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Abstract: Recently，inverse problems have attracted more and more attention in computational mathematics and
become increasingly important in engineering applications. After the discretization，many of inverse problems are
reduced to linear systems. Due to the typical ill-posedness of inverse problems，the reduced linear systems are often ill-
posed，especially when their scales are large. This brings great computational difficulty. Particularly，a small
perturbation in the right side of an ill-posed linear system may cause a dramatical change in the solution. Therefore，
regularization methods should be adopted for stable solutions. In this paper，a new class of accelerated iterative
regularization methods is applied to solve this kind of large-scale ill-posed linear systems. An iterative scheme
becomes a regularization method only when the iteration is early terminated. And a Morozov’s discrepancy principle is
applied for the stop criterion. Compared with the conventional Landweber iteration， the new methods have
acceleration effect，and can be compared to the well-known accelerated ν-method and Nesterov method. From the
numerical results，it is observed that using appropriate discretization schemes，the proposed methods even have better
behavior when comparing with ν-method and Nesterov method.
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0 Introduction

During the past fifty years，inverse problems
have attracted more and more attention and have ex‑
tensive applications in engineering and mathematical
fields，such as Cauchy problem［1-3］，geophysical ex‑
ploration［4］，steady heat conduction problems［5-6］，in‑
verse scattering problems［7-9］， image process‑
ing［10-11］， and reconstructon of radiated noise
source［12］ etc. After the discretization，many of them
are reduced to the ill-posed linear system as

Ax= b (1)
Here by the ill-posed linear system，it means

that the condition number of the coefficient matrix
A∈ Rm× n is much larger compared with the square
of the scale of A. Denote by the quasi-solution of
Eq.（1）. There are three cases for x†：（i）The sys‑

tem admits a unique solution，then x† is the exact
solution；（ii） the system has more than one solu‑
tion，then x† is the one of minimal 2-norm among
all solutions；（iii）the system has no solution，then
x† is least squares solution. It is easy to verify that
x† is unique.

Practically，b often comes from measurements
or discretization，and contains inevitably noise. In‑
stead of b，assume we only have noisy data bδ at
hand，satisfying

‖b- bδ‖≤ δ (2)
where δ is the noisy level and  ⋅ the standard Eu‑
clidean norm of a vector. Therefore，in this paper
we are devoted to find an approximate solution to
the polluted linear system

Ax= bδ (3)
Similarly，denote by x δ the unique quasi-solu‑
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tion corresponding to the noisy data bδ.
For an ill-posed system，a small disturbance in

b will lead to much large change in solution x. This
brings quite large difficulty when one solves the sys‑
tem numerically，especially when the scale is large.
Thus，it is useless to use the conventional numerical
methods to solve system（1）or（3）. In fact，by us‑
ing the singular value decomposition（SVD），the so‑
lutions of Eq.（1）or（3）can be written formally as［13］

x† = ∑
i= 1

r uTi b
σi
v i,x δ= ∑

i= 1

r uTi bδ

σi
v i

where { ( σ i，u i，v i ) } are the singular values and singu‑
lar vectors of the coefficient matrix A，satisfying
σ1 ≥ σ2 ≥ ⋯≥ σr> 0，σi≤ 1 for i≥ k and some in‑
dex k≤ r，r is the rank of A. Therefore  x δ- x†

may be quite big even if  bδ- b is small，and regu‑
larization methods are needed for obtaining a stable
approximate solution to x δ and thus also to x†.

Generally speaking，there are three groups of
regularization methods：truncated singular value de‑
composition （TSVD）［13-15］， variational regulariza‑
tion methods［16-17］ and iterative regularization meth‑
ods［18-21］. For large-scale ill-posed problems，TSVD
leads to computational difficulty in that the vast stor‑
age and the heavy computing burden. The most fa‑
mous variational regularization method is Tikhonov’s
regularization method［22］. Recently， a projection
fractional Tikhonov regularization method is pro‑
posed［23］. However，during the determination of the
regularization parameters，a forward problem has to
be solved for each regularization parameter，which
makes the calculation very large. Iterative regulariza‑
tion methods have the advantages of low computa‑
tional cost and simple forms. Thus for large-scale
problem，we prefer to use iterative regularization
methods，where iterative schemes are proposed to
solve the following optimization problem.

min J ( x )= 1
2  Ax- bδ

2 (4)

The most classic iterative regularization meth‑
od should be Landweber iteration［24-25］. For the lin‑
ear system（3），Landweber iteration is defined by

x k+ 1 = x k-Δt∇J ( x k ) (5)
where ∇J ( x k )=AT ( Ax k- bδ ) and Δt∈( 0，2/ A 2 ).

Eq.（5） can be viewed as a discrete analog of

the following first order evolution equation.

{ẋ ( t )=-∇J ( x ( t ) )x ( 0 )= x 0
(6)

where t is the introduced artificial time，and x 0 an
initial guess to x†. The formulation（6）is known as
an asymptotical regularization，or the Showalter’s
method［26-27］. It is well known that the Landweber
method converges quite slowly［28］. Thus，it is no
wonder that accelerating strategies are adopted in
practice. In recent years，there has been increasing
evidence to show that the second order iterative
methods exhibit remarkable acceleration properties
for ill-posed problems. The most well-known meth‑
ods are the Levenberg‑Marquardt method［29］，the it‑
eratively regularized Gauss‑Newton method［30］，the
Nesterov acceleration scheme［31］ and the ν-meth‑
od［28］. Here，the iterative schemes are proposed by
discretizing the following second order evolution sys‑
tem［32］.

{ẍ ( t )+ η ( t ) ẋ ( t )+ ATAx ( t )= ATbδ t ∈ ( t0,∞ )

x ( t0 )= x 0,ẋ ( t0 )= x 0
.

(7)
where ( x 0，ẋ 0 ) is the prescribed initial data，η> 0，
uniformly bounded，is the damping parameter，and
may or may not depends on the time t. Note that the
system（7） becomes a regularization method only
when the evolution process is stopped in advance.
Denote by T the terminating time. Then it plays the
role of the regularization parameter and should be
chosen properly. Here，the Morozov’s discrepancy
principle is as the stopping criterion

 Ax (T )- bδ ≤ τδ (8)
where τ is a fixed positive number. Like Landweber
method， the well-known Nesterov acceleration
method can be viewed as the discrete analog of
Eq.（7）. In fact，for all fixed T > 0［27］

lim
ω→ 0

max
0≤ k≤ T/ ω

 x k- x ( k ω ) = 0

where x ( ⋅ ) is the solution of Eq.（7）with η ( t )= α/t，
and { x k } the sequence，generated by the Nesterov’s
scheme with parameters ( α，ω ).

The purpose of this paper is to apply the sec‑
ond order dynamical system（7），together with the
discrepancy principle（8）for the choice of the termi‑
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nating time， to the ill-posed linear system （3）.
Three aspects are expected to be addressed：（i）On
one hand，unlike the existing work，where the exact
solution is often assumed to exist，the system here
may have no solution，and thus the existing theoreti‑
cal results could not be used directly；on the other
hand，benefiting by the linearity and the finite di‑
mension of the problem，compared with the theoret‑
ical analysis in the literature，arguments here can be
largely simplified.（ii） Effect of the magnitude of
the problem on the iterations of different methods is
investigated.（iii）Effect of the ill-posedness extent
of the problem on the iterations of different methods
is discussed.

1 Theoretical Analysis of Continu‑

ous Second‑Order Flow

In this section，we are devoted to give a series
of theoretical analysis on the second order dynamical
system（7）. Without loss of generality，we set t0 =
0 when η=constant，and t0 = 1 when η is time-de‑
pendent； set ẋ 0 = 0 when η is time-dependent.
Moreover，for a dynamical damping parameter，we
take η= (1+ 2s ) t（the constant s>-1/2）as an
example for the theoretical analysis. Theoretical re‑
sults for other choice such as η= 1/ t could be an‑
alyzed similarly，and we omit here.

The definition of a regularized solution is first
introduced.

Definition Let x ( t )∈ R n be the solution of
System（7）. Then，x (T δ )，equipped with an appro‑
priate terminating time T δ= T ( δ，bδ )，is called a
second order asymptotical regularization solution of
Eq.（7） if x (T δ ) converges（strongly） to x† in R n

as δ→ 0.

1. 1 Existence and uniqueness of solution trajec‑

tory

About the global existence and uniqueness of
solution to Eq.（7），the following results can be ob‑
tained.

Theorem 1 For any pair ( x 0，ẋ 0 )∈ R n× R n，

there exists a unique solution x ( ⋅ )∈ C∞ ( [ t0，∞ )，R n )
for the second order dynamical system（7）. More‑

over，x depends continuously on the data bδ.
Proof Denote z=( x，ẋ )T，z0 = ( x 0，ẋ o )T and

rewrite Eq.（7）as a first order differential system.
ż ( t )= Bz ( t )+ b͂≜ F ( z ( t ) ) (9)

where B= ( )0 I
-ATA -η ( t ) I ，b͂= ( )0

ATbδ
and I

denotes the identity matrix of order n. Since A is a
bounded matrix and η is uniformly bounded，B is a
uniformly bounded matrix. Hence，F ( ⋅ ) is a global
Lipschitz functional. By the Cauchy-Lipschitz-
Picard theorem［33-34］，the first order autonomous sys‑
tem（9）has a global unique solution z for any given
initial data z0，and then the second order dynamical
system（7） has a global unique solution x for any
given initial data ( x 0，ẋ 0 )T. Since AT ( bδ- Ax ) is
linear with respect to x，and η=constant or ( 1+
2s ) /t， both of them are infinitely differentiable，
which gives x ( ⋅ )∈ C∞ ( [ t0，∞ )，R n ). Moreover，the
continuous dependence of x on the data bδ can be
easily verified.

Next the relationship between the solution x ( t )
of Eq.（7）and the exact one x† is shown. For the fu‑
ture use，denote by S the set of minimizers of J ( ⋅ )
which can be characterized by

S={ x ∈ R n |∇J ( x )= 0 }
It is easy to conclude that S is a non-void

closed convex subset of R n. Moreover，for the state‑
ment of clarity，the discussion is divided into two
parts，corresponding to the noise-free data b and
noisy data bδ respectively.

1. 2 Limiting behavior of the solution for noise‑

free data

Define the modified energy functional of x as

E ( t )= J ( x ( t ) )- J ( x† )+ 1
2  ẋ ( t ) 2 (10)

Case I η=constant and t0 = 0，that is，we
consider the following system

{ẍ ( t )+ ηẋ ( t )+ ATAx ( t )= ATb t ∈ ( 0,∞ )

x ( 0 )= x 0,ẋ ( 0 )= x 0
. (11)

Proposition 1 Let x be the solution of
Eq.（11）. Then，the following properties hold

（i）x ( ⋅ )∈ L∞ ( [ 0，∞ )，R n )
（ii）ẋ ( ⋅ )∈ L∞ ( [ 0，∞ )，R n )∩ L2 ( [ 0，∞ )，R n )
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and thus
ẋ ( t )→ 0 as t→∞

（iii）ẍ ( ⋅ )∈ L∞ ( [ 0，∞ )，R n ) and ẍ ( t )→ 0

as t→∞
（iv）lim

t→∞
∇J ( x ( t ) )= 0

（v）J ( x ( t ) )- J ( x† )= o ( t-1 ) as t→∞
Proof （i） Differentiating E ( t ) of Eq.（10）

and using the system（11）to give
Ė ( t )=-η ẋ ( t ) 2 (12)

which means E ( t ) is non-increasing，and thus
E ( t )≤ E ( 0 ) (13)

holds for all t≥ 0. Consequently， x ( ⋅ )∈
L∞ ( [ 0，∞ )，R n ) by combining Eq.（13）and the co‑
erciveness of J ( ⋅ )，i.e.

lim
‖x‖→+∞

J ( x )=+∞

（ii）On one hand，due to Eq.（13），we have

 ẋ ( t ) 2 ≤ 2( E ( t )+ J ( x† ) )≤ 2( E ( 0 )+ J ( x† ) )
which gives ẋ ( ⋅ )∈ L∞ ( [ 0，∞ )，R n ). On the other
hand，by using the decrease and non-negativity of
E ( t )，the limit E∞：= lim

t→∞
E ( t ) exists. Therefore，

integrating both sides in Eq.（12），we obtain

∫0
∞
‖ẋ ( t )‖2dt= E ( 0 )- E∞

η
<∞

which yields ẋ ( ⋅ )∈ L2 ( [ 0，∞ )，R n ).
In addition，according to a classical result，ẋ ( ⋅ )∈

L∞ ( [ 0，∞ )，R n )∩ L2 ( [ 0，∞ )，R n ) implies ẋ ( t )→ 0

as t→∞.
（iii）From Eq.（11），we obtain

ẍ ( t )=-ηẋ ( t )+ AT ( b- Ax ( t ) )
which gives immediately that ẍ ( ⋅ )∈L∞ ( [ 0，∞ )，R n ).

By differentiating the first equation of Eq.（11），

we obtain
x ( t )+ ηẍ ( t )=-ATAẋ ( t )≜ g ( t ) (14)

Denote by y= ẍ. Then Eq.（14）is reduced to
ẏ ( t )+ ηy ( t )= g ( t )

which implies y→ 0 as t→∞ by noticing that η> 0
and g ( t )→ 0 as t→∞. Thus ẍ ( t )→ 0 as t→∞.

（iv）By using Eq.（11）again，we have
∇J ( x ( t ) )= AT ( Ax ( t )- b )=- ẍ ( t )- ηẋ ( t )

which gives lim
t→∞
∇J ( x ( t ) )= 0 by using the facts in

properties（ii）and（iii）.
（v）Define

h ( t )= η
2  x ( t )- x†

2
+〈ẋ ( t ),x ( t )- x†〉(15)

By elementary calculations，we derive that
ḣ ( t )= η〈ẋ ( t ),x ( t )- x†〉+〈ẍ ( t ),x ( t )-
x†〉+‖ẋ ( t )‖2 =‖ẋ ( t )‖2-‖Ax ( t )- b‖2

which implies that（by noting E ( t )=-η ẋ ( t ) 2
）

Ė ( t )+ ηE ( t )+ η
2 ḣ ( t )= 0

or

ηE ( t )=- Ė ( t )- η
2 ḣ ( t )

Integrate the above equation on [ 0，T ] to ob‑
tain，together with the non-negativity of E ( t )

∫0
T

E ( t ) dt = 1
η
( E ( 0 )- E (T ) )+ 1

2 ( h ( 0 )-

h (T ) )≤ 1
η
E ( 0 )+ 1

2 ( h ( 0 )- h (T ) ) (16)

Due to properties（i）—（ii），x ( t )，ẋ ( t ) are uni‑
formly bounded， and so is h ( t ). Hence， letting
T →∞ in Eq.（16），we obtain

∫0
∞
E ( t ) dt<∞ (17)

Since E ( t ) is non-increasing，we deduce that

∫
T/2

T

E ( t ) dt≥ T
2 E (T )≥

T
2 ( J ( x (T ) )- J ( x† ) )

(18)
Using Eq.（17），the left side of Eq.（18）tends

to 0 when T →∞， which implies that
lim
t→∞

t ( J ( x ( t ) )- J ( x† ) ) /2= 0 or J ( x ( t ) )-

J ( x† )= o ( t-1) as t→∞. The proof is completed.
Case II η ( t )= (1+ 2s ) /t and t0 = 1
Now，we consider the following evolution sys‑

tem

{ẍ ( t )+ 1+ 2s
t

ẋ ( t )+ ATAx ( t )= ATb t ∈ (1,∞ )

x ( 1 )= x 0,ẋ ( 1 )= 0

(19)
Proposition 2 Let x be the solution of

Eq.（19）. Then，for s≥ 1，the following properties
hold

（i）x ( ⋅ )∈ L∞ ( [ 1，∞ )，R n )
（ii）ẋ ( ⋅ )∈ L∞ ( [ 1，∞ )，R n) ∩ L2 ( [ 1，∞ )，R n)

and thus ẋ ( t )→ 0 as t→∞
（iii）ẍ ( ⋅ )∈ L∞ ( [ 1，∞ )，R n )
（iv）J ( x ( t ) )- J ( x† )= O ( t-2 ) as t→∞
Proof （i） Differentiating E ( t ) of Eq.（10）

982



No. 6 GONG Rongfang, et al. Solving Severely Ill-Posed Linear Systems with Time Discretization Based…

and using the system（19）to give

Ė ( t )=- 1+ 2s
t
‖ẋ ( t )‖2 (20)

The remaining proof for property（i） is similar
to that for property（i）of proposition 1.

（ii）Like the statements in the proof of proposi‑
tion 1，we have ẋ ( ⋅ )∈ L∞ ( [ 1，∞ )，R n )，the limit
E∞：= lim

t→∞
E ( t ) exists. Now we show ẋ ( ⋅ )∈

L2 ( [ 1，∞ )，R n ). To the end，define

E 1 ( t )= t 2 ( J ( x ( t ) )- J ( x† ) )+ 1
2  2( x ( t )- x† )+

tẋ ( t )
2
+ 2( s-1 )  x ( t )- x†

2

By using the convexity inequality J ( x† )≥
J ( x )+( ∇J ( x )，x†- x ) for all x∈R n and Eq.（19），

it is not difficult to show that
Ė 1 ( t )≤-2( s- 1 ) t  ẋ ( t ) 2 (21)

Hence，for s≥ 1，Ė 1 ( t )≤ 0 and thus E 1 ( ⋅ ) is
non-increasing. Together with the fact that E 1 ( t )≥
0 for all t≥ 0，the limit E 1 (∞ )：= lim

t→∞
E 1 ( t ) exists.

Integrating both sides in Eq.（21），we obtain
that

∫1
∞

 ẋ ( t ) 2 dt≤ ∫1
∞
t  ẋ ( t ) 2 dt≤

E 1 ( 1 )- E 1 (∞ )
2( s- 1 ) <∞ (22)

which yields ẋ ( ⋅ )∈ L2 ( [ 1，∞ )，R n ). Combining it
and ẋ ( ⋅ )∈ L∞ ( [ 1，∞ )，R n ) to conclude that
ẋ ( t )→ 0 as t→∞.

（iii）From Eq.（19），we obtain

ẍ ( t )=- 1+ 2s
t

ẋ ( t )+ AT ( b- Ax ( t ) )

which gives immediately that ẍ ( ⋅ )∈L∞ ( [ 1，∞ )，R n ).
（iv）Define

E 2 ( t )= t 2 ( J ( x ( t ) )- J ( x† ) )+
1
2  2s ( x ( t )- x† )+ tẋ ( t )

2 (23)

By using the convexity inequality J ( x† )≥
J ( x )+( ∇J ( x )，x†- x ) and Eq.（19） again，we
have

Ė 2 ( t )≤-2( s- 1 ) t ( J ( x ( t )- J ( x† ) )
Similar to E 1 ( ⋅ )，for s≥ 1，E 2 ( ⋅ ) is non-in‑

creasing，and the limit lim
t→∞

E 2 ( t ) exists. Therefore，

from Eq.（23），there holds
t 2 ( J ( x ( t ) )- J ( x† ) )≤ E 2 ( t )≤ E 2 ( 1 )
or

0≤ J ( x ( t ) )- J ( x† )≤ E 2 ( 1 ) t-2

which gives J ( x ( t ) )- J ( x† )= O ( t-2 ) as t→∞.
The proof is completed.

Remark 1 Compared with the first order
method（6），where the convergence rate of the ob‑
jective functional is J ( x ( t ) )-J ( x† )=O ( t-1 )，the
convergence rates J ( x ( t ) )-J ( x† )= o ( t-1 ) in
proposition 1 and J ( x ( t ) )-J ( x† )= O ( t-2 ) in
proposition 2 show that the second order dynamical
systems（11） and（19） can achieve higher conver‑
gence order，indicating the second order dynamical
system has a property of acceleration.

Now we are in a position to give the conver‑
gence result of the dynamical solution x ( t ) of
Eq.（7）with the noise-free data. Recall that x† is
the minimum norm minimizer of Eq.（4）with the ex‑
act data b. Then，formally，we have

x† =( ATA )+ATb
where the superscript“ + ”means the Moore-Pen‑
rose inverse.

Theorem 2 Let x ( ⋅ ) be the solution of Eq.（7）
with the exact data，then

lim
t→∞

x ( t )= x† (24)
Proof Let { σj；u j，v j } ∞j= 1 be the singular sys‑

tem for matrix A， i. e. we have Av j= σju j and
ATu j= σjv j with ordered singular values  A =
σ1 ≥ σ2 ≥⋯≥ σr> 0.

Let’s first consider the case with fixed damp‑
ing parameter η. Similar to Ref.［32］，we distin‑
guish three different cases：（a） The overdamped
case：η> 2 A ，（b）the underdamped case：there
is an index j0 such that 2σj0 + 1 < η< 2σj0，and（c）
the critical damping case：an index j0 exists such
that η= 2σj0. For simplicity，we only consider the
overdamped case. The other two cases can be stud‑
ied similarly. According to Ref.［32］，we have

x ( t )= ( I- ATAg ( t,ATA ) ) x 0 +
ϕ ( t,ATA ) ẋ 0 + g ( t,ATA ) ATb (25)

where
ì

í

î

ï
ïï
ï

ï
ïï
ï

g ( t,λ )= 1
λ ( )1- λ1

η2 - 4λ
e-λ2 t+ λ2

η2 - 4λ
e-λ1 t

ϕ ( t,λ )=- 1
2 η2 - 4λ

( e-λ2 t- e-λ1 t )

(26)
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and λ1 =
η+ η2 - 4λ

2 ，λ2 =
η- η2 - 4λ

2 .

Together with theorem 1，it is straightforward
to check that x ( t ) defined Eq.（25）is a unique solu‑
tion of Eq.（11）. Moreover，we can deduce from
Eq.（25）that x ( t )→ ( ATA )+ATb as t→∞ by not‑
ing that

1- λg ( t,λ )= λ1
η2 - 4λ

e-λ2 t- λ2
η2 - 4λ

eλ1 t

Next we consider the case with dynamic damp‑
ing parameter η ( t )= (1+ 2s ) /t. According to
Ref.［35］，we have（note that ẋ 0 = 0）

x ( t )= ( I- ATAg2 ( t,ATA ) ) x 0 + g2 ( t,ATA ) ATb
(27)

where

g2 ( t,λ )=
1- 2sΓ ( s+ 1 ) Js ( λ t )

( λ t )s
λ

(28)

Γ ( ⋅ ) and Js ( ⋅ ) denote the Gamma function and the
Bessel function of first kind of order s，respective‑
ly. As in the first case，x ( t ) defined in Eq.（27） is
the unique solution of Eq.（19）. By using the as‑
ymptotic

Js ( λ t )= 2
π ( λ t )-

1
2 cos ( )λ t- π( 2s+1 )

4 +

O( )1
λ t

t→∞ (29)

for any fixed λ> 0， we conclude that x ( t )→
( ATA )+ATb as t→∞. The proof is completed.

1. 3 Regularization properties for the noisy da‑

ta

In section 1.2，we study the limiting behaviors
of the solution for the second dynamical system（7）
with noise-free data. It is shown that for exact data
b，theoretically，the larger the time t is，the more
accurate the solution x ( t ) is. Therefore，we are
readily given a satisfactory approximate solution
x (T * ) to x† for a large enough time T *. However，
due to the inevitable noise，practically，it is not the
case. In the case that only a noisy data bδ is avail‑
able，the system（7） cannot produce a reasonable
approximate solution unless the terminating time T ∗

is chosen appropriately. In other word，the asymp‑
totic process should be terminated in advance.

In this subsection，we investigate the regular‑
ization property of the dynamic solution x δ ( t) of sys‑
tem（7），equipped with the Morozov’s discrepancy
principle for selecting the terminating time T ∗.

We define the Morozov’s discrepancy function
as

χ (T )=‖Ax δ (T )- bδ‖- τδ (30)
where x δ ( t) is the solution of system（7），and τ a
fixed positive number.

Proposition 3 For any τ> 0，let the initial
guess x 0 is chosen satisfying  Ax 0 - bδ ≥ τδ.
Then χ (T) has at least one zero point.

Proof First，by theorem 1，it is easy to con‑
clude that χ ( ⋅ ) is continuous over [ t0，∞ ). Recall
that x δ is the minimum norm minimizer of Eq.（4）.
Then，formally，like x†we have

x δ=( ATA )+ATbδ

Applying theorem 2 to x δ ( t ) yield
lim
t→∞

x δ ( t) = x δ

which implies
lim
T →∞

χ (T) =  Ax δ- bδ - τδ=-τδ< 0 (31)

By combing Eq.（31）and χ ( t0 )=  Ax 0- bδ -
τδ>0 as well as the continuity，we conclude that
the nonlinear equation χ (T) = 0 admits at least one
root.

Now we are in a position to present a conver‑
gence result in the following.

Theorem 3 Let x δ ( t) be the solution of the
dynamic system（7）. Denote by T ∗ = T (δ，bδ) the
first zero point of χ (T). Then x δ (T ∗) converges to
x† in R n as δ→ 0.

Proof As δ→0，T (δ，bδ) may go to infinity
or may have a finite accumulation point. We first con‑
sider the situation that T (δ，bδ) →∞. Recall that A
is a m× n matrix with the rank r. We proceed to the
proof with two possible cases：（i）r≥ n；（ii）r< n.

（i）In the case of r≥ n，ATA is full rank，and
thus

x† = (ATA) -1ATb x δ= (ATA) -1ATbδ (32)
By using triangle inequality，

 x δ ( )T ∗ - x† ≤  x δ ( )T ∗ - x δ +  x δ- x†

(33)
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On one hand，by applying the convergence in
theorem 2，we have

lim
δ→ 0  x δ ( )T ∗ - x δ = 0 (34)

On the other hand，from Eq.（32）

 x δ- x† ≤  ( )AAT
-1  AT ( )bδ- b ≤ 1

 A
δ

(35)
Combine Eqs.（33）—（35）to conclude that

lim
δ→ 0  x δ ( )T ∗ - x† = 0

（ii）For the case r< n，both the systems（1）
and（3） have infinite solution，and x†，x δ are the
minimum norm solutions，respectively. Let {δn} be
a sequence converging to 0 as n→∞，and let bδn be
a corresponding sequence of noisy data with

 bδn- b ≤ δn. For a pair of ( δn，bδn )，denote by T *
n

the corresponding terminating time point determined
from the discrepancy principles χ (T) = 0. Accord‑
ing to the continuity of x δn ( t)，for any ε> 0 and
large enough n and thus T ∗

n，there exists a point
T < T ∗

n such that

 x δn ( )T ∗
n - x δn ( )T ≤ ε/3 (36)

From the continuity of x δn ( ⋅ ) due to theorem
2，for large enough n，there holds

 x δn ( )T - x ( )T ≤ ε/3 (37)

Moreover，by applying theorem 2 again，we
obtain，for large enough T（because T *

n could be
large enough）

 x ( )T - x† ≤ ε/3 (38)

Then by combing Eqs.（36）—（38）and using
triangle inequality

 x δn ( )T ∗
n - x† ≤  x δn ( )T ∗

n - x δn ( )T +

 x δn ( )T - x ( )T +  x ( )T - x†

There is a number n1 such that for any n≥ n1

 x δn ( )T ∗
n - x† ≤ ε

Since ε is arbitrary，we arrive at the conver‑
gence of x δn (T ∗

n ) to x† as n→∞.
For the case that T (δ，bδ) has a finite accumu‑

lation point，we can use arguments similar to those
in Theorem 2.4 of Ref.［36］，and omit here. The
proof is completed.

2 Iterative Schemes

For the numerical implementation，this section
is devoted to present several iterative schemes for
the resolution of problem（4）. To the end，we first
convert the system（7）into

ì

í

î

ïï
ïï

ẋ ( )t = q ( )t
q̇ ( )t =-η ( )t q ( )t + AT ( bδ- Ax ( )t )
x ( t0 )= x 0,ẋ ( t0 )= ẋ 0

(39)

or
ì

í

î

ï
ïï
ï

ï
ïï
ï

ẏ ( t )= ( )0 I
-ATA -η ( t ) I ( )x ( t )

q ( t )
+ ( )0

ATbδ
≜

A( t ) y ( t )+ b͂
x ( t0 )= x 0,ẋ ( t0 )= x 0

(40)

Then，the numerical discretization of the differ‑
ential system（39） or（40） together with the dis‑
crepancy principle produces second order iterative
regularization methods. The damped symplectic in‑
tegrators are extremely attractive since these
schemes are closely related to the canonical transfor‑
mations［37］，and the trajectories of the discretized
second flow are usually more stable for its long-term
performance. Applying the symplectic Euler method
to the system（39），we obtain the iterative scheme
at the kth step.

ì

í

î

ïï
ïï

qk+ 1 = qk+Δt ( AT ( )bδ- Ax k - η ( tk ) qk )
x k+ 1 = x k+Δtqk+ 1

x 0 = x 0,q0 = ẋ 0

(41)

where x k= x δ ( tk )，qk= q ( tk )，and Δt is the step-

size. By elementary calculations，scheme（41） can
be expressed as the form of following three-term
semi-iterative method.
x k+ 1 = x k+ ak (x k- x k- 1) + ωkAT (bδ- Ax k) (42)
where ak=(1- Δtη ( tk ) ) and ωk=(Δt )2.

For the high order Symplectic methods， the
Störmer-Verlet scheme can be considered as
ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

qk+ 1/2 = qk- Δt
2 η ( tk ) q

k+ 1/2 + Δt
2 A

T ( bδ- Ax k )

x k+ 1 = x k+Δtqk+ 1/2

qk+ 1 = qk+ 1/2 - Δt
2 η ( tk+ 1 ) q

k+ 1/2 + Δt
2 A

T ( bδ-

Ax k+ 1 )
x 0 = x 0,q0 = ẋ 0

(43)
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Like Eq.（41），the iteration（43） can also be
rewritten in the form of Eq.（42），but with parame‑
ters

ak=
1- Δt

2 η ( tk )

1+ Δt
2 η ( tk )

,ωk=
(Δt )2

1+ Δt
2 η ( tk )

In Ref.［35］ ， a modified Störmer-Verlet
scheme is proposed as
ì

í

î

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

qk+1/2 = qk- Δt
2 η ( tk ) q

k+1/2+ Δt
2 A

T ( )bδ-Ax k

x k+1 = x k+Δtqk+1/2

v k+1 = x k+1+ 2Δtak+1qk+1/2

qk+1 = qk+1/2- Δt
2 η ( tk+1 ) q

k+1/2+

Δt
2 A

T ( )bδ-Av k+1

x 0 = x 0,q0 = ẋ 0

(44)

with ak=
1- Δtη ( tk )
1+ Δtn ( tk )

. The third step in Eq.（44）

is inspired by the Nesterov’s method. Unlike the
Symplectic Euler method and Störmer-Verlet
scheme，the scheme（44）expresses the recurrence
form as

x k+ 1 = x k+ ak (x k- x k- 1) + ωkAT ( bδ-
A( x k+ ak ( )x k- x k- 1 ) ) k= 1,2,⋯ (45)

with parameters

ak=
1- Δt

2 n ( tk )

1+ Δt
2 η ( tk )

,ωk=
(Δt )2

1+ Δt
2 η ( tk )

(46)

As indicated by theorems 2 and 3，theoretical‑
ly，for the noise-free data or noisy data with small
noisy level，the iteration should go far enough for a
good enough approximate solution x k. In this case，
it requires long time behavior for the iteration. Keep
in mind that we are solving ill-posed problems.
Therefore，when the data contains noise with not
small noisy level，the iteration should stop in ad‑
vance before the solution gets worse. Therefore，
the accuracy itself in the discretization of system
（39）or（40）plays more important role than the re‑
quirement of the long behavior. We can apply high
order Runge-Kutta methods for this purpose. As an
example， the classical fourth order Runge-Kutta
method is adopted as

ì

í

î

ï

ï

ï

ï
ïïï
ï

ï

ï

ï

ï
ïïï
ï

K 1 = A( tk ) y k+ b͂

K 2 = A( tk+ 1/2 ) ( y k+ΔtK 1/2 )+ b͂

K 3 = A( tk+ 1/2 ) ( y k+ΔtK 2/2 )+ b͂

K 4 = A( tk+ 1 ) ( y k+ΔtK 3 )+ b͂

y k+ 1 = y k+
Δt
6 ( K 1 + 2K 2 + 2K 3 + K 4 )

y0 = ( x 0,ẋ 0 )T

(47)

We note that other Runge-Kutta methods are
possible.

After the discretization，the regularization pa‑
rameter is reduced to the iterative step k. For the
schemes（41），（43），（44） and（47），the Moro‑
zov’s discrepancy principle reads：find the smallest
k satisfying

 Ax k- bδ ≤ τδ (48)

3 Numerical Results

Two numerical examples are presented to dem‑
onstrate the effectiveness of the iterative regulariza‑
tion methods（41），（43），（44） and（47） for the
resolution of the system（3）. For the sake of sim‑
plicity，the symplectic Euler method（41）is termed
as SE1 or SE2，corresponding to a constant or time-
dependent damping parameter respectively. Similar‑
ly，the Störmer-Verlet method is termed as SV1 or
SV2， the Modified Störmer-Verlet method is
termed as MSV1 or MSV2，and the Runge-Kutta
method is termed as RK1 or RK2. In the following
experiments，the maximal iterative number Nmax is
set as 5 000.

For the comparison of the proposed methods
with the existing work，we introduce such classical
iteration methods as Landweber method，conjugate
gradient method（termed as CG），ν-method and the
Nesterov’s method. For the problem （3）， the
Landweber method（5）reads

x k+ 1 = x k-ΔtAT ( Ax k- bδ ) (49)
with 0< Δt< 2/‖A‖2. The ν-method has the form

x k+ 1 = x k+ μk+ 1 (x k- x k- 1) - ω normωk g k (50)
with μ1 = 0，ω 1 = ( 4ν+ 2 )/( 4ν+ 1 )，k= 1，2，⋯

μk=
( k- 1 )( 2k- 3 )( 2k+ 2ν- 1 )

( k+ 2ν- 1 )( 2k+ 4ν- 1 )( 2k+ 2ν- 3 )

ωk= 4
( 2k+ 2ν- 1 )( k+ ν- 1 )
( k+ 2ν- 1 )( 2k+ 4ν- 1 )

986



No. 6 GONG Rongfang, et al. Solving Severely Ill-Posed Linear Systems with Time Discretization Based…

where x-1，x 0 are the initial values， and g k=
AT (Ax k- bδ). In Eq.（50），ω norm plays the role of

normalization，and can be set as 1  A 2.
The Nesterov’s method is defined by

x k+ 1 = x k+ k- 1
k+ α- 1 (x

k- x k- 1) - ωg k (51)

with α> 3，0< ω≤ ω norm and k= 0，1，2，⋯.
Like the methods in section 2，the Morozov’s

discrepancy principle（48） is applied to Landweber
method，CG method，ν-method and the Nesterov
method for the choice of iterative numbers.

3. 1 Example 1

In the first example，a Fredholm integral equa‑
tion of the first kind of convolution type in one space
dimension is considered as［38-39］

(Kf ) ( x )= ∫0
1
k (x- x′) f (x′) d (x′) = g ( x )

0< x< 1 (52)
where the kernel function k ( x )=Cexp (-x2/2γ2 )
with positive constants C and γ. Using numerical in‑
tegration，Eq.（52） is discretized to a linear system
as

Kf = d (53)

where [ K ] ij= h Cexp (- (( i- j ) h )2
2γ2 )，［f］i=f（ih），

[ d ] i= g ( ih )，h= 1 n，1≤ i，j≤ n. In the experi‑
ments of this subsection，fix γ= 0.05，C= 1 γ.
The dependence of the condition number of the ma‑
trix K on the magnitude is plotted in Fig. 1 which
shows that K is ill-posed as long as n is slightly
large. It is indicated in Fig. 1 that the problem has
the exponential ill-posedness.

For having the data in the right side of
Eq.（53），we assume the exact solution f † ≡ 1.

Then d= Kf †，and the noisy data is constructed
through

[d δ]
i
= (1+ 2*( rand ( 1 )- 0.5 )*δ′) [ d ] i

i= 1,⋯,n
Then the noise level of the measurement data

is calculated by δ=  d δ- d . With matrix K and
data d†，the iterative methods（41），（43）—（44），

and（47）are applied to solve the noisy system
Kf = d δ (54)

In all methods，we simply set the initial values
f0 = 0，f ̇ 0 = 0 and the magnitude n= 100. For an
approximate solution f k，its accuracy is assessed by
using the relative error as

L2err=  f k- f †  f †

In addition，IterN is used to denote iterative
number where the iteration stops.

The effect of the step-size Δt on the iterative
number and the solution accuracy is firstly investi‑
gated. To the end，fix δ′= 1%，τ= 1.03. The re‑
sults are shown in Figs. 2 and 3. Fig. 2 corresponds
to constant damping parameters（η= 0.6 for SE1，
η= 0.8 for SV1，η= 0.1 for MSV1 and η= 0.1 for
RK1）while Fig. 3 corresponds to a variable damp‑
ing parameter（η ( t )= 4/t for all methods）. It is

Fig.1 Dependence of the condition number of the matrix K
on n

Fig.2 Dependence of IterN and L2err on Δt with η as a
constant
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concluded that for all methods，on one hand，the
larger Δt is，the faster the iteration is；on the other
hand，its too big values may lead to the divergence.
In the following experiments，we set Δt= 0.7 for
SE1，Δt= 0.8 for SV1，Δt= 0.4 for MSV1，Δt=
1.1 for RK1，Δt= 0.6 for SE2，Δt= 0.8 for SV2，
Δt= 0.4 for MSV2，Δt= 1.1 for RK2. They are
all approximately optimal.

Next we investigate the effect of the parameter
τ，used in discrepancy principle，on the iterative
number and the solution accuracy. For this pur‑
pose， fix δ′= 1%. The results are plotted in
Figs. 4 and 5 which show that on the whole，the
larger the value of τ is，the less the iterative num‑
ber is and the worse the solution accuracy is. In the
remaining part，without specific statement，we set
τ= 1.03.

We further compare the iterative schemes with
the existing Landweber method，CG method， ν-

method and Nesterov method. We set Δt= 0.3 for
Landweber method，α= 3，ω= 0.16 for Nesterov
method，Δt= 0.7，η= 0.6 for SE1，Δt= 0.8，η=
0.8 for SV1，Δt= 0.4，η= 0.1 for MSV1，Δt=
1.1，η= 0.1 for RK1，Δt= 0.6 for SE2，Δt= 0.8
for SV2，Δt= 0.4 for MSV2，Δt= 1.1 for RK2.

Moreover，set τ= 1.03 in all methods. The itera‑
tive numbers and relative errors in approximate solu‑
tions for different methods and different noise levels
are given in Table 1，from which we conclude that
with properly chosen parameters，all the mentioned
methods are stable and can produce satisfactory solu‑

Fig.5 Dependence of IterN and L2err on τ with η ( t )=
4/t

Fig.3 Dependence of IterN and L2err on Δt with η ( t )= 4/t
Fig.4 Dependence of IterN and L2err on τ with η as a

constant
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tions. Compared with the Landweber method，all
the other mentioned methods have acceleration ef‑
fect. On the whole，for all methods，the larger the
noise level is，the worse the solution accuracy is，
but the less the required iterative number is. Com‑
pared with SE1，SV1，MSV1 and RK1 methods，
SE2，SV2，MSV2 and RK2 have better behavior，
such as fewer iterative steps or better solution accu‑
racy. Particularly，Table 1 shows that RK2 possess‑
es the best behavior in both the iterative number and
solution accuracy.

Finally we study the effect of the magnitude
of the problem on different iterative schemes. We
fix δ′= 1%， τ = 1.03 . The experiments for
Landweber method，ν -method，Nesterov method
and RK2 are implemented repeatedly to solve
Eq.（54）with n= 25，50，100，200，400，800，
1 600 and 3 200，respectively，and the results are
shown in Fig.6. It is indicated from the Fig.6 that
when the order of the matrix increases，the accura‑
cy of the solution and the number of iteration steps
change little. Moreover，Fig.6 also makes it clear
that the RK2 performs better than three existing
methods，especially when the scale of the problem
increases.

3. 2 Example 2

In the second example， the well-known ill-
posed Hilbert matrix is taken to model the operator as

A=

æ

è

ç

ç

ç

ç

ç

ç

ç
ç
çç
ç

ç

ç

ç

ö

ø

÷

÷

÷

÷

÷

÷

÷
÷
÷÷
÷

÷

÷

÷

1 1
2

1
3 ⋯ 1

n
1
2

1
3

1
4 ⋯ 1

n+ 1
⋯ ⋯ ⋯ ⋯
1
n

1
n+ 1

1
n+ 2 ⋯ 1

2n- 1

Table 1 Comparison between different methods in Example 1

Methods

Landweber
CG

ν= 0.5
ν= 0.7
ν= 1.0
ν= 1.5
ν= 2.0
Nesterov
SE1
SV1
MSV1
RK1
SE2
SV2
MSV2
RK2

δ′/%
0.1

L2err
2.210 2e-2
1.899 0e-2
2.260 6e-2
9.654 9e-3
1.775 8e-2
2.214 5e-2
2.224 0e-2
2.020 8e-2
2.108 3e-2
1.993 7e-2
1.578 8e-2
1.047 2e-2
1.459 1e-2
1.303 0e-2
2.212 1e-2
2.073 2e-2

IterN
112
7
541
99
33
25
27
44
34
49
52
49
56
53
40
16

1
L2err

3.597 4e-2
4.484 5e-2
2.347 9e-2
2.606 0e-2
3.781 7e-2
4.987 9e-2
5.193 3e-2
4.996 1e-2
2.747 6e-2
2.586 3e-2
3.302 0e-2
4.343 1e-2
3.285 9e-2
2.515 2e-2
5.211 2e-2
3.717 0e-2

IterN
28
3
55
19
9
6
6
9
17
28
16
15
13
16
9
6

5
L2err

6.643 8e-2
9.707 2e-2
7.699 8e-2
7.356 5e-2
7.055 8e-2
7.367 7e-2
7.418 5e-2
8.645 1e-2
6.740 9e-2
6.963 8e-2
8.175 9e-2
8.028 2e-2
6.363 5e-2
6.978 8e-2
8.725 2e-2
6.451 0e-2

IterN
19
2
12
6
4
3
3
3
16
16
3
7
8
14
4
5

Fig.6 Dependence of IterN and L2err on the scale n
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The dependence of the condition number of the
matrix A on its scale is plotted in Fig.7，which
shows that the condition number of A increases dra‑
matically and thus A is ill-posed. Morevoer，like Ex‑
ample 1， assume again the exact solution x† =
(1，1，⋯，1 )T and compute Ax† for the right side b.
The noisy data bδ is constructed like Example 1.
Then iterations（41），（43）—（44）and（47）are ap‑
plied to solve

Ax= bδ (55)

The dependence of the iterative numbers and
the accuracy in approximate solutions obtained with
iterations in Section 3 on parameters Δt and τ are
plotted in Figs. 8—11. Specifically，Fig. 8 is for
constant η （with η= 0.2 for SE1， η= 0.2 for

SV1，η= 0.1 for MSV1，η= 0.1 for RK1）while
Fig.9 is for η ( t )= 4/t （both with τ= 1.03）；

Fig.10 is for constant η（with Δt= 0.8，η= 0.2
for SE1， Δt= 0.9， η= 0.2 for SV1， Δt=
0.5，η= 0.1 for MSV1， Δt= 1.2， η= 0.1 for
RK1）while Fig. 11 is for η ( t )= 4/t（ with Δt=

Fig.10 Dependence of IterN and L2err on τ with η as a
constant

Fig.8 Dependence of IterN and L2err on Δt with η as a
constant

Fig.7 Dependence of condition number of A on the scale n

Fig.9 Dependence of IterN and L2err on Δt with η ( t )= 4/t

990



No. 6 GONG Rongfang, et al. Solving Severely Ill-Posed Linear Systems with Time Discretization Based…

0.7 for SE2， Δt= 0.9 for SV2， Δt= 0.5 for
MSV2，Δt= 1.1 for RK2）. In all figures，δ′=
1%. Similar conclusion to those for Example 1 can
be drawn from these figures.

Similar to those in Example 1，a comparison
between different methods for different noise data is
displayed in Table 2，where Δt= 0.3 for Landwe‑
ber method，α= 3，ω= 0.2 for Nesterov method，
Δt= 0.8，η= 0.2 for SE1， Δt= 0.9，η= 0.2 for
SV1，Δt= 0.5，η= 0.1 for MSV1，Δt= 1.2，η=
0.1 for RK1，Δt= 0.7 for SE2，Δt= 0.9 for SV2，
Δt= 0.5 for MSV2，Δt= 1.1 for RK2. Also，τ=
1.03 in all methods. It can be concluded from Table
2 that with properly chosen parameters，all the men‑
tioned methods are stable and can produce satisfacto‑
ry solutions.

The effect of the problem magnitude on differ‑
ent iterative schemes is also studied. The experi‑
ments for Landweber method，ν-method，Nesterov
method and RK2 are implemented repeatedly to
solve Eq.（55） with δ′= 1%，τ= 1.03， and n=

25，50，100，200，400，800，1 600 and 3 200，re‑
spectively， whose results are shown in Fig.12.
Again we can see from Fig.12 that the RK2 per‑
forms the best when compared with the existing
classical methods.

Fig.11 Dependence of IterN and L2err on τ with η ( t )= 4/t

Table 2 Comparison between different methods in Example 2

Methods

Landweber

CG

ν= 0.5

ν= 0.7

ν= 1.0

ν= 1.5

ν= 2.0

Nesterov

SE1

SV1

MSV1

RK1

SE2

SV2

MSV2

RK2

δ′/%
0.1

L2err

8.124 2e-2

6.941 6e-2

2.953 9e-2

7.475 3e-2

8.104 4e-2

8.171 0e-2

8.171 2e-2

7.866 6e-2

8.138 8e-2

8.141 4e-2

8.190 3e-2

7.916 7e-2

7.870 6e-2

7.949 4e-2

8.159 0e-2

8.121 3e-2

IterN

2461

4

545

130

82

98

113

159

180

160

136

66

114

86

148

67

1
L2err

1.766 5e-1

1.389 1e-1

8.479 6e-2

1.476 7e-1

1.758 0e-1

1.789 2e-1

1.750 0e-1

1.755 5e-1

1.440 2e-1

1.206 3e-1

1.403 3e-1

1.321 6e-1

1.696 6e-1

1.685 7e-1

1.779 1e-1

1.760 0e-1

IterN

126

3

60

28

18

21

25

32

29

46

42

21

24

19

32

14

5
L2err

3.450 7e-1

2.918 4e-1

2.065 4e-1

2.946 0e-1

3.472 2e-1

3.434 2e-1

3.488 0e-1

3.494 9e-1

1.275 0e-1

1.330 7e-1

2.669 2e-1

2.354 1e-1

2.541 0e-1

2.704 6e-1

3.513 1e-1

3.116 8e-1

IterN

11

2

12

8

5

6

6

8

29

28

11

5

14

10

8

6
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4 Conclusions

The newly developed second order asymptotic
system is applied to solve severely ill-posed linear
system. Compared with the existing work，a series
of theoretical results are presented and proved with
simplified arguments. Since the existing work for
second order system often assumes that it has exact
solution while our problem may have no solution，
the analysis is adjusted. On the whole，the fourth or‑
der Runge-Kutta method is better than the classical
ν-method and Nesterov method，and much faster
than Landweber method. Moreover，it is more obvi‑
ous when the scale and the ill-posedness of the sys‑
tem increase. The reason is that the system is ill-
posed and iteration should stop in advance before
the accuracy gets worse. Therefore，although it is
not a symplectic method，it has high precision. This
is a new sight. Better behavior can be expected if
higher precision scheme is used. The idea can also
be applied to other linear inverse problems such as
inverse source problems and Cauchy problems etc.，
which will be studied in the future.
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求解严重病态线性方程组的基于时间离散的迭代正则化方法

龚荣芳，黄 沁
（南京航空航天大学理学院，南京 211106，中国）

摘要：近年来，反问题在计算数学中得到了越来越多的关注，在工程应用中也越来越重要。许多反问题在离散化

后都退化为线性方程组。由于反问题的典型病态性，退化的线性方程组通常也是病态的，特别是当其规模很大

时，这就给计算带来了很大的困难。特别地，病态线性方程组右端的一个小扰动可能会引起解的显著变化。因

此需要采用正则化方法来获得稳定解。本文应用一类新的加速迭代正则化方法来求解这类大规模不适定线性

方程组。一个迭代格式只有在迭代提前终止时才称为正则化方法。本文采用Morozov偏差原理作为终止准则。

与传统的 Landweber迭代法相比，新方法具有加速效果，可以与著名的 ν方法和Nesterov方法相媲美。从数值结

果可以看出，采用适当的离散化格式，本文的方法甚至比 ν方法和Nesterov方法有更好的行为。

关键词：线性方程组；不适定性；大规模；迭代正则化方法；加速
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