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Abstract: Tikhonov regularization is a powerful tool for solving linear discrete ill⁃posed problems. However，effective
methods for dealing with large⁃scale ill⁃posed problems are still lacking. The Kaczmarz method is an effective iterative
projection algorithm for solving large linear equations due to its simplicity. We propose a regularized randomized
extended Kaczmarz（RREK）algorithm for solving large discrete ill⁃posed problems via combining the Tikhonov
regularization and the randomized Kaczmarz method. The convergence of the algorithm is proved. Numerical
experiments illustrate that the proposed algorithm has higher accuracy and better image restoration quality compared
with the existing randomized extended Kaczmarz（REK）method.
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0 Introduction

This paper mainly considers solving the large
discrete ill⁃posed problem［1］

min
x ∈ Rn

 Ax- ~
b

2
(1)

where A∈ Rm× n is an ill⁃conditioned matrix and its
singular value is gradually reduced to zero without
obvious intervals，the vector ~b ∈ Rm is error⁃con⁃
taminated data，that is

~
b = b true + r, b true ∈ R (A), r ∈ R (A) ⊥

where b true is the output result in the ideal state，and
r the unavoidable noise data during the observation
process. Assume that the linear equation

Ax= b true (2)
is consistent，we will determine its solution by cal⁃
culating the approximate solution of the linear dis⁃
crete ill⁃posed problem（1）.

In practical applications，Tikhonov regulariza⁃
tion［2］ is one of the most commonly used methods
for solving linear discrete ill⁃posed problems. For
small⁃scale problems，the solution of the ill⁃posed
problem can be obtained by selecting appropriate
regularization parameters with the direct regulariza⁃
tion method. However， for large⁃scale ill⁃posed
problems，the direct application of Tikhonov regu⁃
larization method needs a large amount of computa⁃
tion and storage.

Kaczmarz method［3］is an effective iterative pro⁃
jection method for solving large-scale consistent lin⁃
ear Eq.（2）. Due to its simplicity，it has been widely
used in image reconstruction，signal processing，dis⁃
tributed computation and other fields［4-6］. In order to
improve the convergence of the Kaczmarz method，
Strohmer and Vershyin［7］proposed a randomized
Kaczmarz（RK） method with exponential conver⁃
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gence，which randomly selects the rows of the ma⁃
trix A. For the inconsistent problem， Nee⁃
dell［8］proved that the randomized Kaczmaz method
could converge to the neighborhood of the least
squares solution，and the radius of the neighborhood
were related to the noise of the inconsistent prob⁃
lem. Inspired by Popa method［9］，Zouzias and Fre⁃
ris［10］put forward a randomized extended Kaczmarz
（REK）method，which makes the inconsistent prob⁃
lems converge to the least squares solution.

In consequence，for large-scale ill-posed prob⁃
lems， this paper considers combining the REK
method with Tikhonov regularization，so as to gen⁃
erate a regularized iterative method.

The structure of the paper is as follows：Sec⁃
tion 1 introduces the Kaczmarz method and propos⁃
es the regularized randomized extended Kaczmarz
（RREK）algorithm for the ill-posed problem. In Sec⁃
tion 2， the convergence of the new algorithm is
proved. In Section 3，we carry out some numerical
experiments. Finally，the relevant conclusions are
drawn.

1 Regularized Randomized Extend‑

ed Kaczmarz Algorithm

1. 1 Kaczmarz method

The classical Kaczmarz algorithm is an itera⁃
tive projection method for solving large linear consis⁃
tent equations，the algorithm starts with an arbitrary
vector x 0. In each iteration，the rows of the matrix
are traversed in a circular manner. For each selected
row，the current iteration point x k- 1 is orthogonally
projected onto the next hyperplane Hi：=
{ x |〈A i，x〉= bi }，and the projection point is used
as the next iteration point x k，the resulting sequence
converges to the solution of Eq.（2）［11］. Given the
initial value，the iterative formula of Kaczmarz algo⁃
rithm is as follows

x k= x k- 1- 〈x k- 1,A i〉- bi

 A i

2

2

A i

k= 0,1,2,… （3）

where i= ( kmodm) + 1，〈⋅，⋅〉is the Euclidean in⁃
ner product，A i the transpose of the ith row vector
of A，and bi the ith element of b.

From Eq.（3），we can see that the Kaczmarz
method is very simple since it mainly contains the in⁃
ner product operation，but its convergence rate is
usually very slow. In order to improve the conver⁃
gence of the Kaczmarz method，Strohmer and Ver⁃
shyin proposed to randomly select the rows of the
matrix A according to a probability proportional to

 A i

2

2
 A 2

F ( i= 1，2，…，m). This method is

called the RK method［7］ and has exponential conver⁃
gence.

For inconsistent problems， the above algo⁃
rithm is no longer applicable. Zouzias and Freris pro⁃
posed the REK method，which was a combination
of randomized orthogonal projection algorithm and
randomized Kaczmarz algorithm. REK algo⁃
rithm［10，12］ was mainly used to solve the ill-posed
problem（1），and described as follows：

The main idea of Algorithm 1 is to eliminate
the noise part of the right-hand term by randomized
orthogonal projection，and then apply the random⁃
ized Kaczmarz algorithm to the new linear system.
The right-hand vector of the linear system is now ar⁃
bitrarily close to the column space of A， i. e.
Ax≈ b true，which makes the inconsistent problem
converge to the least squares solution.

Algorithm 1 REK
1. Input: A∈ Rm× n, b∈ Rm, ε
2. Initial: x 0 ∈ R n,y0 = ~

b

3. for k= 1,2,3,⋯
4. Randomly select jk ∈ [n], compute

y k= y k- 1-
〈y k- 1,A jk〉

 A jk

2

2

A jk

5. Update bk,bk= ~
b - y k

6. Randomly select ik ∈ [m], compute

x k= x k- 1-
〈x k- 1,A ik〉- bkik

 A ik

2

2

A ik
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7. Terminate if it holds
 x k- x k- 1

2

 x k 2

< ε

8. end for

1. 2 Randomized extended Kaczmarz algorithm

based on Tikhonov regularization

Due to the ill-posedness property of problem
（1），it is usually necessary to regularize the original
problem. Tikhonov method is the most commonly
used regularization method to solve ill-posed prob⁃
lems by replacing the minimization problem （1）
with the penalized least squares problem

min
x ∈ Rn { Ax- ~

b
2

2
+ ω Lx

2

2} (4)

The regularization term ω Lx
2

2
is used to control

the smoothness or sharpness of the solution，where
ω is the regularization parameter and L the discrete
approximation of some derivative operators.

Solving problem（4）is equivalent to solve

min
x ∈ Rn { 



( )A

ω L
x- ( )~b0

2

2
} (5)

The system of normal equations for the problem can
be written as

(AT, ω LT) (( )~b0 - ( )A

ω L
x) = 0

Let ( )r1r2 = ( )~b0 - ( )A

ω L
x，then

ì

í

î

ï
ï
ï
ï

( )A

ω L
x= ( )~b0 - ( )r1r2

( )AT, ω LT ( )r1r2 = 0

(6)

Owing to the limitation of the storage and com⁃
putation，direct regularization method is often used
to solve small-scale ill-posed problems. However，
for some inverse mathematical physics problems，
the order of the discretized coefficient matrix may be
very large. Therefore，based on Tikhonov regular⁃
ization， this paper considers combining Kaczmarz
method to solve large-scale linear discrete ill-posed
problems.

In this paper，we use the Morozov discrepancy

principle to determine the value of the regularization
parameter ω and L is selected as the first derivative
operator.

Using Eq.（6）and the idea of Algorithm 1，we
can get Algorithm 2.

Algorithm 2 RREK
1. Input：A∈ Rm× n,L∈ Rn× n is the first deriva⁃

tive operator,~b ∈ Rm,ω,ε; let

-
A = ( )A

ω L
,-b = ( )~b0 ,r= ( )r1r2 ,b= -

b - r

2. Initial：x 0 = 0, y0 = -
b

3. for k= 1,2,3,⋯
4. Pick jk ∈ [n] with probability

qj:=  -
A j

2

2
 -A 2

F

5. Compute

y k=
æ

è

ç

ç
ççIm-

-
A jk

-
A

T
jk

 -
A jk

2

2

ö

ø

÷

÷
÷÷ y

k- 1

6. Take the first m lines of y k, denoted as y k1,
and take the last n lines of y k, denoted as y k2, then

b k1 =
~
b - y k1, b k2 =-y k2.
7. Pick ik ∈ [m] with probability

pi:=  -
A i

2

2
 -A 2

F

8. If 1≤ ik ≤ m, compute

x k= x k- 1-
〈x k- 1,-A ik〉- ( )bk1 ik

 -
A ik

2

2

-
A ik

if m+ 1≤ ik ≤ m+ n, let ik:= ik- m, com⁃
pute

xkik= xk- 1ik +
ω
2 ( xk- 1ik+ 1- xk- 1ik ) - ( )bk2

ik

ω

xkik+ 1 = xk- 1ik -
ω
2 ( xk- 1ik+ 1- xk- 1ik ) - ( )bk2

ik+ 1

ω

9. Terminate if it holds

 -
A x k-( -b - y k )

2

 -A
F
 x k 2

≤ ε,


 




-
A

T
y k

2

 -A 2

F
 x k 2

≤ ε

10. end for
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2 Convergence Analysis

We describe a random algorithm（Algorithm
2），which consists of two parts. The first part，con⁃
sisting of Steps 4 and 5，applies randomized orthog⁃
onal projection algorithm to maintain an approxima⁃
tion to b formed by -b - y k. The second part is the
randomized Kaczmarz algorithm composed of Steps
7 and 8. This paper first proves that -b - y k≈ b in
the randomized orthogonal projection algorithm，

and then proves the linear convergence of Algo⁃
rithm 2.

Lemma 1

［10］ For every vector u∈ R (-A )，it
holds





















( )Im-

-
A
-
A

T

 -A 2

F

u

2

≤ (1- σ 2min

 -A 2

F
) u 2

2

where σmin is the minimum singular value of
-
A.

Theorem 1 For any matrix -A， right⁃hand
side vector -b，after k iterations，the randomized or⁃
thogonal projection algorithm has the expected con⁃
vergence rate

E  y k- r
2

2
≤ (1- 1

κ 2F (
-
A ) )

k

 b 2

2

where κF (
-
A ) =  -A

F



 




-
A

+

2
，
-
A

+is the Moore-

Penrose pseudo-inverse of -A.

Proof Define P ( j )：= Im -
-
A j
-
A

T
j  -

A j

2

2

for every j ∈ [n] . Notice that P ( j ) P ( j ) = P ( j )，
i.e.P ( j ) is a projection matrix.

Let X be a random variable and choose the in⁃

dex j according to the probability  -
A j

2

2
 -A 2

F
，ob⁃

viously E [ P ( )X ] = Im-
-
A
-
A

T  -A
2

F
.

For every k，define ek：= y k- r，it holds that
ek= P ( jk ) ek- 1 jk ∈ [n] (7)

In fact
ek= y k- r= P ( jk ) ( ek- 1 + r) - r= P ( jk ) ek- 1

X 1，X 2，⋯are sequences of independent random
variables with the same distribution as X. For the
convenience of notation， we denote Ek- 1 [ ⋅ ] =

EXk [ ⋅ | X 1，X 2，…，Xk- 1 ]. That is to say，the condi⁃
tional expectation is the condition on the first（k-1）
iteration of the algorithm，thus obtaining

Ek- 1  ek 2

2
= Ek- 1  P ( Xk ) ek- 1

2

2
=

Ek- 1〈P ( Xk ) ek- 1,P ( Xk ) ek- 1〉=
Ek- 1〈ek- 1,P ( Xk ) P ( Xk ) ek- 1〉=
〈ek- 1,Ek- 1 [ P ( Xk ) ] ek- 1〉≤

 ek- 1
2





















( )Im-

-
A
-
A

T

 -A 2

F

ek- 1

2

≤

(1- σ 2min

 -A 2

F
) ek- 1

2

2

Among them，we applied the properties of ex⁃
pectation，Cauchy-Schwarz inequality and Lemma
1. Since



 




-
A

+

2
= 1
σmin
,κF (

-
A ) =  -A

F



 




-
A

+

2

we can obtain

E  ek 2

2
≤ (1- 1

κ 2F (
-
A ) )

k

 e0 2

2

Note that e0 = -
b - r= b.

Theorem 2 In Algorithm 2，if the termina⁃
tion criterion of the randomized orthogonal projec⁃

tion algorithm is set as


 




-
A

T
y k

2

 -A
F
 y k 2

≤ ε， it holds

that  y k- r
2
/ y k 2

≤ εκF (
-
A )，i.e.，-b - y k≈ b.

Proof Assuming that the termination criteri⁃
on is satisfied when some k> 0. Set y k= r+
w，w ∈ R (-A )，then



 




-
A

T
y k

2
= 


 




-
A

T ( )r+ w
2
= 


 




-
A

T
w

2
≥

σmin  y k- r
2

Since


 




-
A

T
y k

2
≤ ε  -A

F
 y k 2

we obtain that

 y k- r
2
/ y k 2

≤ ε
 -A

F

σmin

In particular，use again
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

 




-
A

+

2
= 1
σmin
,κF (

-
A ) =  -A

F



 




-
A

+

2

hence
 y k- r

2  y k 2
≤ εκF (

-
A )

that is
-
b - y k≈ b

The stop criteria for Step 9 are determined on
the basis of the following analysis. From the second
part of the stop rule，we know

 y k- r
2
≤ ε

 -A 2

F

σmin
 x k 2

Now，
~
x is the minimum norm solution of

Eq.（5），then

 -
A ( )x k- ~

x
2
≤  -

A x k-( -b - y k )
2
+

 -
b - y k--A~x

2
≤

ε  -A
F
 x k 2

+  r- y k ≤

ε  -A
F
 x k 2

+ ε
 -A 2

F

σmin
 x k 2

Here we use the triangle inequality，the first part of
the stop rule and b= -

A
~
x. In particular，

x k，
~
x ∈ R (-A T )，it results that

 x k- ~
x

2

 x k 2

≤ εκF (
-
A ) ( 1+ κF (

-
A ) ) (8)

From Eq.（8），we can see that the relative er⁃
ror of RREK algorithm is bounded.

Theorem 3 gives the expected convergence
rate of RREK algorithm（Algorithm 2）.

Theorem 3 For any matrix -A， right⁃hand
side vector -b and initial value x 0 = 0，the sequence
{x k} generated by Algorithm 2 converges to the mini⁃
mum norm solution ~x of Eq.（5）

E  x k- ~
x

2

2
≤ (1- 1

κ 2F (
-
A ) )

k 2

( 1+ 2κ 2 (-A ) )  ~x
2

Proof For easy notation，denote
α= 1- 1 κ 2F (A)
Ek [ ]⋅ ：= E [ ⋅|i0，j0，i1，j1，…，ik，jk ]

According to Theorem 1，for each l≥ 0，we have

E  y l- r
2

2
≤ αl  b 2

2
≤  b 2

2
(9)

Fix a parameter k ∗：= k 2，after the k*-th itera⁃

tion of Algorithm 2，it follows from reference[ ]13 that

E( )k∗ - 1  x k
∗ - ~

x
2

2
≤ α  x k

∗ - 1 - ~
x

2

2
+

 r- y k
∗ - 1

2

2

 -A 2

F

(10)
Indeed，randomized Kaczmarz algorithm is car⁃

ried out on（-A，
-
b - y k

∗ - 1）. Take the total expecta⁃
tion on both sides，due to the linear nature of the ex⁃
pectation，it holds that

E  x k
∗-~
x

2

2
≤αE  x k

∗-1-~
x

2

2
+
E  r- y k∗-1

2

2

 -A 2

F

≤

αE  x k
∗ - 1 - ~

x
2

2
+

 b 2

2

 -A 2

F

≤⋯≤

αk
∗  x 0 - ~

x
2

2
+ ∑

l= 0

k∗ - 2

αl
 b 2

2

 -A 2

F

≤

 ~x 2

2
+ ∑

l= 0

∞

αl
 b 2

2

 -A 2

F

(11)

The last inequality is obtained from α< 1，x 0 = 0，

and Eq.（11）can be simplified to

E  x k
∗ - ~

x
2

2
≤  ~x 2

2
+

 b 2

2

σ 2min
(12)

using the fact ∑
l= 0

∞

αl = 1
1- α

= κ 2F (
-
A ).

In addition，for each l≥ 0，we have

E  r- y l+ k∗
2

2
≤ αl+ k∗  b 2

2
≤ αk

∗  b 2

2
(13)

Now，for any ~k > 0，similar considerations as
to Eq.（11）implies that

E  x
~k+k∗-~x

2

2
≤

αE  x
~k+k∗-1-~x

2

2
+
E  r-y

~k+k∗-1
2

2

 -A 2

F

≤⋯≤

α~k E  x k
∗ - ~

x
2

2
+ ∑

l= 0

~k - 1

α(
~k - 1)- l

E  r- y l+ k∗
2

2

 -A 2

F

≤

α~k E  x k
∗ - ~

x
2

2
+
αk

∗  b 2

2

 -A 2

F

∑
l= 0

~k - 1

αl ≤

α~k ( ~x 2

2
+  b 2

2
σ 2min)+ αk

∗  b 2

2
σ 2min =

α~k  ~x 2

2
+ (α~k+ αk

∗) b 2

2
σ 2min ≤
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α~k  ~x 2

2
+ (α~k + αk

∗) κ 2 (-A) ~x 2

2
（14）

The last inequality is derived from  b 2
≤ σmax  ~x

2
.

Then，consider two cases：if k is even，set ~k =
k ∗；otherwise，set ~k = k ∗ + 1. In both cases，( α~k+
αk

∗ )≤ 2αk∗. Therefore，Eq.（14）can be simplified as

E  x
~k + k∗ - ~

x
2

2
≤ αk

∗ (1+ 2κ 2 (-A ) ) ~x 2

2
(15)

3 Numerical Examples

In this section， the three numerical experi⁃
ments are used to examine the RREK algorithm and
compare it with REK algorithm. Relative error
（RE）is used to measure the accuracy of the approx⁃
imate solutions obtained by the two algorithms

RE=
 x k- x exact 2

 x k 2

where x k is the approximate solution of Eq.（1）de⁃
rived from the REK and RREK at index k and x exact
the exact solution of Eq.（1）. The regularization pa⁃
rameter ω is determined by the discrepancy princi⁃
ple. L is selected as the first derivative operator.
Choosing ε≤ 10-2 can meet the solution require⁃
ment. The running environment in the paper is
MATLAB（2017b），and the processor is 1.6 GHz
Intel Core i5.

Example 1 In this example，A ∈ R314 × 314 is
generated by the problem [ ]14

，the exact solution is
x exact = sin ( 0.01∶ 0.01∶ π)，~b = Ax exact + δ ⋅
randn( 314，1 )，-A ∈ R628× 314，δ is the noise level. We
take δ=0.1%，0.5%，1%，5%，respectively. Cal⁃
culated with the two algorithms，and relative errors
are obtained，as shown in Table 1. Fig.1 compares
the REK and RREK solutions with the exact solu⁃
tion for the noise level δ= 1%. At the same time，
10 sample points are selected at a medium distance
from the reconstruction results，and the errors of the
two methods at the sample points are compared，as
shown in Fig.2.

It can be seen from Table 1 that under the
same noise level，the relative errors of RREK algo⁃
rithm are smaller than the REK algorithm. In Fig.1

and Fig.2，we note that the RREK method gives a
better approximation of the exact solution，indicat⁃
ing that RREK method is superior to REK method.

Example 2 Considering the phillips prob⁃

lem[ ]14
，the first kind of Fredholm integral Equation

is

∫-6
6
k ( )s,t x ( s) ds= y ( t) -6< t< 6

The kernel function and the right function are re⁃
spectively

k ( s,t) =
ì

í

î

ïï
ïï

1+ cos ( )π ( )t- s
3 || t- s < 3

0 || t- s ≥ 3

y ( t) = ( 6- || t ) (1+ 1
2 cos ( πt3 ))+ 9

2π sin ( π || t
3 )

Table 1 Relative errors of two reconstruction methods

δ/%
REK
RREK

0.1
4.55e-2
2.62e-2

0.5
6.06e-2
3.49e-2

1
6.55e-2
4.37e-2

5
1.18e-1
8.24e-2

Fig.1 Original image and images reconstructed by
two methods

Fig.2 Comparison of relative errors between two
methods at 10 sample points

792



No. 5 LIU Fengming, et al. A Regularized Randomized Kaczmarz Algorithm for Large Discrete Ill-Posed Problems

The exact solution is

x ( t) =
ì

í

î

ïï
ïï

1+ cos ( )πt3 || t < 3

0 || t ≥ 3
The integral equation is discretized into a ma⁃

trix A with order 1 000， then b͂= Ax exact + δ ⋅
randn ( 1 000，1 )，and L is usually a discrete approxi⁃
mation of some derivative operators. Fig.3 shows
the solutions of REK and RREK at δ= 1% with rel⁃
ative errors of 0.077 5 and 0.030 8，respectively. As
can be seen from Fig.4，the iterative error of RREK
algorithm is smaller than that of REK algorithm.

Example 3 Consider the two-dimensional im⁃
age restoration problem[ ]15 . The most common fuzzy
function is the Gaussian impulse function，which
can be described by the following symmetric banded

Toeplitz matrix

(T σ ) ij= {e( )- 1
2 ( )i- j

σ

2

i- j< band
0 other

where σ controls the shape of the Gaussian pulse
function，and the larger σ is，the more ill-posed the
problem is. In this example，the real image X is
100× 100， then the projection operator
A∈ R10 000× 10 000 is a symmetric double block Toeplitz
matrix，x exact ∈ R10 000. Meanwhile，add 1% Gauss⁃
ian noise，set σ= 1 and band=5. RREK algorithm
and REK algorithm are used to reconstruct the im ⁃
age，and the restoration effects are as follows.

Fig.5（a） is the original image of“Lena”，and
Fig. 5（b） is the image polluted by blur and noise.
The relative error of Fig.5（c）recovered by REK al⁃
gorithm is 12.95%，and that of Fig.5（d）recovered
by RREK algorithm is 10.94%.

Fig.6（a） is the original image of“house”，

Fig. 6（b） is the image polluted by blur and noise，
Fig.6（c） is the image recovered by REK algorithm
with a relative error of 7.38%，and Fig.6（d）is the
image recovered by RREK algorithm with a relative
error of 5.43%.

By observing the relative errors and image re⁃
construction effects of the two methods，the relative
errors of RREK algorithm are always smaller than
those of REK algorithm，and the recovered images

Fig.5 Original, blurred and restored“Lena”images

Fig.3 Comparison of REK and RREK solutions with
exact solution

Fig.4 Relationship between the relative errors and the
iterations of two algorithms
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are smoother. Therefore，RREK algorithm is effi⁃
cient and superior to REK algorithm.

4 Conclusions

Randomized extended Kaczmarz algorithm
based on Tikhonov regularization is proposed to
solve the linear discrete ill-posed problem，and the
convergence of the algorithm is analyzed. Numerical
experiments show that the algorithm is superior to
the randomized extended Kaczmarz algorithm. In
the numerical experiments，the regularization ma⁃
trix is the first derivative matrix. Better results may
be obtained by appropriately adjusting the selection
of L，which will be studied later.
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一种求解大型离散不适定问题的正则化随机Kaczmarz算法

刘凤鸣 1，王正盛 1，杨思雨 1，徐贵力 2

（1.南京航空航天大学理学院，南京 211106，中国；2.南京航空航天大学自动化学院，南京 211106，中国）

摘要：Tikhonov正则化是求解线性离散不适定问题的有力工具，然而，针对大规模问题的有效方法仍然缺乏。

Kaczmarz方法由于其简单性，是求解大型线性方程组的有效迭代投影算法。因此，本文结合Tikhonov正则化和

随机 Kaczmarz方法，提出了一种求解大型离散不适定问题的正则化随机扩展 Kaczmarz（Regularized randomized
extended Kaczmarz，RREK）算法，同时证明了算法的收敛性。数值实验表明，与现有的随机扩展 Kaczmarz（Ran⁃
domized extended Kaczmarz，REK）方法相比，该算法具有更高的精度，图像恢复质量更优。

关键词：不适定问题；Tikhonov正则化；随机扩展Kaczmarz算法；图像恢复
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