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Abstract: Air traffic complexity is a critical indicator for air traffic operation，and plays an important role in air traffic
management（ATM），such as airspace reconfiguration，air traffic flow management and allocation of air traffic
controllers（ATCos）. Recently，many machine learning techniques have been used to evaluate air traffic complexity
by constructing a mapping from complexity related factors to air traffic complexity labels. However，the low quality of
complexity labels，which is named as label noise，has often been neglected and caused unsatisfactory performance in
air traffic complexity evaluation. This paper aims at label noise in air traffic complexity samples，and proposes a
confident learning and XGBoost-based approach to evaluate air traffic complexity under label noise. The confident
learning process is applied to filter out noisy samples with various label probability distributions，and XGBoost is used
to train a robust and high-performance air traffic complexity evaluation model on the different label noise filtered ratio
datasets. Experiments are carried out on a real dataset from the Guangzhou airspace sector in China，and the results
prove that the appropriate label noise removal strategy and XGBoost algorithm can effectively mitigate the label noise
problem and achieve better performance in air traffic complexity evaluation.
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0 Introduction

With the air transport industry developing rap⁃
idly，the surging flight volume and limited airspace
impose new challenges on the current air traffic man⁃
agement system and air traffic controllers （AT⁃
Cos）. Many potential safety problems have been
raised，such as airspace congestion，flight conflict，
and high workload of ATCos. In order to safely reg⁃
ulate air traffic， airspace is divided into several
smaller sectors which are in charge of ATCos. How⁃
ever，the ATCos resource is limited，so we need to
allocate ATCos resources over different sectors rea⁃
sonably through advanced techniques，such as re-
sectorization or dynamic airspace configuration. The
key to these techniques is to accurately evaluate air

traffic complexity.
Air traffic complexity is a quantitative indicator

to reflect the complexity of air traffic system opera⁃
tion pattern，the relationship between aircraft and
uncertainty of evolutionary trend［1-3］. Evaluation of
air traffic complexity is not easy because of the nu⁃
merous complexity related factors and non-linear
correlation contained in the formation of air traffic
complexity［4］.

There are two main methods in the research of
air traffic complexity evaluation［5］. The first one fo⁃
cuses on constructing a model or the most relevant
indicator，such as conflict probability［6］，conflict res⁃
olution difficulty［7］ ，Lyapunov Exponent［8］ ， etc.
However，as air traffic complexity contains large
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amounts of information and is embedded with so⁃
phisticated relationships，it is unrealistic to perfectly
evaluate air traffic complexity by a single indicator
or model. The principle of the other method is to
consider as more complexity factors as possible to
make a comprehensive description for air traffic com⁃
plexity. The most famous one is the dynamic densi⁃
ty method，which calculates complexity as the sum
of various complexity factors with different
weight［9］. Whereas，due to the inability in depicting
non-linear relationship，the dynamic density method
tends to get imprecise results in practice. Other non-

linear better methods were then put into use. In
2006，Gianazza et al.［10］ introduced the idea that the
air traffic complexity problem could be considered
as a complexity level classification task. They used
the backpropagation neural network （BPNN） to
capture the non-linear relationship［10］. Later on，
more and more advanced methods，such as adaptive
boosting learning algorithm［11］ and transfer-learn⁃
ing［12］ ， had been employed and acquired fruitful
achievements in air traffic complexity evaluation.

All these existing machine learning-based com⁃
plexity evaluation methods have one same premise
assumption that the complexity labels evaluated by
air traffic management（ATM）experts are definite⁃
ly correct. But，in fact，some samples used by ma⁃
chine learning algorithms may have inaccurate la⁃
bels，especially when the labels are provided by hu⁃
man［13-14］. Air traffic complexity labels marked by
ATM experts also have some inaccurate labels. In
2019，Andrasi et al.［15］ carried out a comparative ex⁃
periment on air traffic complexity evaluation be⁃
tween neural network and linear model. Theoretical⁃
ly，neural network may get a better result for its
more excellent ability in depicting non-linear rela⁃
tionship. However，the results showed that they on⁃
ly had small difference. The author of Ref.［15］at⁃
tributed the remaining error as intra-rater or inter-
rater unreliability in human experts during labeling，
which illustrated that the premise assumption of defi⁃
nitely correct labels may not be appropriate. Hence，
we should pay more attention to the incorrect la⁃
bels，named as label noise，and its impact on air

traffic complexity evaluation.
In this paper，we propose a confident learning

and XGBoost-based method to evaluate air traffic
complexity under label noise，which has not been
dealt with in the past. In our method，every sample
is calculated in a cross-validation way to get the
probability distributions of several classes through
different classification algorithms. Under different la⁃
bel probability distributions， label noise detection
and cleansing steps based on confident learning are
carried out separately to produce several suspected
label noise sets. Then these sets are integrated into
one total set. Based on the total label noise set，we
selectively remove different ratios of label noise
samples from the original dataset to get datasets
with different cleanliness. Finally，by comparing the
performance of XGBoost and other classification al⁃
gorithms on these cleansed datasets，the optimal la⁃
bel noise removal ratio and the corresponding classi⁃
fication algorithm can be obtained for final air traffic
complexity evaluation.

1 Problem Description

This section gives a description of evaluating
air traffic complexity by machine learning methods
and the problem of label noise we encountered.

Our objective is to evaluate air traffic complexi⁃
ty from a variety of complexity related factors. More
specifically，we have its real traffic operational data
for every air traffic scenario，such as aircraft speed，
heading，longitude，latitude，altitude and so on. Ac⁃
cording to previous research studies，these data are
transformed into complexity related factors to de⁃
scribe air traffic complexity. Air traffic complexity
level provided by ATM experts is collected when
the real traffic operational data are generated. In the
machine learning field，these complexity related fac⁃
tors and air traffic complexity level are known as fea⁃
tures and labels，respectively. Based on complexity
related features and label information，many schol⁃
ars have carried out plenty of air traffic complexity
researches under machine learning frame⁃
work［3，5，11，12，15-17］. The main idea is to construct a
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mapping model between these features and the com⁃
plexity labels. Then，we can use the model to intelli⁃
gently predict air traffic complexity without ATM
experts，when new air traffic data are coming. The
whole process is displayed in Fig.1.

In the area of supervised machine learning，
many benchmark datasets have label noise，which
also happens on air traffic complexity datasets. The
reason is summarized as human expert inconsisten⁃
cy，which consists of low intra-rater and inter-rater
reliability，by Andrasi in 2019［15］. The raters are re⁃
ferred to ATM experts who mark the complexity in
the given traffic situations. Intra-rater reliability is
the degree of agreement among multiple ratings by a
single rater，while intra-rater reliability is the degree
of consistency between multiple raters. For in⁃
stance，even the same traffic situations may be rated
with different complexity labels in different circum⁃
stances，which induces the problem of label noise.

Label noise may obscure the relationship be⁃
tween the features of a sample and its labels，so as
to impact the classification performance of classifi⁃
ers. Some researchers were aware of the problem，

so they managed to get the high quality complexity
labels by integrating the ideas of different experts on
the same air traffic scenario or conducted more com⁃
pleted and strict process management to alleviate
the problem［17］. However， these solutions cannot
completely solve the problem of label noise and may
even waste limited labeling resources. Therefore，
this paper puts forward a label noise sample detec⁃
tion and removal strategy to handle the label noise
problem in the evaluation of air traffic complexity.

2 Methodology

2. 1 Air traffic complexity representation

Various factors can influence the level of air
traffic complexity and have drawn much attention in
air traffic complexity research. Kopardekar et al.［9，18-19］

has identified nearly 40 air traffic complexity factors
since 1963. Delahaye et al.［20］ described the intrinsic
attributes of air traffic by relative position and rela⁃
tive speed of aircraft pairs，and then constructed a
traffic disorder model to analyze the complexity.
Lee et al.［21］ emphasized heading change of aircraft
in response to intrusive aircraft within a sector to cal⁃
culate air traffic complexity. The probabilistic factor
was put forward to measure the midterm traffic com ⁃
plexity by Prandini et al.［6］. In this paper，we choose
24 complexity factors that have been consistently
found to be relevant to air traffic complexity. All of
the factors are the features we use in the later ma⁃
chine learning process. Their definitions are listed in
Table 1 and more detailed information can refer to
Refs.［20，22⁃23］.

Fig.1 Machine learning framework of air traffic complexity

Table 1 Air traffic complexity factors set

Factor
N

N des,N cl

F 5,F 15,F 30
Dens

hpro_1,hpro_2
vpro_1,vpro_2

σ 2gs

σgs
-v gs

avg_vs

inter_hori

inter_vert

track_disorder
speed_disorder

Div
Conv

sensi_d
sensi_c

insen_d
insen_c

Definition
Total number of aircraft

Number of descending / climbing aircraft
Future incoming flow in 5, 15, 30 min

Density of aircraft
Horizontal proximity between aircraft
Vertical proximity between aircraft
Variance of aircraft ground speeds

Ratio of σgs to average aircraft ground speed
-v gs

Average absolute values of aircraft vertical
speeds

Number of potential crossings of aircraft tra⁃
jectories

Mixing degree of aircraft at different flight
states(descending/level/climbing)
Variability in aircraft headings
Variability in aircraft speeds

Rate of divergence between aircraft pairs
Rate of convergence between aircraft pairs
Sensitivity of distance change between di⁃
verging/converging aircraft with speed and
heading modifications applied to them

Div2/sensi_d
Conv2/sensi_c
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2. 2 Label noise detection by confident learning

To handle the label noise problem in machine
learning，there are two main solutions.

（1）Algorithm level：Construct a robust classi⁃
fier to resist the impact of label noise.

（2）Data level：Detect and remove label noise
to get a clean dataset for training.

We will start from the data level，which is
most commonly used in applications because of its
convenience and effectiveness.

Confident learning is an approach for character⁃
izing， identifying and learning with noisy labels
based on the principles of pruning noisy data，count⁃
ing to estimate noise and ranking examples to train
with confidence［24］. It uses probabilities and noisy la⁃
bels to count examples in the unnormalized confi⁃
dent joint，estimate the joint distribution and prune
noisy data. Only two inputs are needed：Out-of-
sample predicted probabilities and array of noisy la⁃
bels. This method requires no hyperparameters and
will output ordered samples according to their label
noise probabilities. The whole process is shown in
Fig.2.

In Fig.2，Q̂~y，y* is estimated by counting exam⁃
ples in the joint distribution and calibrating the esti⁃
mated counts using the given count of noisy labels in
each class，| X~y = i |，and then normalized. Counts are
captured by the confident joint C~y，y* ∈ Z≥ 0m× m，

which is the key structure of confident learning. C~y，y*

is constructed as a confusion matrix C confusion of given
labels ~y

k
and predictions arg max i∈ 1，⋯，m p̂ (

~y =

i；xk，θ ). There seems to be dissimilarity problem of
probabilities distributions. The problem is fixed by
Eq.（1）so that C~y，y* is robust for any particular class
with certain probabilities.

tj=
1

|| X~y = j

∑
x∈ X~y = j

~p ~y = j; x,θ (1)

where X~y = j denotes a subset in X with noisy label
y，~p ( ~y = j；x，θ ) the predicted probability of label
~y = j for X and model parameter θ，and the thresh⁃
olds tj are the expected self-confidence for each
class.

The introduced label collision is handled by se⁃
lecting ~y

*
← argmax j∈ 1，⋯，m p̂x，~y = j. Therefore，in the

following formulas，the confident joint C~y，y* is de⁃
fined as

C~y,y* [ i ] [ j ] := | X̂~y = i,y*= j | (2)

X̂~y = i,y*= j= x∈ X~y = i:p̂x,~y = j≥ tj
(3)

j= arg max
k∈ 1,⋯,m:p̂x,~y = k≥ tk

p̂ x,~y = k (4)

where j= argmax only matters when

|{k∈ 1，⋯，m：p̂ |
|}( ~y = k；x∈ X~y = i，θ )≥ tk > 1，di⁃

agonal entries of C~y，y* count correct labels and non-

diagonals capture asymmetric label error counts.
Given the confident joint C~y，y*，Q̂~y，y* is estimat⁃

ed as
T ij= C~y = i,y*= j ⋅ || X~y= i ∑

j∈ 1,⋯,m
C~y = i,y*= j (5)

Q̂~y = i,y*= j= T ij ∑
i∈ 1,⋯,m ; j∈ 1,⋯,m

(T ij ) (6)

Following the estimation of the joint，pruning，
ranking and other heuristics are applied for cleaning
dataset. Q̂~y，y* is used to estimate the number of label
errors and remove errors by ranking over predicted
probability. The prune method is based on the noisy
rate， where n ⋅ Q̂~y = i，y*= j examples were selected
with max margin p̂x，~y = j- p̂x，~y = i for each off-diago⁃
nal entry in C~y，y*. Once label noise is found，we start
to train our model with errors removed.

2. 3 XGBoost classification algorithm

XGBoost is short for“extreme gradient boost⁃

Fig.2 Label noise detection by confident learning
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ing”，which is designed to be a scalable machine
learning system for tree boosting［25］. The parallel
tree boosting and regularization strategy enable it to
run in a much faster way and achieve state-of-the-art
results in many machine learning problems. As an
ensemble method，the basic idea of XGBoost is to
combine several weak models into a strong one，
which can be presented as

ŷ i= ϕ ( xi )= ∑
k= 1

K

fk ( xi ) (7)

where fk ( ⋅ ) is a weak model and K the number of
weak models.

As a tree boost，the core of XGBoost is the
Newton boosting，which searches the optimal pa⁃
rameters by driving the objective function as Eq.（8）
towards the minimum direction.

L ( ϕ )= ∑
i= 1

n

l ( ŷ i,yi )+ ∑
k= 1

K

Ω ( fk ) (8)

Ω ( fk )= γT + 1
2 α  ω 2 (9)

where l is the loss function and Ω the regularized
term. They measure the performance and control
the complexity of the model.

The ensemble model works better in an addic⁃
tive manner. ft is added to improve the model and
the new objective function is formed as

Lt= ∑
i= 1

n

l ( yi,ŷ ( )t- 1
i + ft ( xi ) )+ Ω ( ft ) (10)

where ŷ ( )ti is the prediction of the ith sample and ft
the weaker model at the tth iteration.

Then，the second-order approximation is used
to speed up the optimization procedure to obtain

gi ft ( xi )+
1
2 hi f

2
t ( xi )，which changes the objective

function into

Lt≃ ∑
i= 1

n

[ l ( yi,ŷ ( )t- 1
i )+ gi ft ( xi )+

1
2 hi f

2
t ( xi ) ]+ γT + 1

2 λ∑j= 1
T

ω 2j (11)

where gi and hi are the first and second order gradi⁃
ent statistics of the loss function. For a fixed tree
structure，the optimal weight ω and the correspond⁃
ing optimal splitting point can be found.

Besides the improvements in the regularized ob⁃
jective，several additional techniques are also used

to promote the classification performance，such as
overfitting prevention， computation enhancement
and so on. More details can be found in Ref.［25］.

Considering the mentioned advancements and
excellent performance in applications，XGBoost is
adopted for our air traffic complexity evaluation un⁃
der label noise.

2. 4 Integrated model based on confident learn⁃

ing and XGBoost

The label noise solution used in this paper is to
filter out the noisy label samples，and then train the
classification model on the clean dataset. There may
be three remained problems：

（1）When detecting and removing noisy label
samples，the right labeled samples which are diffi⁃
cult to distinguish may be wrongly deleted.

（2）After removing label noise samples mas⁃
sively，the training data will be severely reduced，
which may cause an under-fitting problem.

（3）An imbalanced problem might be intensi⁃
fied for the original imbalance dataset，which is ex⁃
actly our case. Some minority categories may have
fewer samples and even disappear after removing
step.

To deal with these problems，we design a nov⁃
el framework including label noise removal strategy
and XGBoost algorithm，as shown in Fig.3，where
CL represents the confident learning method used to
calculate the noise value according to label probabili⁃
ty distributions. Firstly，we adopt several classifiers
instead of a single one to acquire different label prob⁃
ability distributions of each sample，so that more
general and various label noise information can be
offered to the confident learning to detect more ex⁃
tensive label noise. Then several label noise sets are
generated. Next step is to incorporate these label
noise sets into an overall set that contains as much
as label noise samples. Before that，we need to set
two indicators NST and NV to reflect the noisy lev⁃
el. They are defined as follows

NSTi=
ì

í

î

ïï
ïï

0 i∉ Sj

∑
j= 1

m

NSTij i∈ Sj
(12)
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NVi=
ì

í

î

ïï
ïï

0 i∉ Sj

∑
j= 1

m

( Lenj- IDij ) i∈ Sj
(13)

Lenj= len ( Sj ) (14)
where j，m denote the jth classifier and the number
of classifiers， respectively. Sj represent the label
noise sets selected by confident learning method un⁃
der corresponding label probability distribution，
which are generated by the jth classifier. NSTij rep⁃
resents the times that the ith sample is selected by
Sj. IDij denotes the ith sample’s sequence in Sj ac⁃
cording to the noise probability. Lenj is the length of
Sj. NVi，calculated by IDij and Lenj，represents the
noisy level of the ith sample.

In the overall label noise set，each sample cor⁃
responds to respective NST and NV. We remove
different ratios of label noise samples from the datas⁃
et to get different cleanliness datasets for XGBoost
algorithm，which are robust to weak label noise da⁃
tasets. It is worth noting that the minority category
should be kept from removing for the balance of da⁃

tasets. Finally，by comparing the performance on
different cleanliness datasets，we can find the opti⁃
mal label noise removal ratio for XGBoost.

This section discusses the computational com⁃
plexity. Our proposed integrated method mainly con⁃
sists of three parts：（1）Getting label probability dis⁃
tribution from classification algorithms，（2） input⁃
ting the label possibility distribution into confident
learning algorithm to detect label noise samples，
and（3） adjusting removal ratio of different label
noise samples to acquire optimal performance in
XGBoost. Therefore，the computational complexity
of our method could be divided into the classification
algorithm complexity and the confident learning al⁃
gorithm complexity. According to Eqs.（1）—（6）
and detailed proof in Ref.［24］，the computational
complexity of confident learning is O（c2+nc），

where c and n denote the number of classes and sam⁃
ples［24］. And for classification algorithms，XGBoost
has the greatest computational complexity O（Kdmn⁃
logn），where K，d，m are the number of trees，the
depth of trees and features，respectively. To sum
up，the computational complexity of our method is
O（c2+nc+Kdmnlogn）.

3 Experiments and Results

3. 1 Dataset and evaluation metrics

All the experiments are executed on the real air
traffic operation data collected by automatic devices
in Guangzhou region，China. Each record contains
flight callsign，SSR code，longitude，latitude，alti⁃
tude，speed，aircraft type，etc. The yellow part in
Fig.4 is the airspace sector we focused on，which is
located in the main air route from Guangzhou to Wu⁃
han. From December 1st to December 15th in
2019，we collected 2 769 samples of this sector
with each sample corresponding to a one-minute air
traffic scenario. The dataset has 24 complexity fac⁃
tors as its features，shown in Table 1，and a com⁃
plexity level （five ordinal levels） obtained from
ATM experts as its label. A dataset with 200 sam⁃
ples is purposely selected as a test set in order to

Fig.3 Framework of integrated model
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maintain a unified baseline in experiments. The
complexity labels of this dataset are thought to be
clean and do not operate label noise removal pro⁃
cess，as they are provided by several reliable ATM
experts.

To verify the performance of the proposed
method，we select accuracy，mean absolute error
（MAE）and mean absolute error with ordinal penal⁃
ty（MAE-ordinal）as the evaluation metrics，shown
as

accuracy (Ŷ,Y )= Counts [ ŷ i= yi ]
N

(15)

MAE(Ŷ,Y )= 1
N ∑i= 1

N

|| ŷ i- yi (16)

MAE⁃ordinal (Ŷ,Y )= 1
N ∑i= 1

N ( )e || ŷ i- yi - 1 (17)

where Ŷ = {ŷ i |i= 1，2，⋯，N} denotes the predict⁃
ed value， Y = {yi |i= 1，2，⋯，N} the ground
truth，and N the size of samples.

3. 2 Effectiveness verification of label noise re⁃

moval strategy

We have defined NST and NV to reflect the
level of label noise. These label noise samples can
be detected by confident learning when inputting
sample’s labels and class probability distributions.
Considering the robust and diversity of label noise
datasets，we carry out several label noise cleansing
tests under different label probability distributions，
which are generated by some classifiers such as sup⁃
port vector machine（SVM），random forest（RF），

logistic regression（LR），neutral network（NN），

and XGBoost（XGB）. Then we integrate the fil⁃
tered label noise sets to form a comprehensive one，
shown in Table 2. In Table 2，every row represents
a label noise sample and relevant noise information.
Noise sample ID is the index of corresponding label
noise samples in the original dataset.

NST and NV of label noise samples are shown
in Fig.5，which demonstrates that they have strong
positive correlation. It means that the more frequent⁃
ly a sample is selected as label noise samples by con⁃
fident learning，the bigger the noise value is. A sam⁃
ple with bigger noise value is more likely to be a
noise. Therefore，in order to verify the effectiveness
of label noise removal strategy，we firstly decide to
delete label noise samples （about 621 samples）
whose NST is equal to the number of classifiers，to
obtain a clean dataset.

By inputting the original dataset and cleansed
dataset into the classification algorithms，we can ob⁃
serve the effect of label noise removal strategy from

Table 2 Noise level of each label noise sample

NV

SVM

1 188
1 168
1 131
1 100
1 171
1 172
1 123
1 135
1 187
1 158

RF

1 125
1 191
1 210
1 180
1 185
1 153
1 188
1 196
1 214
1 119

LR

1 129
1 124
1 096
1 110
1 076
1 088
1 067
1 044
1 104
1 117

NN

1 268
1 291
1 295
1 290
1 242
1 246
1 203
1 258
1 180
1 276

XGB

1 354
1 363
1 362
1 352
1 317
1 323
1 365
1 312
1 257
1 259

Overall

6 144
6 137
6 094
6 032
5 991
5 982
5 946
5 945
5 942
5 929

NST

5
5
5
5
5
5
5
5
5
5

Noise
sample ID

521
1 436
156
157
404
403
598
1 527
248
580

Fig.4 Target airspace sector structure

Fig.5 NST and NV of label noise samples
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the results. Moreover，we also calculate another
cleansed dataset by original confident learning meth⁃
od called orginal-CL，with the aim to compare the
performance with our integrated method called recti⁃
fied-CL. Above resluts are shown in Table 3，from
which we can conclude that the presence of label
noise actually has an impact on both evaluation met⁃
ric accuracy and MAE. The performance of other
classification algorithms is all improved after label
noise removal strategy except LR. Especially for
Adaboost（“Ada”for short in Table 3），its accura⁃
cy increases almost by 12%，and MAE drops from
0.475 to 0.300 in rectified-CL. These all show the
significant influence of removing label noise sam⁃
ples. On the other hand，our rectified-CL results are
generally better than the original-CL results. The
optimal performance was obtained by XGBoost with
accuracy up to 80.00% and MAE of 0.242.

3. 3 Label noise removal ratio

In this section，we will study the influence of
different removal ratios in detail. Similar with the
former section，we use the five classification algo⁃
rithms， i. e. LR，NN，RF，Adaboost and XG⁃
Boost. The parameters of each algorithm are set as
optimal values in different label noise removal ra⁃
tios. The results are shown in Fig.6， and from
Fig.6，we can get that：

（1） Different label noise removal ratios have
different experimental results. The best result does
not lie on the highest label noise removal ratio，but
the middle. That means over cleansing may de⁃
crease the performance of classifiers，because many
right samples may be wrongly removed and a small⁃
er dataset may lead to an under-fitting problem.

（2）For the low label noise removal ratio（less
than 30%），LR performs better than NN both in ac⁃
curacy and MAE. When the label noise removal ra⁃
tio becomes greater than 30%，the performance of
LR is surpassed by NN. But they tend to be consis⁃
tent as the removal ratio increases. This phenome⁃
non reveals that NN is more easily to be affected by
label noise samples in high label noise level，which
is the truth in most machine learning problems. For
example， compared with the linear model，
Ref.［15］ attributed the mediocre performance of
NN to low intra-rater and inter-rater reliability in hu⁃
man experts，which is exactly the impact of label
noise.

（3）Comparing the results of RF with that of
Adaboost，we can find that the performance of Ada⁃
boost is extremely poor at first under a large number
of label noise samples，but it rises rapidly when
more label noise samples are removed. Their perfor⁃
mance becomes similar when the label noise remov⁃
al ratio exceeds 60%. The bagging algorithm can
usually get better results than the boosting algo⁃
rithm under label noise samples， because more

Table 3 Performance comparison under different strate⁃

gies

Strategy
LR
NN
RF
Ada
XGB

Non⁃CL
72.13%(0.342)

68.03%(0.426)
77.05%(0.305)
62.30%(0.475)
75.41%(0.292)

Original⁃CL
69.45%(0.364)
68.89%(0.398)
78.05%(0.266)

70.05%(0.362)
78.86%(0.256)

Rectified⁃CL
70.83%(0.351)
69.83%(0.360)

77.67%(0.273)
74.17%(0.300)

80.00%(0.242)

Fig.6 Performance on different label noise removal ratios
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weights will be put on these misclassified samples in
boosting learning to induce worse performance，
while they are actually noisy samples.

（4） In general，when the label noise removal
ratio is less than 60%，XGBoost and RF all show
obvious and stable advantages on air traffic complex⁃
ity evaluation. The optimal result with the accuracy
of 81.67% and the MAE of 0.233 is achieved by the
XGBoost algorithm with the label noise removal ra⁃
tio of 40%. We can conclude that combining an ex⁃
cellent algorithm with appropriate label noise remov⁃
al strategy may achieve better result.

In order to observe the ultimate performance of
the classifiers，we calculate the optimal results in
Table 4. We can find that XGBoost with a label
noise removal ratio of 40% attains the greatest accu⁃
racy and MAE，nevertheless its optimal MAE-ordi⁃
nal is achieved under label noise removal ratio of
10%. Similarly， performance of the other algo⁃
rithms gets the optimum when they generally corre⁃
spond to different label noise removal ratios. This
phenomenon reminds us that the classifiers have dif⁃
ferent processing methods to deal with the label
noise. That means it is almost impossible to get an
identical label noise ratio suitable for all classifiers
or evaluation metrics. Therefore，we should take
the label noise removal ratio as an adjustable param ⁃
eter in future air traffic complexity evaluation pro⁃
cess to seek the best performance we expect.

4 Conclusions

In this paper，we firstly consider the label noise
problem in air traffic complexity evaluation and pro⁃
pose a confident learning and XGBoost-based meth⁃
od to evaluate air traffic complexity under label

noise. In the process of label noise cleansing，the la⁃
bel noise dataset is filtered when labels and their
probability distributions are input. In order to con⁃
tain more label noise information，we calculate sev⁃
eral label probability distributions by using some
classification algorithms and then incorporate them
to form an overall label noise dataset. We define
two indicators，NST and NV，to reflect the noisy
level of each sample. Label noise samples are then
removed by different ratios according to their noisy
level to obtain datasets with certain cleanliness. Fi⁃
nally，we run classifiers on these datasets to get the
best performance. The experimental results verify
the effectiveness of the label noise removal strate⁃
gy，and the accuracy of 81.67%（MAE of 0.233）is
achieved by the XGBoost algorithm under label
noise removal ratio of 40%.

The proposed method can be used for support⁃
ing airspace sector partition，dynamic airspace and
air traffic flow management，etc. We will construct
more complexity related features for describing air
traffic complexity and carry out suitable features se⁃
lection to eliminate redundant features to achieve
better results in future study.
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基于置信学习和XGBoost的空中交通复杂度含噪评估

张明华 1，谢 华 1，张东方 2，葛家明 2，陈海燕 2

（1.南京航空航天大学民航学院，南京 211106，中国；

2.南京航空航天大学计算机科学与技术学院/人工智能学院，南京 211106，中国）

摘要：空中交通复杂度是空中交通运行的关键指标，在空中交通管理中发挥重要作用，例如空域重新配置、空中

交通流量管理和空中交通管制员分配。近年来，许多机器学习技术通过构建从复杂度相关因素到空中交通复杂

度标签的映射来评估空中交通复杂度。但是复杂度标签的质量问题常常被忽略，导致不佳的空中交通复杂度评

估效果。本文针对空中交通复杂度样本中存在的标签噪声，提出了一种基于置信学习和 XGBoost的方法来评估

标签噪声背景下的空中交通复杂度。置信学习过程通过不同分类算法得到的标签概率分布过滤掉标签噪声样

本，XGBoost用于在不同的标签噪声过滤比率数据集上训练健壮且高性能的空中交通复杂度评估模型。对来自

中国广州空域扇区的真实数据集进行实验，结果表明：适当的标签噪声移除策略和 XGBoost可以有效缓解标签

噪声影响，从而使得空中交通复杂度评估模型取得更好的性能。

关键词：空中交通复杂度评估；标签噪声；置信学习；XGBoost
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