0y, Dies Y ks 77/3)
2

where §." (04, @4, 720 2) is the &-th column of S™.

(40)

Subsequently, the polarization parameters can

be determined from
7, = arctan (|£,]) (41)

7, = angle(&,) (42)
where
- 7 COS @ 1 sin @
E— rf cosgof gin@.k : (43)
cos 0y (cos @, — 74 8in @)

and 7,=35§"(1)/s"(2), §i"(1) and $i"(2) are the

first and second elements of §™ (8, ¢4 ¥4 74), TE"

spectively.
3 Performance Analysis

3.1 Convergence analysis

We compare the convergence performance of
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the proposed approach and the conventional QALS
algorithm and illustrate the iteration times of the
two subarrays in Fig.2, where we set SNR=10 dB,
L=100. Define DSSR =SSR, — SSR,, where
SSR, denotes the value of SSR corresponding to the
n-th iteration and SSR, the value of SSR at conver-
gence.

It is explicitly indicated in Fig.2 that the pro-
posed approach requires fewer iterations to converge
than the conventional QALS algorithm. A faster

convergence speed can lead to a lower computation-

al complexity.

3.2 Complexity analysis
As the two subarrays of the PS-CPA possess

the similar complexity form, the complexity calcula-
tion of the subarray with M, X M, sensors of our ap-
proach is shown as follows. The initialization with
PM costs O(2K*L+3M,(M,— 1)K*+
3M,(M,— 1)K*+ 5K’ +(2M} — K )KL) (i=
1, 2). Each iteration of QALS needs O( K*(2M;} +
M7?L+4M;L+ 2M,+ L+ 2)+4K’+ 8M/KL).

We list the complexity of the proposed approach and

about

the conventional QALS algorithm in Table 1,
where 7, and n, are the number of iterations of the
former and the latter, respectively.

Fig.3 displays the complexity comparison be-

0 0 . . .
tween PM and each iteration of QALS in the PS-
=50 =50 .
o o CPA. We can conclude that although PM process is
-100 = -100 . R . .
= = involved in initialization, the complexity of PM is
% -150| ~ Proposed & 150 | = Proposed
A algorithm A algorithm lower than that of one iteration of QALS. Fig.4 dis-
-200 | — Conventional -200 | = Conventional ) )
QALS QALS plays the complexity comparison versus snapshots,
-250 A . i -250 . ! !
0 20 40 60 80 0 20 40 60 80 where K =2, n, =25, n, = 100. It is observed from
Iteration times Iteration times .
(a) Subarray 1 (b) Subarray 2 Figs.3, 4 that the proposed approach can reduce the
Fig.2 Convergence comparison of different algorithms complexity remarkably.
Table 1 Computational complexities of different algorithms
Algorithm Computational complexity
O(2K*L+3M,(M,— 1)K*+ 5K’ + 3M,(M,— 1)K* +
(2M?— K )KL +
The proposed approach , ) 5 3
n (K2(2ME+ MEL + AM,L + 2M,+ L + 2)+ 4K +
SMZKL))
) i O(ny(K*(2M}P + MZEL+ 4M,L+ 2M,+ L+ 2)+ 4K* +
Conventional QALS algorithm ,
SMZKL))
10° B Each iteration of QALS 10° Il Conventional QALS algorithm
1 PM [ The proposed algorithm
10° b 10"+
2 2
5 &
= =
E :
10° b © 100t
10° | |
2 4 5 7 10 100 200 300 400 500
M, (M,=3) Number of snapshots
Fig.3  Complexity comparison between PM and each itera- Fig.4 Complexity comparison of different snapshots be-

tion of QALS in the PS-CPA

tween the proposed algorithm and the conventional
QALS algorithm
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3.3 Advantages

(1) The proposed approach achieves a fast con-
vergence by employing PM as the initialization,
which remarkably reduces the computational com-
plexity.

(2) The proposed approach obtains the same
parameter estimation performance as the convention-
al QALS algorithm but owns much lower computa-
tional burden, and outperforms PM and ESPRIT.

(3) The proposed approach in PS-CPA has a
higher estimation accuracy than that in PS-UPA,

owing to the larger array aperture.

4 Simulation Results

In this section, we perform 500 Monte-Carlo
simulations to evaluate the parameter estimation per-
formance. The root mean square error (RMSE) is
defined by

1 500 K .
RMSE—\/SOOI(/Z;;(OQ_GM) (44)

where @,, is the estimate of DOA/polarization pa-

rameter corresponding to the 4-th signal in the /-th
simulation.

Suppose that K = 2 signals impinge on the PS-
CPA from (8,, ¢,)=(10°,30%),(8, ¢,)=(20°,40°%),
and their corresponding polarization parameters are
(71, 70)=(7" 15, (2 92)= (17", 25%).

4.1 Parameter estimation results

We examine the validity of the proposed ap-
proach and the scatter plots of parameter estimation
is shown in Fig.5, where M, =4,M, =75, L =200
and SNR=20dB. As illustrated in Fig.5, the ap-

proach is effective in estimating multi-parameters.

(=]

(ST 3

o O
T
.
N W
W

T

.

w W

N A
T
—_
W
T

-

(5]
00 O
T
—_
w o

Azimuth angle / (°)
W
(=)}
Polarization parameter 7 / (°)
[\
(=)

2 1 1 1 1 1 1 1 1 L L 1
8 1012 14 16 18 20 22 1 5 9 13 17 21 25
Elevation angle / (°) Polarization parameter y / (°)
(a) Scatter plot of elevation angle (b) Scatter plot of polarization
and azimuth angle yandn

Fig.5 Estimation results of the proposed approach

4.2 RMSE comparison of different algorithms

We present the parameter estimation perfor-
mance comparison of the proposed approach, the
conventional QALS, ESPRIT, PM algorithms and
the Cramer-Rao Bound'"' in Fig.6, where M, =7,
M, =9 and L = 300. It is clear from Fig.6 that the
proposed approach has the same estimation perfor-
mance as the conventional QALS algorithm but
with a faster convergence, which shows that the
proposed approach can guarantee estimation accura-
cy while reducing complexity effectively. By con-
trast, the proposed approach outperforms ESPRIT
and PM, as it utilizes the structural characteristic of
received signal and applies the quadrilinear alternat-

ing least square method.

10" =ESPRIT =ESPRIT
-+ o -1 —+P! .
. -+Quadrilinear| _ 10 ~+Quadrilinear|
& 107 -e-Proposed (2 -e-Proposed
= CRB ~ 2CRB
5 2
2107} z |
K
100 v v (0
-10-5 0 5 10 1520 -10-5 0 5 10 1520
SNR / dB SNR / dB
(a) Elevation angle estimation  (b) Azimuth angle estimation
of DOA estimation of DOA estimation
+ESPRIT 10' = ESPRIT
—+ -+
~ 10° ~Quadrilinear| ] ~Quadrilinear
L) ] -e-Proposed (5 -e-Proposed
E +*CRB E 10°L *CRB
1) I SR (U S
-10-5 0 5 10 1520 -10-5 0 5 10 15 20
SNR / dB SNR / dB

(c) Polarization y estimation of
polarization estimation

(d) Polarization # estimation of
polarization estimation

Fig.6 Parameter estimation performance of different algo-

rithms

4.3 RMSE comparison with different arrays

We give the RMSE results of the proposed ap-
proach in PS-CPA and PS-UPA in Fig.7 to com-
pare array performance, where M, =4, M,=25,
L =300. Consider a PS-UPA with 52X 8 sensors so
that the two arrays have the same number of ele-
ments for fair. As depicted in Fig.7, the approach in
PS-CPA has superior estimation performance to
that in PS-UPA, as the PS-CPA enables a larger ar-

ray aperture with the same number of elements.
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" —o—PS-CPA " ——PS-CPA tion of arrival and polarization estimation for polariza-
> —PS-UPA > ——PS-UPA tion-sensitive uniform circular array[J]. Progress in

é 10" é 10"+ Electromagnetics Research, 2008, 86: 19-37.

2 02l 2 10l [5] LIS, ZHANG X F, WANG F. CS quadrilinear mod-
10° 16° el-based angle estimation for MIMO radar with electro-

-10-5 0 5 10 1520 -10-5 0 5 10 1520 magnetic vector sensors[J]. International Journal of

SNR/AB _ SNR/dB Electronics, 2016, 104(3) : 485-503.
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