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Abstract: Using the traditional swarm intelligence algorithm to solve the cooperative path planning problem for multi-
UAVs is easy to incur the problems of local optimization and a slow convergence rate. A cooperative path planning
method for multi-UAVs based on the improved sheep optimization is proposed to tackle these. Firstly，based on the
three-dimensional planning space，a multi-UAV cooperative cost function model is established according to the path
planning requirements，and an initial track set is constructed by combining multiple-population ideas. Then an improved
sheep optimization is proposed and used to solve the path planning problem and obtain multiple cooperative paths. The
simulation results show that the sheep optimization can meet the requirements of path planning and realize the
cooperative path planning of multi-UAVs. Compared with grey wolf optimizer（GWO），improved gray wolf optimizer
（IGWO），chaotic gray wolf optimizer（CGWO），differential evolution（DE）algorithm，and particle swam optimization
（PSO），the convergence speed and search accuracy of the improved sheep optimization are significantly improved.
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0 Introduction

With the development and maturity of the
UAV technology and the continuous improvement
of intelligence，UAVs will become the leader of the
future sky and the main equipment of the armed forc‑
es of countries around the world.［1］ In the modern
warfare of informationization，networking and sys‑
tematization confront high-speed development，rely‑
ing on a single UAV to perform intelligence recon‑
naissance，battlefield strike and other tasks is far
from current mission requirements［2］. Using multi-
UAVs to perform combat tasks against multiple tar‑
gets has become an inevitable trend［3］.

Cooperative path planning is the key for multi‑
ple UAVs to achieve cooperative operations. It has

the characteristics of high dimensionality，multi-con‑
straints and spatio-temporal coordination，which is
quite challenging. To solve this problem，research‑
ers have proposed a variety of methods，including
path planning algorithms，obstacle avoidance tech‑
niques and path adjustment strategies. Current meth‑
ods for path planning can roughly be divided into
five categories. First，on the basis of graph theory，
there are the voronoi diagram method［4］ and the sign‑
post diagram method［5］. They hold a fast construc‑
tion speed and a high route safety，but are difficult
to be applied to multi-UAVs collaboration in three-
dimensional space. Second，the method based on
potential fields，like artificial potential field method
（APF）［6］，is simple in principle and fast in calcula‑
tion，which is suitable for path re-planning with high
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real-time requirement. However，it is easy to fall in‑
to a state of stagnation under certain circumstances，
leading to the failure of planning. Third，based on
random sampling， the fast random tree method
（RRT）［7］ is typical. In the complex environment
with known or dynamic unknown，a single track can
be quickly searched out，but the cost of this method
is relatively high，and the planned path is not always
the optimal one. Fourth，search algorithms based on
heuristic information，such as the A* algorithm［8］

and the sparse A* algorithm［9］，are simple and effi‑
cient，but they are easy to fall into the infinite cycle
and their planned paths have many folding points.
Moreover，when the environment is complex and
the problem solving scale is large，the efficiency is
relatively low and the parallelization ability is poor.
Fifth， swarm intelligence optimization algorithms
can be used for collaborative route planning of multi-
UAVs due to its simple principle， fast planning
speed，freedom from spatial dimension and poten‑
tial parallelism. Ref.［10］designed a spatial optimi‑
zation voting mechanism to solve the problem that
particle swarm optimization（PSO）is prone to local
optimization. Meanwhile， time coordination and
space obstacle avoidance technologies were pro‑
posed for the spatial-temporal coordination of multi-
UAVs，and the four-dimensional collaborative path
planning of multi-UAVs was realized. Ref.［11］
aimed at the problem of path planning for UAVs in
three-dimensional space， and proposed the gray
wolf optimization algorithm to solve the problem. A
flight path that could avoid obstacles was obtained.
Swarm intelligence algorithm has obvious advantag‑
es in dealing with challenging problems with high di‑
mensions and multiple constraints.

Compared with traditional optimization algo‑
rithms， the swarm intelligence algorithm has be‑
come a widely used optimization method in practical
engineering due to its good performance. However，
no free lunch（NFL） theorem［12］ logically proves
that there is no suitable swarm intelligence algo‑
rithm for solving all optimization problems. A partic‑
ular swarm intelligence algorithm may perform well
on one kind，while poorly on another. In terms of
path planning，most algorithms have a slow conver‑

gence speed and insufficient computational accura‑
cy. NFL makes the study of swarm intelligence
highly active，which imples a large number of schol‑
ars to improve current algorithms and propose new
swarm intelligence algorithms. Among them，sheep
optimization（SO）is a novel one to simulate the for‑
aging behavior of sheep proposed by QU and XU et
al. in 2018［13］. In this algorithm，three strategies of
global search，local development and jumping out of
local optimality are designed by simulating the three
behaviors of bellwether’s lead，sheep interaction
and shepherd supervision. In Ref.［13］，the perfor‑
mance of this algorithm is verified. Compared with
particle swarm optimization algorithms，this algo‑
rithm can obtain higher quality solutions with a fast‑
er convergence rate and better stability. However，
the algorithm has not been applied to any practical
engineering scenario.

When the algorithm solves the problem，the
core operator needs to calculate the fitness function
value of the population for many times. The move‑
ment mode of the population is too simple；the su‑
pervising mechanism of the shepherd is too com‑
plex；and the parameter selection in the actual proj‑
ect is difficult. So the algorithm is too complicated
and not easy to be implemented in the project.
Therefore，based on simpleness in implementation
and less parameters of the swarm intelligence algo‑
rithms，an improved sheep algorithm was proposed
and applied to multi-UAVs cooperative path plan‑
ning in order to solve the defects of slow conver‑
gence speed and low computational accuracy exist‑
ing in current swarm intelligence algorithms.

In this paper，a multi-UAVs cooperative path
planning method based on an improved sheep optimi‑
zation（ISO） is proposed for path planning when
multi-UAVs are used to carry out coordinated attack
on known targets. First，mathematical modeling is
carried out for the cooperative path planning of multi-
UAVs. Second，the ISO is designed to solve the
path planning problem，and a three-dimensional co‑
operative path satisfying the requirements of the
planning is obtained. Finally，the benchmark func‑
tion test and the simulation experiment are carried
out to verify the effectiveness of this method by com‑
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paring it with differential evolution（DE）algorithm，

PSO，gray wolf optimizer（GWO），improved gray
wolf optimizer（IGWO），and chaotic gray wolf op‑
timizer（CGWO）algorithm.

1 Modeling UAV Cooperative Path

Planning

1. 1 Planning space representation

In path planning，an appropriate planning space
must be established in accordance with the flight en‑
vironment and mission requirements. In the present
work，a mountain background is taken as a task en‑
vironment，and a digital elevation model is estab‑
lished using a random function to simulate peaks
and other threat obstacles. The mountain model
function was proposed in Ref.［14］. This model con‑
sists of the original digital and threat equivalent ter‑
rain models. The former is expressed as
z1 ( x,y )= sin ( y+ a )+ b·sin ( x )+ c·cos ( d·

x2 + y 2 )+ e·cos ( y )+ f·sin ( f·

x2 + y 2 )+ g·cos ( y ) (1)
where x and y refer to the point coordinates on a hor‑
izontal projection plane；z1 refers to the height coor‑
dinate that corresponds to the coordinate points on a
horizontal plane；a，b，c，d，e，f and g are the coeffi‑
cients. The topography of a different landform can
be obtained by changing the parameters.

The threat equivalent terrain model is

z2 ( x,y )= ∑
i= 1

k

h ( i )·exp (- ( )x- x0i
xsi

2

- ( )y- y0i
ysi

2)
(2)

where x and y refer to the point coordinates on a hori‑
zontal projection plane；z2 refers to the height of the
peak；h ( i ) the height of the highest point of peak i on
a base terrain；x0i and y0i refer to the coordinates of the
highest point of peak i；xsi and ysi the variables related
to the slope of peak i along x，y axises. If xsi and ysi
are large，the slope of the peak is flat and abrupt.

The final mountain threat model is obtained by
integrating the original digital terrain model into the
threat equivalent terrain model

z ( x,y )= max ( z1 ( x,y ),z2 ( x,y ) ) (3)

The topography of different landforms can be
obtained by changing parameters in the function. In
the planning space，the flying path of UAVs can be
represented by many waypoints. Consequently，the
waypoints are connected to form multiple flight
paths，which are linked with the starting and target
points to form a flying path. We set the starting
point of a certain UAV as S ( x 0，y0，z0 ) and the tar‑
get point as E ( xe，ye，ze ). The number of waypoints
is n，and the waypoints searched can be represented
by { S，P 1，P 2，…，Pn，E }，where the coordinate of a
track node is Pp=( xp，yp，zp ).

1. 2 Path cost function

The purpose of multi-UAV cooperative path
planning is that，on the premise of satisfying the re‑
quirements of a safe flight and space ‑ time coopera‑
tion， every UAV can search the corresponding
path，and the synthetic path cost of the UAV fleet
must be the least. Therefore，path planning requires
the establishment of a path cost function as an index
to evaluate the quality of a path. The satisfaction of
the spatial and temporal cooperative constraints of
multi-UAVs by considering the dynamics， and
threat constraints of a single UAV in multi-UAV co‑
operative path planning is required. Thus，given the
planning objective，the following cost indexes are
considered in the present work：The performance in‑
dexes of a single UAV include fuel consumption，
maximum climb/slide angle，flying altitude，peak
threat，and multi-UAV time cooperation. Spatial co‑
operation is manifested in multi-UAV path collision
avoidance. We set different flight altitudes that must
be avoided by each UAV. The synthetic cost func‑
tion is established as

J= w 1 k1 J fuel + w 2 k2 J angle + w 3 k3 Jheight +
w 4 k4 J threat + w 5 k5 J coop (4)

where w 1，w 2，w 3，w 4 and w 5 refer to the weights of
different cost indexes，and the sum of weights is 1.
The paths that satisfy different requirements can be ob‑
tained by adjusting the weights. To ensure that all cost
indexes are involved in path planning，the functions
are normalized in accordance with the range of their
values，and then weighted summation is performed.

Fuel consumption cost is related to the length
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of flight path and flying speed. Assuming that
UAVs consistently fly at a certain speed，fuel costs
can be replaced by the length of the path

J fuel = ∑
i= 1

n- 1

( xi+ 1- xi )2 +( yi+ 1- yi )2 +( zi+ 1- zi )2

(5)
where ( xi+ 1，yi+ 1，zi+ 1 ) and ( xi，yi，zi ) correspond to
the coordinates of the adjacent path points.

Jangle refers to the cost of the maximum climb/
slide angle and is expressed as

Jangle = ∑
i= 1

n

θi

θi= arctan ( )|| zi+ 1- zi

( xi+ 1- xi )2 +( yi+ 1- yi )2

(6)

where θi refers to the climb/slide angle of the adja‑
cent points of a certain path.

To satisfy the requirements of flight safety and
concealment， the flight altitude cannot be overly
low or high. Height cost can be expressed as

Jheight = ∑
i= 1

n

|| hi- safth i (7)

where hi refers to the height of path point i on a cer‑
tain path，and safth i the minimum safety height for
each UAV.

Collision with the mountain in the flying course
of the UAV must be avoided. In Ref.［15］，the peak
model is represented by a cone approximate repre‑
sentation. The path is divided into m equal sections，
and m−1 sampling points are obtained in the center.
The threat cost of the whole path is expressed as

J threat = ∑
i= 1

n

∑
j= 1

m

∑
k= 1

K

threat ( j,k ) (8)

where n refers to the number of path points，K the
number of peaks，and threat ( j，k ) the threat cost of
the sampling point ( xi，yi，zi ) in the current section
and a certain peak and is expressed as
threat ( j,k )=

{0 hj>H ( k ) or dT>RT+ dTmin
RT ( h )+ dTmin- dT hj<H ( k ) and dT<RT+ dTmin

(9)
RT ( h )= (H ( k )- h ) / tanθ (10)

where n refers to the number of path points；K the
number of peaks；H ( k ) the height of peak k；RT the
maximum extension radius；hj the flying altitude of

the current UAV；dT the distance from the UAV to
the symmetrical axis of the peak；dTmin the minimum
distance allowed on the terrain；and θ the slope of
the terrain. The terrain threat is depicted in Fig.1.

Cooperative cost function implies time coopera‑
tion. All UAVs are required to reach the target point
simultaneously as far as possible. If the course of a
certain path cannot satisfy the time cooperative con‑
straints，the path must be corrected. Assuming that
the flying speed of the UAV is in the range of
[ vmin，vmax ] and the course of the UAV i is Li，its flight
time period is Ti∈ [T i

min，T i
max]. Similarly，assuming

that the flying time of UAV j is in the range of
Tj∈ [T j

min，T j
max]，if the flight time of the two UAVs

intersects，temporal cooperation is feasible，that is
T inter = Ti ∩ Tj≠∅ (11)

which is in accordance with the temporal cooperation
evaluation formula between paths in Ref.［16］. Then，
the temporal cooperation cost function is obtained on
the basis of the planning model in the present work.

JcopT=

ì

í

î

ï
ï
ï
ï

1 T inter = ∅
0 0< T inter < rand·Tmin

3T inter

Tmin
T inter >

1
3 ·Tmin

(12)

where Tmin refers to a time period with a small range
of a certain path in the flight time period，and T inter

the intersection of the flight time for two paths.

2 Cooperative Path Planning Mod⁃

el Based on ISO Algorithm

2. 1 Introduction of the sheep optimization algo⁃

rithm

SO realizes fast global exploration by simulat‑

Fig.1 Terrain threat map
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ing the behaviour that the bellwether leads the
sheep，which makes the sheep approach the known
global optimal solution quickly. The mutual move‑
ment of sheep can achieve local development，and
further speed up the convergence. The shepherd su‑
pervision mechanism is used to judge whether it is
falling into the local optimization and quickly jump
out of the local optimal solution.
2. 1. 1 Bellwether’s lead

The bellwether refers to the sheep with the op‑
timal fitness function value in the flock，and the bell‑
wether’s lead refers to the behavior of each sheep
moving towards the bellwether. The corresponding
global exploration mechanism of the algorithm is to
ensure the performance of the search. The position
of the new sheep is updated only when the fitness
function value of the new sheep is better than the
old sheep. Fig. 2 is the flow chart of the algorithm
for the bellwether’s lead. The position of the corre‑
sponding sheep is updated when the sheep move to
the bellwether

xnewi = xoldi + rand ( 0,1 )×( x bellwether - xoldi ) (13)
where xnewi represents the updated position of sheep
i，xoldi the position which has not been updated of
sheep i，and xbellwether the bellwether.

2. 1. 2 Sheep interaction

The sheep interaction behavior corresponds to
the local development mechanism of the algorithm.

Each sheep xi in the flock will randomly select an‑
other sheep xj for the sheep interaction strategy. If
the fitness value of the selected sheep xi is better
than that of the random sheep xj，xi is updated to
the position away from xj，while xj approaching to
the position xi，and vice versa. Similarly，to ensure
the performance of the search，the position of the
new sheep is updated only when the fitness function
value of the new sheep is better than that of the old
sheep. Fig.3 is the flow chart of the sheep interac‑
tion algorithm.

xnewi = xoldi + rand ( 0,1 )×( x oldi - xoldj ) (14)
xnewj = xoldj + rand ( 0,1 )×( x oldi - xoldj ) (15)

where Eq.（14）means xi is updated to the position
away from xj，and Eq.（15）means xj is updated to
the position near xi.

2. 1. 3 Shepherd supervision

When the fitness function difference between
the current generation and the previous generation

Fig.3 Flow chart of the sheep interaction algorithmFig.2 Flow chart of bellwether’s lead algorithm
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is less than a threshold ε，the shepherd supervision
mechanism is introduced to jump out of the local
optimization. Each sheep will be herded by the
shepherd with a certain probability p，that is，the
sheep will be re-initialized with a probability p.
Fig. 4 is the flow chart of the shepherd supervision
algorithm.

The steps of the cooperative path planning for
multi-UAVs based on sheep optimization are shown
as follows.

Steps of the SO algorithm
（1）algorithm initialization
（2）while algorithm termination conditions are not
met do
（3）bellwether’s lead & sheep interaction & shep‑
herd supervision
（4）end while
（5）output result

2. 2 Improved sheep algorithm

The original sheep algorithm needs to calculate
the value of the fitness function of the population for
many times. The movement mode of the population
is too simple. The shepherd supervision is too com‑
plex. The parameter selection in the actual project is
difficult，and it is not easy to realize the project.
Aiming at these problems，this paper proposes an
improved sheep algorithm.

In the sheep algorithm，the fitness function val‑
ue of the population needs to be calculated for many
times. In engineering practice，the complexity of the
fitness function may increase the computation time，
and the operation may make the algorithm converge
too quickly and fall into a local optimization. There‑
fore， the proposed improved sheep algorithm re‑
moves the operation of updating the position when
the fitness function is better，thereby reducing the al‑
gorithm complexity.

In order to solve the problem of simple popula‑
tion movement mode，this paper improves the popu‑
lation position update mode of the bellwether’s lead
and sheep interaction. The mathematical model of
the position update of the bellwether’s lead is
shown as

D= | C·P ( t )- X ( t ) | （16）
X ( t+ 1 )= P ( t )- A·D （17）

where t indicates the current iteration；A and C are
coefficient vectors. P is the position vector of the
bellwether and X the position vector of a sheep.

The vectors A and C are calculated as follows
A= 2a·r1 - a （18）
C= 2·r2 （19）

where components of a are linearly decreased from
2 to 0 over the course of iterations and r1，r2 are ran‑
dom vectors in［0，1］.

Fig.4 Flow chart of the shepherd supervision algorithm
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In the sheep interaction mechanism，when the
fitness value of the randomly selected sheep is bet‑
ter，the updated model of the current sheep moving
to the random sheep is as follows

X ( t+ 1 )= D ′·ebl· cos ( 2πl )+ R ( t ) （20）
where D ′= | R ( t )- X ( t ) | is the distance between
the i sheep and the random sheep；l a random value
in［-1，1］；b a constant for defining the logarith‑
mic spiral shapes；R the position vector of the ran‑
dom sheep. Conversely，the mathematical model of
the random sheep moving towards the current sheep
is shown as

R ( t+ 1 )= D ′·ebl· cos ( 2πl )+ X ( t ) (21)
Due to the complexity of shepherd supervision

mechanism， different thresholds and probabilities
have a great impact on the performance of the algo‑
rithm，so it is difficult to select appropriate parame‑
ters in practical projects. In this paper，the shep‑
herd supervision is simplified and replaced by the
lévy flight strategy. The mathematical model is
shown as

X ( t+ 1 )= X ( t )+ X ( t )⊕Levy (22)
where ⊕ represents term-by-term multiplication.
Eq.（22） is essentially a random walk equation
which can prevent the sheep algorithm from falling
into the local optimal solution and ensure the algo‑
rithm to be developed effectively in the search
space，and the distribution equation is shown as

Levy∼ u= t-λ 1< λ≤ 3 (23)
The lévy flight is a special random walk in

which the step lengths have a probability distribu‑
tion that is heavy-tailed. Mantegna’s algorithm is
used to mimic a λ-stable distribution by generating
random step length s that have the same behavior
with the lévy flights

s= μ

|| υ 1/β (24)

where s is the step length of the lévy flight that is
Levy and λ in Eq.（23）. λ obeys the equation that λ=
1+ β，where β=1.5.μ=N ( 0，δ2μ ) and υ=N ( 0，δ2υ )
are both normal stochastic distributions with

δμ=
é

ë
êê

ù

û
úú

Γ ( 1+ β )× sin ( π× β/2 )
β× Γ ( ( 1+ β ) /2 )× 2( β- 1)/2

1
β

δυ= 1 (25)

The general steps of the improved sheep opti‑
mization（ISO） can be summarized in the pseudo
code.

Steps of the ISO algorithm
（1）algorithm initialization
（2）calculate the fitness of each search agent
（3）calculate the best search agent
（4）while（t< max_iteration）
（5）for each search agent
（6）update parameter
（7）update the position by eqs.（16—17）
（8）end for
（9）for each search agent
（10）update parameter
（11）selected another sheep at random
（12）if fitness（random）<fitness（i）
（13）update the position by eq.（20）
（14）else
（15）update the position by eq.（21）
（16）end if
（17）end for
（18）for each search agent
（19）update the position by eq.（22）
（20）end for
（21）calculate the fitness of each search agent
（22）update the best sheep if there is a better solu‑
tion
（23）t= t+ 1
（24）end while
（25）output result

2. 3 Flow of the multi⁃UAV cooperative path

planning

Due to the potential parallel ability of the
swarm algorithm，this paper constructs the coopera‑
tive path set of UAVs based on the ISO algorithm
and the multi-population idea. The path of each
UAV is represented by multiple subpopulations.
The number of subpopulations is determined by the
number of UAVs，and each subpopulation evolves
independently. Information exchange is conducted
only during path evaluation. As shown in Fig.5，dur‑
ing the evaluation of individuals in subpopulation 1，
representative individuals selected from other sub‑
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populations are combined with individuals in the cur‑
rent population to form a cooperative path，and the
path cost function is used for evaluation as the fit‑
ness value of the individual，and then the fitness val‑
ue of individuals in other subpopulations is calculat‑
ed in turn. Individuals with small synergetic function
value in the evolution process indicate that the path
has good synergetic properties. Individuals in each
subpopulation conduct information interaction and
path evaluation with other subpopulations through
the synergetic functions，and finally obtain multiple
cooperative paths.

In path planning，the fitness value of each path
includes not only the information of its own path
cost，but also the information of cooperative interac‑
tion with other UAVs. In other words，each UAV
will refer to the path information of other UAVs
when planning its path. By choosing the path with
less comprehensive cost，the path with better coor‑
dination can be obtained on the basis of satisfying
the single-UAV flight cost index. The planned path
can avoid collision and satisfy time constraints be‑
tween multiple UAVs. The specific process is
shown in Fig.6.

3 Simulation Validation

3. 1 Performance analysis and discussion

To verify the performance of the algorithm，

we tested the performance of the improved sheep al‑
gorithm based on four classical benchmark func‑
tions［17］. The reference function is shown in Table
1，where“Dim”represents the dimension of the
function，“Range”represents the boundary of the
function search space，and fmin represents the mini‑
mum value of the function. Unimodal test function
（f1—f2） with unique global optimal solution can
test the global search ability and convergence of the

Fig.6 Cooperative path planning based on the ISO algo‑
rithm

Table 1 Benchmark functions

Function

f1 (x) = ∑
i= 1

n

x2i

f2 (x) = ∑
i= 1

n

|| xi + ∏
i= 1

n

|| xi

f3 (x) = ∑
i= 1

n

[ x2i - 10cos( 2πxi )+ 10 ]

f4 (x) =
1

4 000 ∑i= 1
n

x2i -∏
i= 1

n

cos ( )xi
i
+1

Dim

30

30

30

30

Range

[-100,100]

[-10,10]

[-5.12,5.12]

[-600,600]

f min

0

0

0

0

Fig.5 The process of multi-population coevolution
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algorithm，while multimodal test function（f3—f4）
with a variety of different local optimal solutions
can test the ability of jumping out the local optimiza‑
tion.

In order to further test the performance of the
algorithm and avoid contingency， the improved
sheep algorithm was compared with the original
SO， particle swarm optimization algorithm［18］

（PSO） and gray wolf optimizer［19］（GWO）which
have been widely used in recent years. Each algo‑
rithm was run 30 times on each benchmark func‑
tion，and the number of each experimental popula‑
tion were set to 30 and the maximum number of iter‑
ations to 500. In order to make a fair comparison，
all commonly used parameters of different algo‑
rithms，such as population size，dimension and max‑
imum number of iterations，were set to the same.
Related parameters of these algorithms are shown in
Table 2. Test results（maximum，minimum，mean
and standard deviation）are shown in Table 3，and
the convergence curve is shown in Fig.7.

The test results of the improved sheep algo‑
rithm on the benchmark function are obviously bet‑
ter than those of other algorithms，which reflects
the advantages of the improved sheep algorithm in
global search and local development. The improved

Table 3 Results of benchmark function test

F

f1

f2

f3

f4

Result

Worst
Best
Mean
Std
Worst
Best
Mean
Std
Worst
Best
Mean
Std
Worst
Best
Mean
Std

Algorithms
ISO

3.4E-99
2.6E-120
1.1E-100
6.2E-100
2.92E-66
2.39E-77
1.11E-67
5.32E-67

0
0
0
0
0
0
0
0

SO
52.507 77
12.199 98
29.331 59
10.784
6.324 963
2.492 533
3.961 088
1.002 197
193.423 7
99.975 1
146.539
26.324 67
1.294 569
1.096 585
1.160 078
0.050 48

GWO
1.19E-26
1.2E-29
1.29E-27
2.27E-27
3.76E-16
1.71E-17
9.81E-17
8.85E-17
17.380 05
5.68E-14
2.588 45
4.019 825
0.019 912

0
0.002 706
0.005 68

PSO
0.001 535
6.06E-06
0.000 191
0.000 361
0.188 411
0.003 865
0.049 14
0.041 166
79.766 66
26.221 24
51.363 83
14.218 46
0.022 219
1.62E-06
0.005 761
0.007 798

Rank

1

1

1

1

Fig.7 Convergence curves

Table 2 Parameter values of each algorithm

Algorithm
ISO
SO
GWO

PSO

Parameter
a= 2

p= 0.2,ε= 1
a= 2

c1 = c2 = 2
wmax = 0.9,wmin = 0.2
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sheep algorithm has great potential in solving optimi‑
zation problems.

3. 2 Simulation environment setting and simula⁃

tion analysis

The planning space was set as 100 km ×
100 km × 500 m， including six peaks. The pa‑
rameters of the original digital terrain model were
set to a= 0.1， b= 0.01， c= 1， d= 0.1，
e= 0.2，f = 0.4 and g= 0.02. The height of the
peak，horizontal coordinates of the highest point，
and slope parameters are listed in Table 4. Multi-
UAVs cooperative path planning was conducted
under a known mission assignment scheme. In the
simulation experiment，the path sub-population is
initialized in accordance with the number of
UAVs. The numbers of individuals in the sub-pop‑
ulation，iterations，and path points were 50，100
and 10， respectively. The weight coefficients of
all cost functions corresponded to 0.4，0.2，0.1，
0.2 and 0.1. The flight speed range of the UAV
was 40—60 m/s.

Case 1 Three UAVs started from the starting
point and arrived at the designated target point to
perform tasks. The coordinates of the starting and
target points are presented in Table 5.

The three-dimensional path planning and con‑
tour map of each UAV are displayed in Figs.8（a）

and（b）. The convergence curves of the path cost
and synthetic path cost of each UAV are plotted in
Figs. 9（a）and（b）. Fig. 8 illustrates that all UAVs
can effectively avoid the threat and reach the target

Table 5 Coordinates of the starting and target points of

all UAVs (Case 1)

Number
1
2
3

Starting point
(1,1,0)
(1,30,0)
(1,60,0)

Target point
(100,30,70)
(100,40,70)
(100,50,70)

Table 4 Model parameters of peaks

Number

1
2
3
4
5
6

Altitude/
m
130
150
300
100
150
150

Center location
（x,y）/km
(56,82)
(75,20)
(50,45)
(22,20)
(20,70)
(77,73)

Slope

(10,10)
(10,10)
(12,12)
(8,8)
(8,8)
(10,10)

Fig.8 Three-dimensional multi-UAV cooperative path
planning and contour map (Case 1)

Fig.9 Path cost convergence curve based on ISO (Case 1)
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point. The cost function values of each UAV gradu‑
ally converge with the increase of the iteration time，
thereby verifying the effectiveness of the algorithm.
Through the simulation， the flight time intervals
（unit：s） and range（unit：km） of each UAV are
presented in Table 6. The time intersection is
［1 828.945 4，2 562.788 5］. The time synergy re‑
quirement can be satisfied by setting different flight
speeds for all UAVs.

Case 2 Four UAVs flied to two target points.
The coordinates of the starting and the target points
are listed in Table 7.

The planned path diagrams of UAVs were ob‑
tained，as depicted in Fig.10. The path cost conver‑
gence and synthetic cost curves of each UAV are
plotted in Fig.11. Through the simulation，the flight
time intervals（unit：s） and range（unit：km） of
each UAV are presented in Table 8. The time inter‑
section was ［1 936.210 2， 2 443.968 2］. The
planned paths and voyages were close and could ef‑
fectively avoid obstacles. If the UAV is close to one
another，then collisions can be avoided by setting
different flight altitudes.

Case 3 Six UAVs flied to six target points.
The coordinates of the starting and the target points
are listed in Table 9.

The planned path diagrams of UAVs were ob‑
tained，as depicted in Fig.12. The path cost conver‑

Table 6 Range and flight time of each aircraft (Case 1)

Number
1
2
3

Range/km
109.736 7
102.511 5
101.285 4

Flight time/s
[1 828.945 4,2 743.418 1]
[1 708.525 6,2 562.788 5]
[1 688.089 2,2 562.133 8]

Table 7 Coordinates of the starting and target points of

all UAVs (Case 2)

Number
1
2
3
4

Starting point
(1,1,0)
(1,30,0)
(1,55,0)
(1,90,0)

Target point
(90,40,100)
(95,40,100)
(95,85,100)
(80,85,100)

Table 8 Range and flight time of each aircraft (Case 2)

Number
1
2
3
4

Range/km
116.172 6
101.306 5
108.147 5
97.570 6

Flight time/s
[1 936.210 2,2 904.315 3]
[1 688.441 7,2 532.662 6]
[1 802.458 7,2 703.688 1]
[1 626.176 1,2 439.264 1]

Fig.10 Three-dimensional multi-UAV cooperative path
planning and contour map (Case 2)

Fig.11 Path cost convergence curve based on ISO (Case 2)
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gence and synthetic cost curves of each UAV are
plotted in Fig.13. Through the simulation，the flight
time intervals（unit：s） and range（unit：km） of
each UAV are presented in Table 10. The time in‑
tersection is ［1 779.351 9， 2 475.917 5］. The
planned paths and voyages are close and can effec‑
tively avoid obstacles. If the UAV is close to one an‑
other，then collisions can be avoided by setting dif‑
ferent flight altitudes.

3. 3 Comparative validation

Based on Case 3，the PSO，DE and GWO al‑
gorithms were used for multi-UAVs cooperative
path planning. In addition，the improved sheep algo‑
rithm was compared with the latest two improved
grey wolf algorithms IGWO［20］ and CGWO［21］. The
simulation results were compared with the proposed
algorithm to verify the effectiveness of the improved
strategy. Among these factors，the PSO algorithm
parameters［20］ included the number of particles as
50，learning factor c1 = c2 = 2，and inertia factor
that decreased linearly from 0.96 to 0.2；the DE al‑
gorithm parameters［21］ included the number of chro‑
mosomes as 50，the upper（0.6） and lower（0.2）
bounds of scaling factor，and mutation rate（0.5）
and crossover probability（0.6）. The GWO，IG‑
WO and CGWO algorithms were consistent with
the ISO algorithm，and the numbers of individuals
in the sub-population， iterations and path points
were 50，150 and 10，respectively. The algorithms
were performed 30 times each. The average conver‑
gence curve after 100 iterations of each algorithm
and the distribution of the minimum cost results af‑
ter each iteration are obtained， as exhibited in
Figs.14，15.

Table 9 Coordinates of the starting and target points of

all UAVs (Case 3)

Number
1
2
3
4
5
6

Starting point
(1,1,0)
(1,20,0)
(1,40,0)
(1,60,0)
(1,75,0)
(1,90,0)

Target point
(99,10,70)
(99,18,70)
(99,30,70)
(99,40,70)
(99,70,70)
(99,90,70)

Table 10 Range and flight time of each aircraft (Case 3)

Number
1
2
3
4
5
6

Range/km
99.036 7
104.315 7
102.201 8
104.176 3
106.761 1
99.752

Flight time/s
[1 650.611 7,2 475.917 5]
[1 738.594 9,2 607.892 4]
[1 703.363 5,2 555.045 2]
[1 736.271 5,2 604.407 3]
[1 779.351 9,2 669.027 9]
[1 662.532 6,2 493.798 9]

Fig.13 Path cost convergence curve based on ISO (Case 3)

Fig.12 Three-dimensional multi-UAV cooperative path
planning and contour map (Case 3)
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Compared with PSO，DE，GWO，CGWO
and IGWO algorithm， the final stable value of
ISO was obviously better than the other algo‑
rithms，and the convergence speed was faster. The
results showed that the improved sheep optimiza‑
tion was better than other algorithms in conver‑
gence speed and convergence accuracy and could
effectively fullfill multi-UAVs cooperative path
planning.

4 Conclusions

In this paper，a mathematical model of multi-
UAVs cooperative path planning is established on
the basis of three-dimensional planning space. It
is easy to fall into the problem of local optimiza‑
tion and slow convergence rate if the traditional
swarm intelligence algorithm is used to solve the
multi-UAVs cooperative path planning problem.
To address this，a new method which solves the
three-dimensional cooperative path planning prob‑
lem of multi-UAVs by using improved sheep opti‑
mization is proposed. The simulation results
show that this method can obtain the cooperative
path while satisfying the constraint conditions.

Compared with the other algorithms， the im‑
proved sheep optimization algorithm is effective
in solving the cooperative path planning，and the
search accuracy and convergence speed are signifi‑
cantly improved.

However，only the path planning problem with
known environmental information is considered in
this paper. In the future research，we will model the
dynamic path planning problem according to the pos‑
sible emergency situations during the flight of
UAVs and extend the application scenarios of the
sheep optimization to dynamic cooperative path plan‑
ning for multi-UAVs.
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基于羊群算法的多机协同航路规划

杨柳庆 1，2，王鹏飞 3，张 勇 1，2

（1.南京航空航天大学无人机研究院，南京 210016；
2.南京航空航天大学中小型无人机先进技术工业和信息化部重点实验室，南京 210016；

3.南京航空航天大学自动化学院，南京 211106）

摘要：针对传统群智能算法解决多机协同航路规划问题易陷入局部最优和收敛速度慢的问题，提出了一种基于

羊群算法的多机航路规划方法。首先在三维规划空间基础上，根据航路规划要求建立多机协同代价函数模型，

并结合多种群思想构造初始航迹集合。然后利用羊群算法对航路规划问题进行求解得到多条协同航路。仿真

结果表明，该算法能够满足航路规划相关约束，实现多无人机协同航路规划，相比较灰狼算法（Gray wolf optimiz‑
er，GWO）、差分进化算法（Differential evolution algorithm，DE）、粒子群算法（Particle swam optimization，PSO）、

混沌灰狼算法（Chaotic gray wolf optimizer，CGWO）和改进灰狼算法（Improved gray wolf optimizer，IGWO），改

进羊群算法收敛速度和搜索精度均有明显提高。

关键词：多机协同；航路规划；群智能算法；多种群；改进羊群算法

830


