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Abstract: Recently, inverse problems have attracted more and more attention in computational mathematics and

become increasingly important in engineering applications. After the discretization, many of inverse problems are

reduced to linear systems. Due to the typical ill-posedness of inverse problems, the reduced linear systems are often ill-

posed, especially when their scales are large. This brings great computational difficulty. Particularly, a small

perturbation in the right side of an ill-posed linear system may cause a dramatical change in the solution. Therefore,

regularization methods should be adopted for stable solutions. In this paper, a new class of accelerated iterative

regularization methods is applied to solve this kind of large-scale ill-posed linear systems. An iterative scheme

becomes a regularization method only when the iteration is early terminated. And a Morozov’s discrepancy principle is

applied for the stop criterion. Compared with the conventional Landweber iteration, the new methods have

acceleration effect, and can be compared to the well-known accelerated y-method and Nesterov method. From the

numerical results, it is observed that using appropriate discretization schemes, the proposed methods even have better

behavior when comparing with v-method and Nesterov method.
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0 Introduction

During the past fifty years, inverse problems
have attracted more and more attention and have ex-
tensive applications in engineering and mathematical

fields, such as Cauchy problem'"™", geophysical ex-

ploration'*’, steady heat conduction problems'”®’, in-

verse Lol

scattering problems

[10-11]
’

image process-

ing and reconstructon of radiated noise

[12]

source ' etc. After the discretization, many of them

are reduced to the ill-posed linear system as
Axr=10b (1)
Here by the ill-posed linear system, it means
that the condition number of the coefficient matrix
AER""" is much larger compared with the square
of the scale of A. Denote by the quasi-solution of
Eq.(1). There are three cases for " : (i) The sys-

*Corresponding author, E-mail address: huangqin@nuaa.edu.cn.
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tem admits a unique solution, then &' is the exact
solution; (ii) the system has more than one solu-
tion, then 2" is the one of minimal 2-norm among
all solutions; (iii) the system has no solution, then
x" is least squares solution. It is easy to verify that
x " is unique.

Practically, & often comes from measurements
or discretization, and contains inevitably noise. In-
stead of &, assume we only have noisy data 6° at
hand, satisfying

6—bl<0o (2)
where ¢ is the noisy level and ||- || the standard Eu-
clidean norm of a vector. Therefore, in this paper
we are devoted to find an approximate solution to
the polluted linear system

Ax=10b’ (3)

Similarly, denote by &’ the unique quasi-solu-
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tion corresponding to the noisy data &°.

For an ill-posed system, a small disturbance in
b will lead to much large change in solution x. This
brings quite large difficulty when one solves the sys-
tem numerically, especially when the scale is large.
Thus, it is useless to use the conventional numerical
methods to solve system (1) or (3). In fact, by us-
ing the singular value decomposition (SVD), the so-

lutions of Eq.(1) or (3) can be written formally as'*

ulb Culb

= > - v, 2’ = > v,

i=1 i i=1 0;

where {( o}, u;, v;) } are the singular values and singu-
lar vectors of the coefficient matrix A, satisfying
0, =0,= =0, >0,0,<1 for i=F and some in-
dex £A<<r, ris the rank of A. Therefore ”x" — ' ”
may be quite big even if||b" — b || is small, and regu-
larization methods are needed for obtaining a stable
approximate solution to 2’ and thus also to x .
Generally speaking, there are three groups of
regularization methods: truncated singular value de-
composition (TSVD)"¥'™ | variational regulariza-

tion methods!*!"

and iterative regularization meth-
ods "*#". For large-scale ill-posed problems, TSVD
leads to computational difficulty in that the vast stor-
age and the heavy computing burden. The most fa-
mous variational regularization method is Tikhonov’s
regularization method'®’. Recently, a projection
fractional Tikhonov regularization method is pro-
posed®. However, during the determination of the
regularization parameters, a forward problem has to
be solved for each regularization parameter, which
makes the calculation very large. Iterative regulariza-
tion methods have the advantages of low computa-
tional cost and simple forms. Thus for large-scale
problem, we prefer to use iterative regularization
methods, where iterative schemes are proposed to

solve the following optimization problem.

minJ(x)= %”AI*FSHZ 4)

The most classic iterative regularization meth-
od should be Landweber iteration'**’. For the lin-
ear system (3), Landweber iteration is defined by

Ty =x,— AN (x;) (5)
where VJ (x)=A" (Az,— b")and Ar€(0, 2/ A |I").

Eq. (5) can be viewed as a discrete analog of

the following first order evolution equation.
a(t)=—VJ(x(1)) ©)
x(0)=x

where ¢ 1s the introduced artificial time, and x, an

initial guess to . The formulation (6) is known as

an asymptotical regularization, or the Showalter’ s

method**”. Tt is well known that the Landweber

(28] Thus, it is no

method converges quite slowly
wonder that accelerating strategies are adopted in
practice. In recent years, there has been increasing
evidence to show that the second order iterative
methods exhibit remarkable acceleration properties
for ill-posed problems. The most well-known meth-
ods are the Levenberg-Marquardt method™”, the it-
eratively regularized Gauss-Newton method™', the
Nesterov acceleration scheme'™' and the v-meth-
od *'. Here, the iterative schemes are proposed by
discretizing the following second order evolution sys-
(32)

tem

Z()tnp()z(t)+ A" Ax(1)= A"’ 1E€(1,0)

x(10)=x0,2(1)=
(7)

where (&, &) 1s the prescribed initial data, >0,
uniformly bounded, is the damping parameter, and
may or may not depends on the time z. Note that the
system (7) becomes a regularization method only
when the evolution process is stopped in advance.
Denote by T the terminating time. Then it plays the
role of the regularization parameter and should be
chosen properly. Here, the Morozov’s discrepancy
principle is as the stopping criterion

|Az(T)— b || <o (8)
where 7 1s a fixed positive number. Like Landweber
method, the well-known Nesterov acceleration
method can be viewed as the discrete analog of
Eq.(7). In fact, for all fixed T > 0"*"

lim max\r”xk —z(hVw )” =0

00 0< < T/Va
where x () is the solution of Eq.(7) with »(¢)=a/t,
and { x;} the sequence, generated by the Nesterov’s
scheme with parameters (a, w).
The purpose of this paper is to apply the sec-
ond order dynamical system (7), together with the

discrepancy principle (8) for the choice of the termi-
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nating time, to the ill-posed linear system (3).
Three aspects are expected to be addressed: (i) On
one hand, unlike the existing work, where the exact
solution is often assumed to exist, the system here
may have no solution, and thus the existing theoreti-
cal results could not be used directly; on the other
hand, benefiting by the linearity and the finite di-
mension of the problem, compared with the theoret-
ical analysis in the literature, arguments here can be
largely simplified. (ii) Effect of the magnitude of
the problem on the iterations of different methods is
investigated. (iii) Effect of the ill-posedness extent
of the problem on the iterations of different methods

1s discussed.

1 Theoretical Analysis of Continu-

ous Second-Order Flow

In this section, we are devoted to give a series
of theoretical analysis on the second order dynamical
system (7). Without loss of generality, we set 7, =
0 when p=constant, and 7,= 1 when 7 1s time-de-
pendent; set x£,—0 when 7 is time-dependent.
Moreover, for a dynamical damping parameter, we
take = (1+ 2s5)/¢ (the constant s> —1/2) as an
example for the theoretical analysis. Theoretical re-
sults for other choice such as 7= 1/V/¢ could be an-
alyzed similarly, and we omit here.

The definition of a regularized solution is first
introduced.

Definition Let x(7)ER” be the solution of
System (7). Then,x(T?), equipped with an appro-
priate terminating time T°=T(8,6°), is called a
second order asymptotical regularization solution of
Eq.(7) if 2(T’) converges (strongly) to " in R”
as 0> 0.

1.1 Existence and uniqueness of solution trajec-

tory

About the global existence and uniqueness of
solution to Eq.(7), the following results can be ob-
tained.

Theorem 1 For any pair (&, 2,)ER" X R",
there exists a unique solution x ()& C= ([ #,, o0 ), R")

for the second order dynamical system (7). More-

over, x depends continuously on the data &°.

Proof Denote z=(x,2)", 2o ="(x0,2,)" and
rewrite Eq.(7) as a first order differential system.

2(1)=Bz(1)+ b2 F(z(1)) 9)
whereB—( 0,‘ ! ), b—( 0 )and]

—ATA =01 A
denotes the identity matrix of order n. Since A is a
bounded matrix and # is uniformly bounded, B is a
uniformly bounded matrix. Hence, F(-) is a global
Lipschitz

functional. By the Cauchy-Lipschitz-

Picard theorem"®**

, the first order autonomous sys-
tem (9) has a global unique solution z for any given
initial data z,, and then the second order dynamical
system (7) has a global unique solution x for any
given initial data (x,,2,)". Since A" (6’ — Ax) is
linear with respect to &, and »p=constant or (1-+
25s)/t, both of them are infinitely differentiable,
which gives x(-)& C* ([ ¢y, o), R"). Moreover, the
continuous dependence of x on the data &’ can be
easily verified.

Next the relationship between the solution x ()
of Eq.(7) and the exact one " is shown. For the fu-
ture use, denote by S the set of minimizers of J ()
which can be characterized by

S={xcR"VJ(x)=0}

It is easy to conclude that S is a non-void
closed convex subset of R". Moreover, for the state-
ment of clarity, the discussion is divided into two
parts, corresponding to the noise-free data & and
noisy data &° respectively.

1.2 Limiting behavior of the solution for noise -

free data

Define the modified energy functional of x as

2

E(t)=J(x(2)—J(x" )+ %Hx(z)” (10)

Case I p=constant and #, =0, that is, we
consider the following system

F()+t () + AT Ax(t)=A"b 1€(0,00)
. (1)
x(0)=x,,x2(0)= x,
Proposition 1 Let x be the solution of
Eq.(11). Then, the following properties hold
() x(-)eL”([0,00),R")

(i) #(- )€ L™ ([0,00),R)NL*([0,90),R")
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and thus
x(t)—>0 ast—> 0
(iii) #(-)€ L7 ([0,0),R")  and
ast—> o

(iv) lim VJ (2(2))=0

x(t)—>0

(V) J(x(t)—J(x")=o0(t ') ast—co
(i) Differentiating E(z) of Eq.(10)
and using the system (11) to give

Proof

E()=—qlla(0)] (12)

which means E () is non-increasing, and thus
E(1)<E(0) (13)
holds for all 7=0. Consequently, x(-)&

L”([0,00),R") by combining Eq.(13) and the co-
erciveness of J(+), 1.e.
lim J(x)=—+o0

= +oo
(ii) On one hand, due to Eq.(13), we have
()| < 20E()+ (2" H<2(E0)+J(x"))
which gives x(-)€L”([0,20),R"). On the other
hand, by using the decrease and non-negativity of

E(¢), the limit E...= }LI?C E (1) exists. Therefore,

integrating both sides in Eq.(12), we obtain
S E(0)—E.
[NEGRE

‘dt= ——F—— <o
Ui
which yields z(-)e L*([ 0, c0 ), R").
In addition, according to a classical result, 2 (+)&
L=([0,00),R)NL*([0,00),R") implies x(7)—>0

as t—> o.

(iii) From Eq.(11), we obtain
F(t)=—na(t)+ A" (b— Ax (1))
which gives immediately that ()L~ ([ 0,00), R").
By differentiating the first equation of Eq.(11),
we obtain
()t 9i(t)y=—A"Azx ()2 g(r)  (14)
Denote by y=74. Then Eq.(14) is reduced to
() +ny()=g(z)
which implies y— 0 as t— oo by noticing that >0
and g(¢)—>0ast—>oo. Thus #(7)—> 0 as 1—> co.
(iv) By using Eq.(11) again, we have
VI(z(1)=A"(Ax(t)—b)= —3(t)— ni(1)
which gives }Lr?c VJ(x(t))=0 by using the facts in
properties (ii) and (iii).

(v) Define

h(z):g||x(z>—x*||2+ (E(0)a(t)—z'y (15)
By elementary calculations, we derive that
h()y=y (@().x(t)—z") + (F().ax(t)—
)+ lalF=lalF— Il Az()— b6l
which implies that (by noting E (¢)=—p||4(2)||")

E(2)+ gE(t)+ gﬁ(z):o
or

JE()=—E (1)~ L h(1)

Integrate the above equation on [0, T ] to ob-

tain, together with the non-negativity of E(7)

j:Eu)dz:%(E(O)—E(T)H%(h(m—
MT)S SE0)+ 5 (HO)= K(T))  (16)

Due to properties (i)—C(ii), x(z),x () are uni-
formly bounded, and so is h(z). Hence, letting
T —>coin Eq.(16), we obtain

ij(z)dz<oo (17)

Since E(¢)1s non-increasing, we deduce that
jT T T

> — > —
mE(z)dz/ 5 E(T)= 5

(J(x(T))—J(z"))
(18)

Using Eq.(17), the left side of Eq.(18) tends

to 0 when which

lim #(J(z(£))=J(x"))/2=0 or

T—co, implies  that

J(x(1))—
J(x")=o0(r ") as t—>co. The proof is completed.
Case Il 75(¢)=(1-+2s)/tand ¢, =1
Now, we consider the following evolution sys-

tem

1+ 25
A

x(1l)=x,,2(1)=0

a(t)+ (1) +ATAx(1)=A"b 1€(1,00)

(19)

Proposition 2 Let x be the solution of
Eq.(19). Then, for s=1, the following properties
hold

() x(-)eL™([1,00),R")

(i) (- )EL"([1,00),R) NL*([1,00),R")
and thus x(z)—> 0 as t— co

(ii) Z(-)eL=([1,00),R")

(iv) J(x(2))—J(x" )= O(¢ *)ast—> o

Proof (i) Differentiating E(z) of Eq.(10)
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and using the system (19) to give

1+2s, .
N & ()P

The remaining proof for property (i) is similar

E(t)=— (20)

to that for property (i) of proposition 1.

(ii) Like the statements in the proof of proposi-
YEL®([1,00),R"), the limit
show x(-)€&

tion 1, we have (-

Ex;:}irpE(t) exists. Now we

L*([1,00),R"). To the end, define
. 1 .
Ev()=¢ ((a(0)=J(x))+ 5|2 () =2+

2

Ol + 26— |Jae)—a’

By using the convexity inequality J(z )=

J(x)HVJ(x), 2" —x)forallz€R" and Eq.(19),
it 1s not difficult to show that
E()<—2(s— Della)| (21)

Hence, for s=1, E,(£)< 0 and thus E, () is
non-increasing. Together with the fact that E,(7)=

0 forallt=0, the limit £, (o0 ):= [li_rr; E. (1) exists.

Integrating both sides in Eq.(21) , we obtain

that
[l ae< [ el ar<

E (1)~ E ()

2(s— 1)
which yields z(-)&€L*([1,c0),R"). Combining it
and x(-)eL”([1,00),R") to

x(t)—>0ast—>co.

< oo (22)

conclude that

(iii) From Eq.(19), we obtain
1+ 2s
F(1)=— t ‘

x(t)+ A" (b— Ax(1))

which gives immediately that #(-)& L= ([ 1, 00), R").

(iv) Define

E, ()= (J(x(1))—

J(x")+
2 )|

(23)

1
E”Zs(.r(l)*
By using the convexity inequality J(x')=
J(x)+(VJ(x),

have

" —x) and Eq.(19) again, we

E. ()< —2(s— (I (x(t)—J(z"))

Similar to E,(+), for s=1, E,(+) is non-in-
creasing, and the limit }IYQ E,(t) exists. Therefore,
from Eq.(23), there holds

£(J(x()=J(x )<SE(1)<E:(1)

or

0<J(x(t)—J(x")<E,(1)t"
which gives J(x(¢1))— J(x N=0(r?) as 1—> 0.
The proof is completed.
Remark 1 Compared with the first order

method (6),

jective functional is J(

where the convergence rate of the ob-
x(1)—J(x")=0(r"), the
convergence rates J(x(t)—J(xH)=0(r") in
and J(x()—J(xH=0(?) in

proposition 2 show that the second order dynamical

proposition 1
systems (11) and (19) can achieve higher conver-
gence order, indicating the second order dynamical
system has a property of acceleration.

Now we are in a position to give the conver-
gence result of the dynamical solution x(z) of
Eq.(7) with the noise-free data. Recall that x" is
the minimum norm minimizer of Eq.(4) with the ex-
act data 6. Then, formally, we have

=(A"A) A"b
where the superscript “ 7 means the Moore-Pen-
rose inverse.

Theorem 2 Letx(-)be the solution of Eq.(7)
with the exact data, then

limx(t)=x' (24)

i

Proof Let {o;; u;,v;} ;= be the singular sys-
tem for matrix A, i.e. we have Av,=o,u; and
A"u;=o;v;, with ordered singular values [[A || =
=0, > 0.

Let’ s first consider the case with fixed damp-

0120y =0

ing parameter . Similar to Ref.[32], we distin-
guish three different cases: (a) The overdamped
case: 7> 2|lA|l, (b) the underdamped case: there
is an index j, such that 20, ., <<9p<<20,, and (c)

the critical damping case: an index j, exists such

that »= 2¢;. For simplicity, we only consider the
overdamped case. The other two cases can be stud-

ied similarly. According to Ref.[ 32], we have
x(1)=(I—A"Ag(t,A"A))x, +

p(t,A"A) &, + g(1,ATA)A"b (25)
where

1 2 ) A
g(t,0)=—=[1— e M — e

A NE =V 7’ — 42
¢(t,/1):*;(e B M

27" — 42
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and A, =

7 ITR a7
2 T 2 :

Together with theorem 1, it is straightforward
to check that x(z) defined Eq.(25) is a unique solu-
tion of Eq. (11). Moreover, we can deduce from
Eq.(25) that x(2)>(A"A)" A"b as t—> oo by not-
ing that
Ay Ayt A A

V't 4A o \/7]2*4/16

Next we consider the case with dynamic damp-

1—Ag(t,0)=

ing parameter 7(z)=(1-4 2s)/z.

Ref.[35], we have (note that 2, =0)

x(t)=(—A"Ag,(t,ATA))x,+ g, (t,ATA)A"b
(27)

According to

where
J.(VAt)

1—2I'(s+1) ———
U (VA

g:(1,A)= (28)

A
I'(+) and J,(-) denote the Gamma function and the

Bessel function of first kind of order s, respective-
ly. As in the first case, x(7) defined in Eq.(27) is
the unique solution of Eq.(19). By using the as-

ymptotic
J( \ﬁt)—\/z ( \ﬁz);cos(\ﬁz‘,n(zsjfl) +
O 1) [—> 0 (29)
Vat

for any fixed A>0, we conclude that x(7)—>
(A"A)" A"b as t— co. The prool is completed.

1.3 Regularization properties for the noisy da-

ta

In section 1.2, we study the limiting behaviors
of the solution for the second dynamical system (7)
with noise-free data. It is shown that for exact data
b, theoretically, the larger the time 7 is, the more
accurate the solution x(¢) is. Therefore, we are
readily given a satisfactory approximate solution
z(THtox' fora large enough time T . However,
due to the inevitable noise, practically, it is not the
case. In the case that only a noisy data &° is avail-
able, the system (7) cannot produce a reasonable
approximate solution unless the terminating time T~
is chosen appropriately. In other word, the asymp-

totic process should be terminated in advance.

In this subsection, we investigate the regular-
ization property of the dynamic solution x°(7) of sys-
tem (7), equipped with the Morozov’s discrepancy
principle for selecting the terminating time 7.

We define the Morozov’ s discrepancy function
as

x(T)= | Az’ (T )= b’ll = =0 (30)
where x°(¢) is the solution of system (7), and z a
fixed positive number.

Proposition 3 For any >0, let the initial
guess x, 1s chosen satisfying ||A.ro — b || =176.
Then x(T) has at least one zero point.

Proof First, by theorem 1, it is easy to con-
clude that y(-) is continuous over [ £, c©). Recall
that &’ is the minimum norm minimizer of Eq.(4).
Then, formally, like x "we have

' =(ATA) AT

Applying theorem 2 to x° (7) yield

lim 2°(1) =2a°
which implies

lim x(T) =||Ax’ — &’ || — 20 =—20<<0 (31)

7o

By combing Eq.(31) and x(#,)= || Az, — 6 || —
70 >0 as well as the continuity, we conclude that
the nonlinear equation y(7T) = 0 admits at least one
root.

Now we are in a position to present a conver-
gence result in the following.

Theorem 3 Let x°(z) be the solution of the
dynamic system (7). Denote by T"= T (68, 8°) the
first zero point of y(T). Then x°(T") converges to
x inR"as 6> 0.

Proof As 6—>0, T(68,4°) may go to infinity
or may have a finite accumulation point. We first con-
sider the situation that T (8, 6°) — co. Recall that A
is a m X n matrix with the rank ». We proceed to the
proof with two possible cases: (1)r=n; (il)r <n.

(i) In the case of r=n,A" A is full rank, and
thus

' =(ATA) AT6 2= (ATA) AW (32)
By using triangle inequality,
2(T) —x' ” < HIA(T*) —x’

|

5 +
x’—x ”

(33)
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On one hand, by applying the convergence in
theorem 2, we have

lim || 27 (T") — 2| =0 (34)

On the other hand, from Eq.(32)

o { 1

o =" = feann lare = o < e
(35)

Combine Egs.(33)—(35) to conclude that

lim[|2*(T") —a" || =0

(ii) For the case »<#n, both the systems (1)
and (3) have infinite solution, and &, x’ are the
minimum norm solutions, respectively. Let {8,,} be
a sequence converging to 0 as n— co, and let ™ be
a corresponding sequence of noisy data with
Hba” —b ” <§,. For a pair of (8,, 6", denote by T,
the corresponding terminating time point determined
from the discrepancy principles x(7T) = 0. Accord-
ing to the continuity of 2" (¢), for any e>0 and

large enough n and thus T,, there exists a point

T < T such that
|« (1) =2 (T)|| < e/3 (36)
From the continuity of 2" (-) due to theorem
2, for large enough 7, there holds
|2 (T) — 2(T)|| <e/3 (37)

Moreover, by applying theorem 2 again, we

obtain, for large enough T (because T, could be
large enough)

x(T)—x2"||<e/3 (38)
[

Then by combing Egs. (36) — (38) and using
triangle inequality
|l () =" [ < [« (1) =2 (D) | +

|« (1) = 2(T) ||+ ||« (1) — =

There is a number 2, such that for any n = n,
||.r§”(T,f) —x' ” <e
Since e is arbitrary, we arrive at the conver-
gence of xo( T))tox "asn—>co.
For the case that T'(4, #°) has a finite accumu-

lation point, we can use arguments similar to those
in Theorem 2.4 of Ref.[36], and omit here. The

proof is completed.

2 Iterative Schemes

For the numerical implementation, this section
is devoted to present several iterative schemes for
the resolution of problem (4). To the end, we first
convert the system (7) into

i) =q(0)
§(1) =—n()q(t) + A" (6" — Ax(2)) (39)
x ()= 20,2 ()= 20

or

o 0 1 x (1) 0\,
YO={_ara n(z)l)(q(z))+(A"‘b°“)_

A(t)y(t)+b

x(ty)=x0, 2 (1)) =0
Then, the numerical discretization of the differ-
ential system (39) or (40) together with the dis-
crepancy principle produces second order iterative
regularization methods. The damped symplectic in-
attractive since these

tegrators are extremely

schemes are closely related to the canonical transfor-

mations™”’

, and the trajectories of the discretized
second flow are usually more stable for its long-term
performance. Applying the symplectic Euler method
to the system (39), we obtain the iterative scheme
at the kth step.
¢ =g DAY — ALY — p(2)gY)
="+ At (41)
x’=x,q¢" =,
where o' =x°(1,),¢" = q(t,), and At is the step-
size. By elementary calculations, scheme (41) can
be expressed as the form of following three-term
semi-iterative method.
=t a(x—a"") +wA (6 — Ax") (42)
where a, = (1— Am(#))and w, = (AL ).
For the high order Symplectic methods, the
Stérmer-Verlet scheme can be considered as

P At ) At R
qk.1,/z:qk77n(tk)qk}1/Z+7AT(1107AI&)

=t A[qwl/z

; At P At R
qk.1:q/z<1/5_777([k+1)qk<1,z+7AT(ba_

Azt

0 . 0__
T — Xo,q — Xy
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Like Eq.(41), the iteration (43) can also be Ki=A(t)y,+b
rewritten in the form of Eq.(42), but with parame- Ko =A(t )y + MK, /2)+ b
e N K= A1)y DIK,/2)+ b
L ; 47
1= < 0(n) (A K= At )y AK )+ b “n
@ A7 N At As
1+ = a(a) 1+ —n(a) yM:yﬁ?(KﬁzKﬁzKﬁm)
In Ref.[35] , a modified Stormer-Verlet Yo ="{x0,d)"

scheme is proposed as
At i1 AL X
qk\ 1/_:qk_777(lk)q“ 1/z+ 7AT([)D_AIk)

=t Az‘q””z

ot = ZAl‘aquHl/z

qk+l :q/?‘*’l/zi %77([&- 1)qk+l/z+ (44)
At
7Al(b"*Av“1)
2’ =x0,q' =12,
. 1— Am(t . .
with a, = HTZZE;; The third step in Eq. (44)

is inspired by the Nesterov’ s method. Unlike the

Symplectic Euler method and Stérmer-Verlet
scheme, the scheme (44) expresses the recurrence
form as
= tax =)+ w AT (6 —

A(x' +a(z' —2"1))) k=1,2,--- (45)

with parameters
At
1+7rz(m) 1+7v(n)

As indicated by theorems 2 and 3, theoretical~
ly, for the noise-free data or noisy data with small
noisy level, the iteration should go far enough for a
good enough approximate solution x*. In this case,
it requires long time behavior for the iteration. Keep
in mind that we are solving ill-posed problems.
Therefore, when the data contains noise with not
small noisy level, the iteration should stop in ad-
vance before the solution gets worse. Therefore,
the accuracy itself in the discretization of system
(39) or (40) plays more important role than the re-
quirement of the long behavior. We can apply high
order Runge-Kutta methods for this purpose. As an
example, the classical fourth order Runge-Kutta

method is adopted as

We note that other Runge-Kutta methods are
possible.

After the discretization, the regularization pa-
rameter is reduced to the iterative step k. For the
schemes (41), (43), (44) and (47), the Moro-
zov’ s discrepancy principle reads: find the smallest
k satisfying

|Az,— || <o (48)

3 Numerical Results

Two numerical examples are presented to dem-
onstrate the effectiveness of the iterative regulariza-
tion methods (41), (43), (44) and (47) for the
resolution of the system (3). For the sake of sim-
plicity, the symplectic Euler method (41) is termed
as SE1 or SE2, corresponding to a constant or time-
dependent damping parameter respectively. Similar-
ly, the Stormer-Verlet method is termed as SV1 or
SV2, the Modified Stérmer-Verlet method 1s
termed as MSV1 or MSV2, and the Runge-Kutta
method 1s termed as RK1 or RK2. In the following
experiments, the maximal iterative number N, 1s
set as 5 000.

For the comparison of the proposed methods
with the existing work, we introduce such classical
iteration methods as LLandweber method, conjugate
gradient method (termed as CG), v-method and the
Nesterov’ s method. For the problem (3), the
Landweber method (5) reads

I/J+1:.l'k7AtAT(Axkibg‘) (49)
with 0<CAz<C2/ || A |F. The v-method has the form
=g (22 — wemwigr (50)

withpy, =0, 0, =(4v+2)/(dv+ 1), k=1,2, -
B (b—1)(2k—3)(2k+ 20— 1)
ekt 2v—1)(2h+ 4v— 1)(2k+ 2v—3)
(2b+ 20— 1)(k+v—1)
(h+ 20— 1)(2k+ 4v—1)

W, —
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where x ', x" are the initial values, and g,=

A" (Ax" —b°). In Eq.(50) , w,.m plays the role of
normalization, and can be set as 1/||A ||2
The Nesterov’s method is defined by
k—1
kta—1
witha>3, 0<w<w,m., and 2=0,1, 2, ---.

Like the methods in section 2, the Morozov’s

2=t (x'—2"") —wg (51)

discrepancy principle (48) is applied to Landweber
method, CG method, v-method and the Nesterov

method for the choice of iterative numbers.
3.1 Examplel

In the first example, a Fredholm integral equa-
tion of the first kind of convolution type in one space

dimension is considered as***"

(Kf )= [ k(z—2) f(2)d(x) =g(x)

0<<ax<<l1 (52)

where the kernel function k(z)=Cexp(—x°/2y")

with positive constants C and y. Using numerical in-

tegration, Eq.(52) is discretized to a linear system
as

Kf=d (53)

(“Z;)“) A=)

(d],=g(ih),h=1/n,1<i,j<<n. In the experi-

ments of this subsection, fix y=10.05, C=1/y.

where [ K ] ,thCexp(—

The dependence of the condition number of the ma-
trix K on the magnitude is plotted in Fig. 1 which
shows that K is ill-posed as long as n is slightly
large. It is indicated in Fig.1 that the problem has
the exponential ill-posedness.

For having the data in the right side of

Eq.(53) , we assume the exact solution f'=1.

20

15

10

lg (Condition number)

0 20 40 60 80
n

Fig.1 Dependence of the condition number of the matrix K

onn

Then d =Kf ', and the noisy data is constructed
through

[a’"]iz (1+2*(rand (1)— 0.5)*0") [d ],

i=1,.n

Then the noise level of the measurement data
is calculated by 6= ||d5 — d|| With matrix K and
data d ", the iterative methods (41), (43)—(44),
and (47) are applied to solve the noisy system

Kf=d" (54)

In all methods, we simply set the initial values

fo=0, f,=0 and the magnitude n=100. For an

approximate solution f*, its accuracy is assessed by
using the relative error as

L2err=|[f =" ||/|IF°

In addition, IterN is used to denote iterative

number where the iteration stops.

The effect of the step-size Az on the iterative
number and the solution accuracy is firstly investi-
gated. To the end, fix 8'=1%,7=1.03. The re-
sults are shown in Figs.2 and 3. Fig.2 corresponds
to constant damping parameters (5= 0.6 for SE1,
7=0.8 for SV1, =0.1 for MSV1 and = 0.1 for
RK1) while Fig.3 corresponds to a variable damp-
ing parameter (5(z)==4/¢ for all methods). It is

3000
2500
2000
1500

TterN

1000

500

(a) Dependence of IterN on Az
0.045

—— SE1

——SV1
MSV1

—— RK1

0.040 -
£ 0.035F
(5}

N
~ 0.030}

0.025+

0.020 1 .

L L

00 02 04 06 08 1.0 12

At
(b) Dependence of L2err on At

Fig.2 Dependence of IterN and L2err on Az with 7 as a

constant
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(b) Dependence of L2err on At

Fig.3 Dependence of IterN and 1.2err on Az with (7 )=4/r

concluded that for all methods, on one hand, the
larger Az is, the faster the iteration is; on the other
hand, its too big values may lead to the divergence.
In the following experiments, we set Ar=0.7 for
SE1, Ar=0.8 for SV1, Ar=0.4 for MSV1, At=
1.1 for RK1, At=10.6 for SE2, At=0.8 for SV2,
Ar=0.4 for MSV2, Ar=1.1 for RK2. They are
all approximately optimal.

Next we investigate the effect of the parameter
7, used in discrepancy principle, on the iterative
number and the solution accuracy. For this pur-
pose, fix 0'=1%. The results are plotted in
Figs.4 and 5 which show that on the whole, the
larger the value of 7 is, the less the iterative num-
ber is and the worse the solution accuracy is. In the
remaining part, without specific statement, we set
r=1.03.

We further compare the iterative schemes with
the existing Landweber method, CG method, v-
method and Nesterov method. We set Az= 0.3 for
Landweber method, a=3, w=0.16 for Nesterov
method, Az=0.7, »=20.6 for SE1, Ar=0.8, 7=
0.8 for SV1, Ar=0.4,7=0.1 for MSV1, Ar=
1.1,7=0.1 for RK1, Ar=0.6 for SE2, Ar=0.8

for SV2, Ar=0.4 for MSV2, Ar=1.1 for RK2.

T
(b) Dependence of L2err on ©

Fig.4 Dependence of IterN and L2err on ¢ with » as a

constant
2 —o— SE2
——SV2
MSV2
20 ——RK2
E 15+ p =
10
5 H h h h

1.0 1.1 1.2 1.3 1.4 1.5
T

(a) Dependence of IterN on ©

0.060
L —o— SE2
0.055 —e— SV2
0.050 MSV2
—— RK2
E 0.045
2 0.040
0.035F
0.030 ocet
0.025

1.0 1.1 1.2 13 1.4 1.5
T

(b) Dependence of L2err on ¢
Fig.5 Dependence of IterN and L.2err on ¢ with ()=
4/t

Moreover, set z=1.03 in all methods. The itera-
tive numbers and relative errors in approximate solu-
tions for different methods and different noise levels
are given in Table 1, from which we conclude that
with properly chosen parameters, all the mentioned

methods are stable and can produce satisfactory solu-
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Table 1 Comparison between different methods in Example 1

8%
Methods 0.1 1 5
1L 2err TterN L2err TterN L2err TterN
Landweber 2.210 2e—2 112 3.5997 4e—2 28 6.643 8e—2 19
CG 1.899 0e—2 7 4.484 5e—2 3 9.707 2e—2 2
y=0.5 2.260 6e—2 541 2.347 9e—2 55 7.699 8e—2 12
y=20.7 9.654 9e—3 99 2.606 0e—2 19 7.356 5e—2 6
v=1.0 1.775 8e—2 33 3.781 7e—2 9 7.055 8e—2 4
y=1.5 2.214 5e—2 25 4.987 9e—2 6 7.367 Te—2 3
y=2.0 2.224 0e—2 27 5.193 3e—2 6 7.418 5e—2 3
Nesterov 2.020 8e—2 44 4.996 le—2 9 8.645 le—2 3
SE1 2.108 3e—2 34 2.747 6e—2 17 6.740 9e—2 16
SV1 1.993 7e—2 49 2.586 3e—2 28 6.963 8e—2 16
MSV1 1.578 8e—2 52 3.302 0e—2 16 8.1759e—2
RK1 1.047 2e—2 49 4.343 1le—2 15 8.028 2e—2
SE2 1.459 1le—2 56 3.2859e—2 13 6.363 Se—2
SV2 1.303 0e—2 53 2.5152e—2 16 6.978 8e—2 14
MSV2 2.2121e—2 40 5.211 2e—2 9 8.7252e—2 4
RK2 2.073 2e—2 16 3.717 0e—2 6 6.451 Oe—2
tions. Compared with the Landweber method, all N~
the other mentioned methods have acceleration ef- 251 :ffggxgger
fect. On the whole, for all methods, the larger the z 207 _‘_gleisztemv
noise level is, the worse the solution accuracy is, 2 s}
but the less the required iterative number is. Com- 0L, . .
pared with SE1, SV1, MSV1 and RK1 methods, e e — S————

SE2, SV2, MSV2 and RK2 have better behavior,
such as fewer iterative steps or better solution accu-
racy. Particularly, Table 1 shows that RK2 possess-
es the best behavior in both the iterative number and
solution accuracy.

Finally we study the effect of the magnitude
of the problem on different iterative schemes. We
fix 6/=1%, r=1.03.

Landweber method, v-method, Nesterov method

The experiments for

and RK2 are implemented repeatedly to solve
Eq.(54) with n= 25, 50, 100, 200, 400, 800,
1 600 and 3 200, respectively, and the results are
shown in Fig.6. It is indicated from the Fig.6 that
when the order of the matrix increases, the accura-
cy of the solution and the number of iteration steps
change little. Moreover, Fig.6 also makes it clear
that the RK2 performs better than three existing
methods, especially when the scale of the problem

increases.

3
0 500 1000150020002 50030003 500
n

(a) Dependence of IterN on the scale »

0.050
—— Landweber
0.045 —— v-method
Nesterov
E 0.040 —— RK2
N %*
— 0.035 Rt
o
0.030
0.02

5 I L L L N L
0 500 1000150020002 50030003 500
n

(b) Dependence of L2err on the scale n

Fig.6 Dependence of IterN and L 2err on the scale n

3.2 Example 2

In the second example, the well-known ill-
posed Hilbert matrix is taken to model the operator as

1 1 1
L ) "
1 1 1

A= 2 3 4 n+ 1
1 1 1 1
n nt+1 n+2 2n— 1
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The dependence of the condition number of the
matrix A on its scale is plotted in Fig.7, which
shows that the condition number of A increases dra-
matically and thus A is ill-posed. Morevoer, like Ex-
ample 1, assume again the exact solution x' =
(1,1, ---,1)" and compute Az for the right side &.
The noisy data &° is constructed like Example 1.
Then iterations (41), (43)—(44) and (47) are ap-

plied to solve

Axz=10¥° (55)
150
)
E
El 100 |
=]
]
g
g 50f
<)
&0
0 i i i
0 20 40 60 80

n

Fig.7 Dependence of condition number of A on the scale n

The dependence of the iterative numbers and
the accuracy in approximate solutions obtained with
iterations in Section 3 on parameters Az and z are
plotted in Figs. 8—11. Specifically, Fig.8 is for
constant » (with »=0.2 for SE1, »=0.2 for

2 000
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TterN
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At
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(b) Dependence of L2err on At

Fig.8 Dependence of IterN and L2err on Az with 7 as a

constant

SV1, =0.1 for MSV1, p=0.1 for RK1) while
Fig.9 is for y(z)=4/t (both with z=1.03) ;
Fig.10 is for constant 5 (with Az=0.8, 7=0.2
for SE1, Ar=0.9, =0.2 for SV1, Ar=
0.5,7=20.1 for MSV1, Ar=1.2, »=0.1 for
RK1) while Fig.11 is for p(z)=14/t ( with Ar=
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Z
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Fig.9 Dependence of IterN and 1.2err on Az with 9(¢)=4/¢
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35} :g]\% 0.7 for SE2, Ar=0.9 for SV2, Ar=0.5 for
30} _,._Iﬁ@’z MSV2, Ar=1.1 for RK2). In all figures, &' =

Z 25k 1% . Similar conclusion to those for Example 1 can
3
T o20f be drawn from these figures.
15 Similar to those in Example 1, a comparison
10 : : : : between different methods for different noise data is
1.0 1.1 1.2 13 14 1.5
T displayed in Table 2, where Az=0.3 for Landwe-
D d f IterN
(&) Dependence of lterN on ¢ ber method, a=3, w=10.2 for Nesterov method,
0.205
B Ar=0.8,7=0.2 for SE1, Ar=0.9,9=0.2 for
0.195 - MSV2
—— RK2 SV1, Ar=0.5,7=0.1 for MSV1, Ar=1.2,9=
=
§ 0185 ¢ 0.1 for RK1, Az=0.7 for SE2, Ar=0.9 for SV2,
0.175 ] [ Ar=0.5 for MSV2, Ar=1.1 for RK2. Also, =
1.03 in all methods. It can be concluded from Table
0.165

1.0 1.1 12 13 14 1.5
T

(b) Dependence of L2err on ©
Fig.11 Dependence of TterN and L2err on ¢ with (7)=4/¢

2 that with properly chosen parameters, all the men-
tioned methods are stable and can produce satisfacto-

ry solutions.

Table 2 Comparison between different methods in Example 2

0%
Methods 0.1 1 o
L2err IterN L2err IterN L2err IterN

Landweber 8.124 2e—2 2461 1.766 5e—1 126 3.450 7e—1 11
CG 6.941 6e—2 4 1.389 le—1 3 2.918 4e—1 2
v=0.5 2.953 9e—2 545 8.479 6e—2 60 2.0654e—1 12
v=0.7 7.4753e—2 130 1.476 7e—1 28 2.946 Oe—1 8
v=1.0 8.104 4e—2 82 1.758 0e—1 18 3.472 2e—1 5
v=1.5 8.171 0e—2 98 1.789 2e—1 21 3.434 2e—1 6
v=2.0 8.171 2e—2 113 1.750 0e—1 25 3.488 0e—1 6
Nesterov 7.866 6e—2 159 1.755 5e—1 32 3.494 9e—1 8
SE1 8.138 8e—2 180 1.440 2e—1 29 1.275 0e—1 29
Sv1 8.141 4e—2 160 1.206 3e—1 46 1.330 7e—1 28
MSV1 8.190 3e—2 136 1.403 3e—1 42 2.669 2e—1 11
RK1 7.916 7e—2 66 1.321 6e—1 21 2.354 le—1 5
SE2 7.870 6e—2 114 1.696 6e—1 24 2.541 0e—1 14
SV2 7.949 4de—2 86 1.6857e—1 19 2.704 6e—1 10
MSV2 8.159 0e—2 148 1.779 1le—1 32 3.513 1e—1 8
RK2 8.121 3e—2 67 1.760 0e—1 14 3.116 8e—1 6

The effect of the problem magnitude on differ-
ent iterative schemes is also studied. The experi-
ments for Landweber method, v-method, Nesterov
method and RK2 are implemented repeatedly to
solve Eq. (55) with 6'=1%,r=1.03, and n=

25, 50, 100, 200, 400, 800, 1600 and 3 200, re-
spectively, whose results are shown in Fig.12.
Again we can see from Fig.12 that the RK2 per-
forms the best when compared with the existing

classical methods.
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