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Abstract: Nonlinear dynamic analysis was performed on a planetary gear transmission system with meshing beyond
the pitch point. The parameters of the planetary gear system were optimized, and a two-dimensional nonlinear
dynamic model was established using the lumped-mass method. Time-varying meshing stiffness was calculated by the
energy method. The model consumes the backlash, bearing clearance, time-varying meshing stiffness, time-varying
bearing stiffness, and time-varying friction coefficient. The time-varying bearing stiffness was calculated according to
the Hertz contact theory. The load distribution among the gears was computed, and the time-varying friction
coefficient was calculated according to elastohydrodynamic lubrication (EHL) theory. The dynamical equations were
solved via numerical integration. The global bifurcation characteristics caused by the input speed, backlash, bearing
clearance, and damping were analyzed. The system was in a chaotic state at natural frequencies or frequency
multiplication. The system transitioned from a single-period state to a chaotic state with the increase of the backlash.
The bearing clearance of the sun gear had little influence on the bifurcation characteristics. The amplitude was
restrained in the chaotic state as the damping ratio increased.
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0 Introduction

As a standard meshing gear transmission sys-
tem, the gear transmission meshes in the actual

mesh zone AC and EC, as shown in Fig.1. In

Fig.1, C 1s the gear mesh point, F, the tooth sur-
face friction force, and arrow the direction of the (a) Driving gear (b) Driven gear

Fig.1 Tooth surface friction of a standard meshing gear

friction force. In the standard meshing gear transmis- .
{ransmission Sysrem

sion system, [F, will change the direction at the

point C that may cause vibration of the system. in one side of the C point, as shown in Figs.2 and 3.
As a non-standard meshing gear transmission In Fig.2, AC is the actual mesh zone. In Fig.3, CE
system, the gear transmission system only meshes is the actual mesh zone.
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N

C

(a) Driving gear (b) Driven gear
Fig.2 Tooth surface friction of a gear transmission

system meshed upside of the pitch point

(a) Driving gear (b) Driven gear

Fig.3 Tooth surface friction of a gear transmission

system meshed underside of the pitch point

The non-standard meshing gear transmission
system with meshing beyond the pitch point can
avoid the change of the tooth surface friction force
direction.

As a non-standard meshing gear transmission
system, the gear transmission system with meshing
beyond the pitch point can avoid the change of the
tooth surface friction force and has been investigated
by scholars in recent years. In 1997, Gao and
Zhou'"" defined the coefficient of the pitch point and
proved the feasibility of the theory after optimizing
the design of the parameters by using the modifica-
tion coefficient as the design variable. In 2012,
Liu'®" adopted an equal modulus and equal pressure
angle to achieve meshing transmission beyond the
pitch point by changing the gear-modification coeffi-
cient and the coefficient of tooth depth. And the re-
sulting strength and system dynamic response were
determined. In 2013, Sun established the dynamic
model of the planetary gear transmission system
with meshing beyond the pitch point (PGTSMPP)
by using non-adopted equal modulus and non-equal
pressure three-degree of freedom (DOF) gears and
planetary gears. Considering the influence of nonlin-
ear factors such as the time-varying friction, time-
varying stiffness, and angle, the system dynamic re-

sponse and load-sharing coefficient were determined

by using the numerical integration method while ig-
noring the translational vibration of the planets, car-
rier, and ring gear. In 2016, Bao et al.'*’ analyzed
the inherent characteristics and dynamic characteris-
tics of the system under the influence of a flexible
ring on the PGTSMPP.

In the process of planetary gear transmission,
which is inevitably affected by nonlinear factors such
as the backlash, bearing clearance, and single and
double teeth alternately meshing, the system may
be in a multi-period or even a chaotic state, aggra-
vating the vibration and noise and affecting the sta-
bility of the system. Domestic and foreign scholars
have performed substantial research on the nonlinear

dynamics of gears. The scholars'””

studied the non-
linear dynamics and backlash of single-DOF gears
and developed a dynamic model by using the
lumped-mass method and finite-element method.
The nonlinear dynamic characteristics were solved
by using the harmonic balance method, inverse Fou-
rier transform method, and Newton-Rapson meth-
od.

Taking the spur gear as the research object and
considering the influence of the tooth surface fric-
tion, backlash, and time-varying meshing stiffness
on the dynamic characteristics of the system, Wang

et al."!"

established a pure torsional two-DOF dy-
namic model in 2002. The time-domain graph, fre-
quency-domain graph, phase diagram, Poincaré sec-
tion, bifurcation diagram, and maximum Lyapunov
exponent for the system were obtained, and the ef-
fects of the friction on the system periodic response,
chaotic response, and bifurcation were analyzed
comprehensively. In 2008, considering the relative
sliding velocity and the effect of the single and dou-

ble teeth alternately meshing, Tang et al."'"

adopt-
ed a period-expansion method to establish a nonlin-
ear dynamic model in consideration of the friction of
the tooth surface and the time-varying stiffness. In
2015, taking a single-stage planetary gear system
with a non-equal modulus and non-equal pressure
angle as the research object, Ye et al.'"”’ investigat-
ed the effects of the clearance, modulus, and pres-
sure angle on the load-sharing coefficient in consider-

ation of the backlash, comprehensive transmission
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error, and pressure angle. In the same year, consid-
ering the effects of the time-varying stiffness, tooth
surface friction, backlash, and bearing clearance on

1.1%) solved the non-

a spur-gear system, Sheng et a
linear dynamic equations by using the four-order
Runge-Kutta method.

The effects of the friction coefficient, damping
ratio, and clearance on the bifurcation characteris-
tics were examined by using the Poincaré section. In
2015, taking a higher-contract ratio planetary gear
system as the research object, Li'"*' established a dy-
namic model by using the energy method in consid-
eration of the effects of the tooth surface friction,
backlash, bearing clearance, time-varying meshing
stiffness, and comprehensive transmission error on
the nonlinear characteristics of the system. The ef-
fects of the main parameters affecting the contact ra-
tio on the dynamic load-sharing coefficient of the
high-contact ratio planetary gear transmission Sys-
tem were analyzed, and the theoretical analysis was

validated by experiments. Mo et al.'”""

investigated
the load sharing characteristics of herringbone plane-
tary gear train and multi-power face gear split flow
system. Jin et al.'"’ studied the effect of friction on
dynamic response of a power split transmission sys-

tem. Bao et al.[**

analyzed the dynamic of external
gear system with meshing beyond pitch considering
time-varing friction coefficient.

Thus, the dynamic response, inherent charac-
teristics and load-sharing characteristics of the gear
transmission system with meshing beyond the pitch
point have been studied. However, domestic and
foreign scholars mainly studied the nonlinear dynam-
ics of the standard gear transmission system; nonlin-

ear research on PGTSMPP has rarely been reported

and 1s therefore the focus in this paper.

1 Parameters of System

According to Refs. [3-4] , the parameters of
PGTSMPP are optimized. The results are shown in
Table 1.

1.1 Calculation of phase angle

Ay 1s the meshing phase coefficient between the

Table 1 Coefficients of PGTSMPP

Parameter Sun Planet Ring
Tooth number 27 25 81
Modulus/mm 2.63 2.63 2.57

Pressure angle/ (°) 25 25 22.3
Modification coefficient 0.623 0.775 1
Tooth width/mm 60 60 60
Accuracy 6 6 6

ith sun-planet meshing pair and the first sun-planet

meshing pair, A, the meshing phase coefficient be-

i
tween the ith ring-planet meshing pair and the first
ring-planet meshing pair, and A, the phase differ-
ence between the sun and the ring. The correspond-
ing formulas can be written as

Agi = dec(z.9,/27)

A = dec( z,¢,/2m) (1)

Ao =dec(F3Byu/pw)
where 2, and z, are the numbers of teeth for the sun
and ring gears, respectively; ¢, is the position angle
of the planet, p,, the base pitch of the planet, F; the
point of the opposite tooth surface of the planet base
circle relative to the meshing starting point of the
sun, B,, the meshing starting point of the ring gear,

and dec the decimal part.
1.2 Calculation of friction arm

A schematic of the friction arm of the planet is
shown in Fig.4.

In the model established in this paper, the ex-
ternal meshing involves the standard gear meshing

pairs, and the inner meshing involves the meshing

Base circle

—— — —Pitch circle

Fig.4 Friction arm of PGTSMPP
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pairs after the pitch point. The actual meshing line

B, 1B, . 1s located on the side of the pitch point,

hspirl - ‘NsplrlBS])lLZ + W e s mOd ( Zsph T )
spl,lBsp[,Z + W e s mOd ( [spn T )+ pb

hgi»=N
Nyt = Ngi 1 N2 — hgi
hysio=Ngi 1 Ngi2— hy»
where A, and A, , are the friction arms of the sun
in the sun-planet meshing pairs, and A, , and A, ,
the friction arms of the planet in the sun-planet

meshing pairs; e, is the contact ratio of the sun-plan-

h[m',l - ]\][m',prn,Z + wpc rbp mOd ( lrpi’ T )
hpri,Z - Nprf,prn,Z + wpc rbp mOd ( Z"rpi’ T )+ pb

Pi 1 = Ny 1 N2+ gy

Ppi 2 =Ny 1 N2 T gy o
where h,,, and h,, , are the friction arms of the plan-
et in the ring-planet meshing pairs, and A,,, and
hyi o the friction arms of the ring gear in the ring-
planet meshing pairs; e, 1s the contact ratio of the
ring-planet meshing pairs, w, the relative angular
velocity of the planet relative to the carrier, and
N, 1N, » the theoretical meshing line of the sun-

planet meshing pairs.

1.3 Calculation of meshing stiffness and load

distribution of planetary gear train

The time-varying meshing stiffness of the inter-
nal and external meshing pairs was determined us-

ing the energy method "', as shown in Figs.5 and 6.

Fourier series fitting results
I8 Time-varying meshing stiffness
— — — - Average meshing stiffness

Meshing stiffness / (10°N * m')

80 2 4 6 8 10
Length of meshing line / mm
Fig.5 Time-varying stiffness of the external meshing

gears of planetary gear transmission system

Because of the periodicity of the time-varying
meshing stiffness, the Fourier series is used. To

simplify the calculation of the dynamical equations,

and the friction arms at any moment according to
the geometric relationship are given as follows
mod (Z, T )<<(e, — 1)*T
mod (£, T )<<(e, — 1)*T

sp

(2)

et meshing pairs, w, the relative angular velocity of
the sun relative to the carrier, p, the base pitch; and
N, 1N, » the theoretical meshing line of the sun-
planet meshing pairs.

mod (2, T )< (e, —
mod (#,, T )< (e, —

1)*T
1)*T

13
"5 12
Z 11
=
<10
g
& 9 Fourier series fitting
g results
5] I N Y A B Ti i
K _ ime-varying
= 7 meshing stiffness
Q
2 6 1 1 1 1 1 1

=]

2 4 6 8 10 12
Length of meshing line / mm

Fig.6 Time-varying stiffness of the internal meshing

gears of planetary gear transmission system

the higher-order terms are usually ignored, and the
second-order Fourier series is taken. The formula is
shown in Eq.(4), and the results are shown in
Figs.2 and 3.
k(t)=ky+ A cos(wt+ ¢)+ B sin(wt+ @)+
A, cos(2wt+ ¢ )+ By sin (2wt + ¢) (4)
where £, is the average stiffness of the gear pairs, w
the meshing frequency, and ¢ the initial phase of
the meshing stiffness.

In the process of gear transmission, there will
be single and double teeth alternating meshing. In
the single-tooth meshing area, the load is borne by a
pair of teeth. In the double-teeth meshing area, the
load is shared by two pairs of teeth. Because of the
different meshing positions in the double-teeth mesh-

ing area, the distribution of the load between the
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two pairs of teeth differs. In the double-teeth mesh-
ing zone, the total deformation of each pair of mesh-
ing teeth is considered to be equal. The load-distri-
bution ratio is the ratio of the maximum load to the
total load between the simultaneous meshing teeth.
The results of the load distribution calculated by
MATLARB are shown in Fig.7.

1001 - External meshing
9t i |  fre Internal meshing

80
70
60 i
50
40
30 L1 !

0 2 4 6 8 10 12 14 16
Length of meshing line / mm

Load distribution ratio / %

Fig.7 Load distribution among the teeth of every
meshing gear of the planetary gear transmission

system

The correct calculation of the load distribution
among the teeth lays the foundation for the calcula-
tion of the time-varying friction coefficient, which is

described in the next section.

1.4 Calculation of time-varying friction coeffi-

cient of tooth surface

The elastohydrodynamic lubrication (EHL)
model comprehensively considers the effects of the
load distribution, the relative sliding velocity, the
rolling speed, the surface morphology, and the lu-
brication condition of the gear teeth during the mesh-
ing process. Comparing the results obtained by cal-
culation models with different friction coefficients

" reveals that the val-

with the experimental values'”
ues calculated using the EHL friction coefficient are
the closest to the experimental values. Therefore,
in the paper, the calculation model with the EHL
friction coefficient is employed.

This calculation model is expressed as

S - by
S (Sg Py Savg) 1 02 N
Ph

Vg R" (5)

u—=e SR

where P, 1s the maximum Hertz contact stress

(GPa), R the comprehensive radius of curvature at
the contact point (m), Sy the slip ratio at the con-
tact point, and V, the convolution rate (m/s). f(Sg,

Py, m»Say ) can be written as

f(SRyPhaUmysnvg): /71 + 54‘ SR ‘Ph logl()??m +

bse*‘SR Py log o7y + bgesu\g (6)

The maximum Hertz contact stress is defined

WE'
“V 2zR

Py (7)

where W'is the unit normal load (GN/m). E'is the
comprehensive elastic modulus (GPa) , which can

be calculated as

2
E = 8
0=y, 0 p) 2
E] E2

where 4, and p, are Poisson ratios of the driving and
driven wheels, respectively, and E, and E, the elas-
tic moduli (GPa) of the driving and driven wheels,
respectively.
The instantaneous velocity of the two gears at
any meshing point can be written as
V,=w,0,—w, X(s+ N,B))

9)
V. =w,0,=w, X(N,N,—s— N,B))

where p, and p, are the radii of curvature (m) of the
driving and driven wheels, respectively, and s is the
distance from the instantaneous meshing point to the
actual starting point.

The formulas for the slip ratio, relative sliding

velocity, convolution rate, and rolling speed are as

follows
SR::VF::2Vs::ﬂ‘G"VJ
V. V. V,+ V,
v.=|v,—V, (10)
V.=(V,+ V,)/2
V.=V,+V,

The root-mean-square value of the roughness
is Sy = 0.6 pm. The values of 6,, b,, -+, b, are

shown in Table 2.
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Table 2 Coefficients of the EHL friction model

Parameter b, b, b,
Value —8.916 4 1.0330 1.036 0

Parameter b, b by
Value —0.354 0 2.8120 —0.100 6

Parameter b, by b,
Value 0.7527 —0.3909 0.620 3

1.5 Calculation of time-varying bearing stiff-

ness

Bearings are important supporting elements in
the gear transmission system and have the function
of transferring motion and force. According to analy-
sis and application of rolling bearing'*"", the stiffness
of the bearing is not a constant and changes with the
displacement (or load). Therefore, when referring
to the stiffness of the bearing, the corresponding dis-
placement or load state should be specified. Accord-
ing to the Hertz contact theory, the calculation for-
mula for the bearing stiffness of a rolling bearing can
be expressed as

k, = 32900Z(D,6, cos’a)"” (11)
where D, is the outer diameter of rolling body, Z
the number of rolling body, « the contact angle,
and 0, the elastic displacement of bearing rings.

According to the actual conditions, the sun se-
lects a 6213 radial ball bearing. The carrier selects a
6020 radial ball bearing. The unknown quantities in
Eq.(11) are shown in Table 3.

Table 3 Coefficients of the radial ball bearing

Bearing type 6213 6020
D,/mm 16.67 16
Z 10 14
a/ (°) 0 0

2 Dynamic Model of Gear Trans-

mission System

The dynamic model was established via the
lumped-mass method, as shown in Fig.8.
As shown in Fig.8, the bending-torsional cou-

pled dynamic model of the planetary gear transmis-

Fig.8 Dynamic model of the planetary gear transmission

system

sion system was established in consideration of the
backlash and bearing clearance of the sun. The sys-
tem has 3N+9 DOFs (N=3) , which can be ex-

pressed as

{Is,ysﬁg,x},,-,yp,,<9p,-,xr,yr,<9r,xc,yc,<9c} (12)

2.1 Force analysis of planetary gear transmis-

sion system

The gear meshing force is caused by the rela-
tive displacement along the direction of the meshing
line. Therefore, it is necessary to analyze the rela-
tive displacement and the force and then derive the
dynamic equations of the system. The relative posi-
tion relationship are shown in Figs.9 and 10.

In the figures, ¢, =a,, — ¢, , where a, 1s
the actual meshing angle of the sun-planet meshing
pairs. ¢, = a,; + ¢, , where a,, is the actual mesh-
ing angle of the ring-planet meshing pairs.

The projection of the relative displacement of
the ith sun-planetary gear along the direction of the
meshing line can be written as
O = (xy— 2,)cos (90° — @)+

(ye—yplcos(—og)+ u + u, — ey (1)=
(2, — 2,080 @ (Y — y,,)c08 @ +
U+ uy — ey (1) (13)

The projection of the relative displacement of



890 Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 37

Fig.9 Relative position relationship of the external

meshing gears

Fig.10 Relative position relationship of the internal

meshing gears

the ith ring-planetary gear along the direction of the

meshing line can be written as
Opi = (2 — 2,)c08 (@ — 90° )+ (v, — y.)

cos(180°— ¢ )t u,—u, — e, ()=

(2 —a)sine, — (v, — y.)-

COS @yt uy — up — e, (1) (14)

The relative position relationship of the plane-

tary-planet carrier is shown in Fig.11.

Y, Carrier Y,
Planet
) X,
rc
(2 9
e X,

Fig.11 Relative position relationship of the plane-

tary-planet carrier

Therefore, the projection of the relative dis-
placement of the ith planetary-planet carrier along
the X, Y, and tangential directions can be ex-

pressed as

6]31'(‘.1‘ :xp, — X + U, Sin @D
6[)1‘(‘»\7 - Vo 7 Ve Uu. CoS @; (15)
0w = (2 — x)sin @, + (v, — y.)CoS @, — u,

To facilitate the analysis, the vibration angular
displacements (4., 6,;, 6., 6.) of the sun, planet, in-
ner ring gear, and carrier are transformed into line

displacements (u,, w,, u,, u.).

s =10 Uy = iy

(16)

U, =1ry,0, u.=ry0.

where r, 1, and r, are the radii of the base circle
of the sun, planet, and ring gears, respectively;
and r,. 1s the center distance between the sun and the

planet.

2.2 Dynamic equations of planetary gear

train

According to the force relationship of Figs. 6
and 7, the dynamic differential equations of the sys-
tem are obtained using Newton’s law of motion.

(1) Dynamic equations for the sun

M (% — 2wy, — wlx )t bk, f(2,0,)F coa,=
N N

N
- ZFSPI’ sin gospz o EFBPI' Ccos qospi
i=1

i=1

M. (203, — wly)+ bk, f(y.,by,)+ cyy.=

N N
- ZFSP[ Ccos §05p1 + ZFIspi Sln gDsp{

i=1 i=1

N N
Isgs - EFspirbs + EFIspih-spz' + TI)

I=1 i=1

(17)

where I, is the moment of inertia of the sun; M, the
quality of the sun; and T, the input torque. F, and
F, are the dynamic meshing force and dynamic fric-
tion force of the sun in the ith sun-planet meshing
pair, respectively.

(2) Dynamic equations for the planets
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M i ( i:pii chypz'i wfI])[)_kaa'é\pz'u"kcpu' 5 -

picx

Fps/ S S05pi+Ffps[ COs (p&pr’inn’ Sin SDrpiiFfpri COs Sorpi

. - 2 N o
Mpl ( yp1’+ 2wc xpi_ wc ypl )—Jr kp[’v&pzc,v#; C piy 6
Fpsz' COS gOsz'iFfpsz' sm ¢spi+Fpr1' COS gDrpiiFfpr{ Sin gorp[

picy

Ipz'opz’:_Fps[ rbp[+Ffpsihpsi+Fpn rbpi_Ffprihpri

(18)
where I, is the moment of inertia of the ith planet
and M, the quality of the 7th planet. F,, and F, are
the dynamic meshing force and dynamic friction
force of the planet in the ¢th sun-planet meshing
pair, respectively; and F,, and F;, the dynamic
meshing force and dynamic friction force of the plan-
et in the 7th planet-ring meshing pair, respectively.

(3) Dynamic equations for the ring gear

M, (& —2w.y, — wix,)+ k,x,+ ¢, 2, =

N N
ZFrpl Sin gDrpl + EFfrpi Cos gorpz

i=1 i=1

M, (3, + 2w, 2, — wly)+ kyy, T oy, =

N N
- ZFrpl COS gprpz + ZF[rpi s gDrpi
i=1

i=1

(19)

N N
Irﬁur - ZFrplrbr + ZFfrpihrpi
i=1

=
where I is the moment of inertia of the ring and M,
the quality of the ring. F,, and F,, are the dynamic
meshing force and dynamic friction force of ring in
the ith planet-ring meshing pair, respectively.

(4) Dynamic equations for the carrier

M (& 2w .y~ wix ) tkex Aot~
ﬁ;( 3 N S
M. (1&C+ 20 0wl y Stk yot oo o=
i}( Boies 0 s Coies O i)
1.0+ k0 c,0.= ﬁj( Frien® et Corea O piea) 1o — T

=1

(20)

where I. 1s the moment of inertia of the carrier, M.
the quality of the carrier, T. the output torque, £,
the torsional stiffness, and c., the torsional damping.
¢ represents bearing damping; sx, sy, piy,
pix, ry, rr, cx, cy are the subscript of the sun

gear, the planet, the ring gear and the carrier, re-

spectively. ¢ is determined as Ref.[ 22].

2.3 Rigid-body displacement elimination and

dimensionlessness of dynamic equations

Because the dynamic Eqs.(17)—(20) are posi-
tive semidefinite, there is rigid-body displacement,
and the solution i1s uncertain. Therefore, the relative
coordinates 0y, and 0, are introduced, and the con-
crete expressions are Eqs.(13) and (14). Thus, we
can conclude the following
O = (2, —

(ypi - yr)COS gprpi +

8{m\" 7( Ip\" 7 Ir)Sin SDrp.\" +

28I @ —

( yp:'\’ o yr)COS gprpN + eqm\" ( t )+ 65}»\" 7
(1,5 - 1‘p;\")Sin gps]):V - ( ys - yp;V)COS §0spN‘ +
esp\’ ( 14 )7 [ 6&[)[ 7( Xs — Ipz’)Sin gospi -

(e = u)eos @+ e, (1) ] = ey () (21)

After the elimination of the rigid-body displace-
ment, the system has 3N + 8 DOFs, which can be
written as

{Is»ysyxphypz’Inynxmym 85])1" 8pn\” uc} (22)

Because the numerical gap of the stiffness val-
ue and the vibration micro-displacement value is too
large, the calculated results cannot converge under
the numerical integration method. To obtain the ide-
al results, the dimensionless displacement (6.~
10 mm) and the natural frequency w,, are intro-
duced into the dynamic differential equations. w,, is

defined as

2 2
Ipz'rbs + Isrbpi
Isti

ksp

where %, 1s the average meshing stiffness of the sun-
planet meshing pairs. Then, the dimensionless time
and dimensionless displacement are

X =X/b. =Wt (24)
The dimensionless acceleration and velocity

can be written as

X=b.w,X XLZbcwfn)L('
e(r)=2é(1)/b.w,

‘ (25)
elc)= ¢ (1)/b.w,

After the elimination of the rigid-body displace-
ment and dimensionlessness, the dynamic differen-

tial equations can be expressed as
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2 . N N
w w, . w,  — —= ke,  — = Co - 1 - . 1 —
Is:2 y~+ 9 (I,\"b&l') - 2 f(lvvbs;r)i X 2 Fspz SN Qg™ 5 FfSPf COS @i
wsn a)sn Msw;n MSan Msa)sn ; me.:n ;
5 Zw"*erff(_Z) F(y . b T ZF ZF
ys:7 Van 2 y o Ysy 2 y sy ys spi COS §0 )1 fspi ‘1n §0 spi
W g, W g, s M W g, M W M w\n i= W, =
2
- W, - w; — 1 — 1 — 1 =
T, =2 +—x,—— k.0, —C 8t ——— F . sing,+—— F, C0S@,—
w0 My, O Myw, O Mywr, T O M,
F,s L_F
SN, ——— F . cosg
2 pri Pt 2 pri i
M, ws M, ws,
2
. W, - w, — 1 — 1 - — 1 = .
ypz 2 D Ipi+ 72:)} . 2 /e]){y 6\ pi(‘yi aAr Cpiy é\piq\jg’i 2 F psi Cos gospii 72 F fpsi sSin gpspi+
sn Ws M M i Wsn Mpfwsn M i Wsn Mpz W
1 = 1 =
—F ,cos@,——— F,,sin
2 pri » pi 2 fpri > §0rp1
Mpz sn Mpi @ sn
2 N
. 1 1 N —
X /\7(1' - Cr.r gln @rp: r 2 F frpi Ccos gprpz'
wsn sn Mrwsn Mrwsn ~n =1 Mrwsn ;
2 N
= W, . . 1 - 1 -~ 1 —
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The specific expressions for F',, F .., F 0 F iy damping ratio on the global bifurcation characteris-
are tics were investigated using the 4—>5-order Run-
ge-Kutta method.
= b [ (8 0 b )T 0
\ pi §) spi spi . . .
o v 3.1 Influence of input speed on bifurcation
Fop=FfuwFy . .
o =S E (27) characteristics
F, =k, )+ w0, . . . —
pre ’r f pis 0 10) 7 Cri@0 Oy As shown in the previous section, the vibration
Ffpn f;)rz pri

3 Dynamic Analysis of Planetary
Gear Trains

According to the above analysis, the effects of

the input speed, backlash, bearing clearance, and

and instability of the planetary gear transmission sys-
tem are mainly related to the change of the meshing
force. Therefore, it is necessary to study the bifurca-
tion characteristics of the relative displacement
along the meshing line. To determine the effect of

the velocity on the global bifurcation characteristics,
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the gear parameters and operation conditions shown

in Tables 1 and 4 were used, respectively. The bi-

furcation characteristics of PGTSMPP along the

meshing direction are shown in Figs.12 and 13.

Table 4 Operating conditions

) ) Bearing Clearance
Power/kW Damping ratio Backlash b, /pm Backlash b, /pm
b, /pm by, /pm
400 0.05 40 40 10 10

As shown in Figs.12 and 13, with the increase
of the velocity, the bifurcation characteristics along
the external and internal meshing lines are similar
and rich. At a low speed, the system is mainly in
the singleperiod state. With the increase of the
speed, the system enters the states of single-period,
violent change, chaos, bifurcation, inverted bifurca-
tion, and multi-period, as well as other motion
states. At the frequency of 1/2, 1, 2, and 3 times,
the system exhibits a significant resonance phenome-
non.

Because of the similarity of the bifurcation char-
acteristics along the external and internal meshing
lines, it is only necessary to analyze the system en-
tering the chaotic channel with the change of the
speed, as shown in Fig.12. The system enters a cha-
otic state at the dimensionless meshing frequency of
0,=0.6 and enters the single-period state from the
inverted-bifurcation state at 2,=0.75—0.78. At
0,=1.15, the system re-enters the chaotic state,
which is accompanied by the multi-period motion
state. At £2,=—1.45, the system enters single-period
state, and when the meshing frequency is close to
twice the natural frequency, the system undergoes a
sudden change and continues operating for a while.
At 2,=2.75, the system transitions from the bifur-
cation state to the period two motion state. The sys-
tem transitions from the inverted bifurcation state to
the stable single-period state at 2,=3.06—3.11.

Therefore, the appropriate speed can effective-
ly prevent the system from entering the chaotic
state, improve the stability, load-sharing properties
and lifetime of the system, and reduce the vibration

and noise.
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Fig.12 Bifurcation along the external meshing line di-
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Fig.13 Bifurcation along the internal meshing line di-

rection

3.2 Influence of damping ratio on bifurcation

characteristics

To analyze the influence of damping ratio on
the global bifurcation characteristics, without losing
generality, we consider 2, = 1.21 and Q2,, = 2.83,
with typical nonlinear dynamic characteristics. The
operating conditions are shown in Table 4, and the
results are presented in Fig.14.

As shown in Fig.14 (a) , with the increase of
the damping ratio, the amplitude is significantly sup-
pressed and converges to zero. Fig.14 (b) indicates

that when the damping ratio is less than 0.35, the
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Fig.14 Bifurcation with different damping ratios

system is in the chaotic state, and the system enters
the period two motion state with the further increase
of the damping ratio. When the damping ratio is
greater than 0.075, the system is in the single-peri-
od state, and the amplitude decreases significantly.

To confirm that the increase of the damping ra-
tio can suppress the vibration amplitude of the cha-
os, the damping ratio coefficients ¢ of 0.05, 0.07,
and 0.09 are selected; the corresponding bifurcation
results are shown in Figs.12 and 15. Under large
damping ratio, the vibration of the system is sup-
pressed. This is because with the increase of the
damping ratio, the amount of dissipated energy in-
creases, which suppresses the movement of the sys-
tem.

Therefore, the damping can be increased by
changing the material of the meshing pairs, which
can effectively ameliorate the vibration characteris-
tics of the system, reduce the noise, and improve

the system stability.

Dimensionless meshing frequency Q
(b) Damping ratio &= 0.09

Fig.15 Bifurcation with different damping ratios

3.3 Influence of backlash on bifurcation char-
acteristics

To analyze the influence of the sun-planet
meshing backlash on the global bifurcation character-
istics, without losing generality, we consider 2,=
0.78 and 02,=1.17, with typical nonlinear dynamic
characteristics. The operating conditions are shown
in Table 4. Assuming that the change of the back-
lash of three sun-planet meshing pairs is the same,
the results are shown in Fig.16.

As shown in Fig.16 (a) , with the increase of
the backlash, the nonlinear characteristics of the sys-
tem are obvious, and it has the same characteristics

no matter which one is analyzed. For a small back-
lash, the system is in a stable single-period state.
For a large backlash, the system is in a chaotic
state. When the meshing frequency is changed, only
the channel of the system entering the chaotic state
is affected.

Fig.16 (b) shows that when the dimensionless
backlash &, is less than 1.26, the system is in the

spi

single-period state, and with the increase of back-
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Fig.16  Bifurcation with respect to the backlash

lash, system enters the period three motion state

from the bifurcation state. At &

spi

= 1.7, the system

is in the chaotic state. When &, is 2.4—3.2, the

spi
system 1s in the multi-period state. When Zsp, is
greater than 3.2, the system is in the chaotic state.
Thus, in the design, manufacture, and installa-
tion of the gear system, reasonable backlash can ef-
fectively prevent the system from entering the chaot-
ic state, which suppresses the system vibration and
noise, improves the system stability, and extends

the service life of the product.

3.4 Influence of bearing clearance on bifurca-

tion characteristics

To analyze the influence of the bearing clear-
ance on the global bifurcation characteristics, with-
out losing generality, we consider 0, = 0.85 and
0,, = 2.05. The operating conditions are shown in
Table 4. Assuming that the bearing clearance in the
horizontal direction of the sun is the same as that in
the vertical direction. The results are shown in

Fig.17, respectively.
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(b) Dimensionless meshing frequency Q,=2.05

Dimensionless relative displacement d,,

Fig.17 Bifurcation in different bearing clearance

As shown in Fig.17, there is no multi-period
state in the whole parameter field. In Fig.17(a), on-

ly when the dimensionless bearing clearance b, or

ZS}, is 0—0.8, the system state changes with the
change of the bearing clearance of the sun. In other
areas, the system is in a stable state. Because the
sun floating support structure can be understood as a
larger sun bearing clearance, it can more effectively
show that the planetary gear transmission system us-
ing the sun floating support structure can improve

the nonlinear dynamic characteristics and load-shar-

ing properties of the system.

4 Conclusions

(1) With the increase of the damping ratio, the
amplitude of the system can be significantly re-
strained in the chaotic state. The system near the
resonant frequency region is often accompanied by
an unstable motion state, such as violent change
and chaos, and the proper selection of the system
speed parameters can effectively prevent the chaotic

motion and improve the stability of the system.
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(2) The backlash has a great impact on the bi-
furcation characteristics of the system. With the in-
crease of the backlash, the system transitions from
the single-period state to the multi-period and chaot-
ic states.

(3) Compared with the backlash, the bearing
clearance of the sun has little effect on the bifurca-
tion characteristics. The influence of the nonlinear
characteristics of the system is obvious only in the
segment with small parameters of the sun bearing
clearance, which indicates the superiority of the
planetary gear transmission system.

The results can provide theoretical support for
the parameter selection and operating conditions of

PGTSMPP.
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