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Abstract: For many real-world multiobjective optimization problems，the evaluations of the objective functions are
computationally expensive. Such problems are usually called expensive multiobjective optimization problems
（EMOPs）. One type of feasible approaches for EMOPs is to introduce the computationally efficient surrogates for
reducing the number of function evaluations. Inspired from ensemble learning，this paper proposes a multiobjective
evolutionary algorithm with an ensemble classifier（MOEA-EC） for EMOPs. More specifically，multiple decision
tree models are used as an ensemble classifier for the pre-selection，which is be more helpful for further reducing the
function evaluations of the solutions than using single inaccurate model. The extensive experimental studies have been
conducted to verify the efficiency of MOEA-EC by comparing it with several advanced multiobjective expensive
optimization algorithms. The experimental results show that MOEA-EC outperforms the compared algorithms.
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0 Introduction

A real-world optimization problem usually con⁃
tains multiple conflicting objectives to be optimized
simultaneously. Such problems are known as the
multiobjective optimization problems （MOPs）［1］.
Different from single-objective optimization problem
that has a single optimal solution，an MOP has a set
of trade-of Pareto-optimal solutions，called the Pare⁃
to set（PS）. And its projection on the objective
space is called Pareto front（PF）［2］.

Over the recent decades，multiobjective evolu⁃
tionary algorithms（MOEAs）have been recognized
as a major methodology for approximating PF.
Based on the selection methods，MOEAs can be
roughly classified into three categories.

（1）Dominance-based MOEAs：This approach
uses the Pareto domination or its variants and some
other strategies to differentiate and order solutions，

such as NSGA-II［3］ and SPEA2［4］.
（2）Decomposition-based MOEAs： This ap⁃

proach decomposes an MOP into a set of sub-prob⁃
lems and tackles these sub-problems simultaneous⁃
ly. The offspring reproduction and environmental se⁃
lection are based on the sub-problems， such as
MOEA/D［5］ and CDG-MOEA［6］.

（3）Indicator-based MOEAs：This approach is
a set based selection strategy. The performance indi⁃
cators are utilized to measure the quality of some
sets of solutions，and set with the best quality value
will be selected，such as hypervolume［7］ and IGD［8］.

Due to the population-based nature， a great
number of function evaluations（FEs） is usually re⁃
quired for MOEAs to well-approximate PFs. Even
worse，for many real-world optimization problems，
e.g.，airfoil design［9］，drug design［10］ and trauma sys⁃
tem design［11］，the explicit formulations of the objec⁃
tive functions or the constraint functions are not
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known or the function evaluation could be expensive
financially or computationally. It is very desirable to
reduce the number of FEs without deteriorating the
algorithm performance significantly. Such MOPs
are usually referred to as computationally expensive
multiobjective optimization problems（EMOPs）.

One type of feasible approaches for EMOPs is
to introduce the computationally efficient surrogates
for reducing the number of FEs. Over the recent
years，various types of surrogates have been adopt⁃
ed in EMOPs，including radial basis function［12］，ar⁃
tificial neural networks［13］ and Gaussian process
model，which is also known as Kriging model［14］，or
sometimes as efficient global optimization（EGO）.
A variety of multiobjective surrogate-assisted evolu⁃
tionary algorithms（SAEAs）has been proposed to
handle EMOPs over the past decades，which has
been surveyed in Ref.［15］. Recently，more and
more SAEAs focus on solving different types of
EMOPs， such as constraints handling meth⁃
ods［16-17］ ， many-objective expensive optimization
problems［18⁃20］，and large-scale expensive optimiza⁃
tion problems［21-22］. Moreover，many advanced ma⁃
chine learning technologies have been introduced in⁃
to SAEAs to improve algorithm performance.
Wang et al.［17］proposed using random forests and ra⁃
dial basis function networks as surrogates to approxi⁃
mate both objective and constraint functions. Min et
al.［23］ proposed an adaptive knowledge reuse frame⁃
work based on the novel idea of multi-problem sur⁃
rogates. Lyu et al.［24］ proposed an ensemble-based
model management strategy for surrogate-assisted
EA.

Different from the previous work，the surro⁃
gate in this paper is composed of multiple surrogate
models rather than one single model，and we also
consider the uncertainty of model in a novel way.
Based on the above idea，we propose an MOEA
with the ensemble classifiers （MOEA-EC） for
EMOPs. More specifically，multiple decision tree
models are used as the ensemble classifier to choose
promising solutions from the candidate offspring for
real FEs. In this way，the number of real FEs can
be greatly reduced for EMOPs.

1 Background Introduction

This section，we describes some relevant back⁃
ground with regard to multiobjective optimization
and the classification model used in this work.

1. 1 Multi⁃objective problem

This paper only considers continuous multiob⁃
jective optimization problems（MOPs），which can
be defined as follows

Minimize F ( x )= ( f1 ( x ),…,fm ( x ) )T

Subject to x∈ Ω (1)

where Ω is the decision space and F：Ω→ Rm con⁃
sists of m real-valued objective functions.
{ F ( x ) |x∈ Ω } is the attainable objective set.

Usually， the objective functions
( f1 ( x )，f2 ( x )，⋯，fm ( x ) ) cannot be minimized si⁃
multaneously by a single solution in Ω. For these
cases，we use Pareto optimal solutions to represent
a set of best trade-off solutions among all objective
functions.

Let u，v∈ Rm，and u is asked to dominate v，
denoted by u≺ v，if and only if uj≤ vj for every
j∈ { 1，⋯，m } and uk< vk for at least one index
k∈ { 1，⋯，m }. Given a set S in Rm，a solution x∈ S
is called nondominated if no other solution in S dom⁃
inates it. A solution x* ∈ Ω is Pareto-optimal if
F ( x* ) is nondominated in the attainable objective
set. F ( x* ) is then called a Pareto ⁃ optimal（objec⁃
tive） vector. In other words，any improvement in
one objective of a Pareto optimal solution is bound
to deteriorate at least another objective.

1. 2 Classification and regression tree（CART）

for SAEA

Decision tree is a reverse tree-like software
model used for machine learning classification and
numeric prediction. A prominent advantage of deci⁃
sion trees over other classification methods is that
the tree-like structure allows for ease of data inter⁃
pretation and analysis. Classification and regression
tree（CART）is a nonparametric decision tree learn⁃
ing method，which can be used to do both classifica⁃
tion and regression by using a decision tree［25］. In the
case of classification，each interior node of the deci⁃
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sion tree is an element of the feature vector，and
each leaf node denotes a category label. A path from
the root node to a leaf node represents a decision
rule. The Gini［26］ impurity is usually used to train
the decision tree.

According to the idea of ensemble learning［27］，
this work investigates how to incorporate the
CART model into the framework of NSGA-II，and
propose a multiobjective evolutionary algorithm
with an ensemble classifier（MOEA-EC）for expen⁃
sive surrogate-assisted optimization problems. The
main contributions of this work can be summarized
as follow.

MOEA-EC divides the dominated solutions，
which are much larger than nondominated solu⁃
tions，into sets of equal size to nondominated solu⁃
tions. This method solves the problem of imbalance
data in a simple and effective way and does not
waste the information contained in the solutions
which evaluated in an expensive process in past gen⁃
erations.

MOEA-EC trains multiple models to predict
the dominance relationship rather than single model.
Because of the few true evaluation times，model
would not be very accurate. To solve this problem，

we combine multiple models into one ensemble clas⁃
sifier，and obtain good performance. In addition，
the number of models in MOEA-EC is self-adap⁃
tive，which is a very valuable advantage in engineer⁃
ing.

Very few algorithms consider uncertainty of
model，but the uncertainty plays an important role
in evolution process. MOEA-EC treats the accuracy
of models as the weight of models，then combines
the weights of predicted value of multiple models in⁃
to the final result.

2 MOEA⁃EC Algorithm Design

In this section，the main framework of MOEA-

EC and the detail of algorithm will be presented.

2. 1 Main framework

The pseudo code of MOEA-EC is presented in
Algorithm 1，which includes eight steps as follows.

Initialization（（Lines 1 to 2）） An initial popu⁃
lation P with 11d- 1 solutions is generated using
Latin hypercube sampling，where d is the number
of decision variables. In the initialization，the num⁃
ber of solutions to be evaluated using the expensive
objective function equals 11d- 1，and these solu⁃
tions are copied to archive Arc.

Data handling（（Line 4）） Solutions in archive
Arc are divided according to dominance relationship
into two categories. Then we divide the dominated
solutions into multiple sets approximately equal size
to nondominated solution to solve data imbalance
problem.

Model building and training（（Line 5）） Ac⁃
cording to the number of training data sets，we first
build several CART models. Then train the models
with the corresponding data and obtain the accuracy
of each model.

Reproduction （（Line 6）） For each solution
x∈ P，another two solutions are selected from P
randomly. Then a new offspring solution is generat⁃
ed from the thee solutions by DE operators and add⁃
ed to Q.

Model predicting and selection （（Line 7））

Algorithm 1 MOEA⁃EC

1

2
3
4
5

6
7
8
9
10

11
12

Input: an MOP;
a stopping criterion;
N: the population size of P;

Output: A solution set P;
P ← Initialize the population with 11d-1 so⁃
lutions using Latin hypercube sampling meth⁃
od;
Arc = P;
while Not Stopping Criterion do

[R, S] = DataHandle(Arc);
[models, acc] = ModelBuild(R, S);
Generate an offspring solution set Q from

P;
Q’= ModelSelect (models, acc, Q);
Evaluate solutions in Q’;
Arc = Arc ⋃ Q’;
Choose P from P and Q’using fast non⁃

dominated sorting and crowded distance;
end

return P
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Predict the solution from Q with multiple models
and choose promising solutions from Q according to
prediction result. Then add these promising solu⁃
tions to Q'.

True evaluation（（Lines 8 to 9）） Evaluate the
population Q' using real evaluation functions，then
add the population to archive Arc.

Environmental selection（（Line 10）） Environ⁃
mental selection is performed to select N solutions
from the population P and Q' to be the parent indi⁃
viduals of the next generation.

Repeat Steps 2—7 until meeting the stopping
criterion，that is，the maximum number of FEs.

In MOEA-EC，the data handling and ensem⁃
ble classifier are core parts. We will present the de⁃
tail in the following subsections.

2. 2 Data handling

In MOEA-EC，the data handling process de⁃
scribed in Algorithm 2 is adopted to deal with the
data imbalance problem. To implement MOEA-

EC，we introduce an archive to store all solutions
evaluated by the expensive fitness function. In this
step，we do fast nondominated sorting on all solu⁃
tions in to get the nondominated solution set and the
dominated solution set，which described as lines 1—
2 in Algorithm 2.

Throughout the evolutionary process，the dom⁃
inated solutions are much more than nondominated
solutions， so the offspring solutions choosen by
many classification based surrogate models are dom⁃
inated and valuable function evaluations was wast⁃
ed. In MOEA-EC，we first calculate the multiple re⁃
lationship between dominated solutions and non⁃

dominated solutions，then we divide the dominated
solutions into K sets S' which are approximately
equal size to nondominated solution set R. Then we
can use S and S' to build and train our models.

2. 3 Building ensemble classifier

Choosing a suitable classification model is also
very important. A good classification model should
be able to catch the characteristic of complicated Pa⁃
reto sets with different shapes in the decision space.
We use CART to construct surrogate models for
each objective in Eq.（1）. CART is a nonparametric
model and has a good performance in classification
problem with small sample，so the model settings
are easily to set.

Firstly，for each subset of S，we combine the
nondominated solution set R and the subset into
trainData. Then，we assign label“1”to each solu⁃
tion in R and label“0”to each solution in the sub⁃
set. After combining the labels into trainLabel，we
build a CART model and train it with the trainData
and trainLabel. The accuracies of each model are
calculated using all the solutions in R and S to ap⁃
proximate the global representations of each model.
These processes are presented in Algorithm 3.

Algorithm 3 ModelBuild(R, S)

1
2
3
4
5
6
7
8
9
10
11
12
13

Input: R: A solution set P;
S: The dominated solution sets;

Output: models: The CART models set;
acc: A set of accuracies of each mod⁃
el;

K = |S|;
for j= 1→K do

trainData = R∪ Sj;
for each x∈ R do

add label 1 into trainLabel;
end

for each x∈ Sj do
add label 0 into trainLabel;

end

modelsj= train(trainData, trainLabel);
acc j = validation ( modelsj,R∪ S );

end

return models, acc

Algorithm 2 DataHandle(Arc)

1
2
3
4
5

Input: Arc: the archive set;
Output: R: A solution set P;

S’: the dominated solution sets;
R = nondominatedSort (Arc);
S = Arc\R;
K = é ù|| S / || R ;
S'← divide S int K equal parts [ S1,⋯,Sk ];
return R, S'
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At the end of this step，we obtain K CART
models as an ensemble classifier and the accuracies
of these models. Then we will choose some promis⁃
ing solutions with the help of the ensemble classifier.

2. 4 Prediction and selection

Once suitable classification model is built，we
can use it to classify each new generated solution in
Q during the evolutionary process，and discard all
unpromising solutions without expensive FE.

The MOEA-EC model selection method is
shown in Algorithm 4. For each solution in off⁃
spring population Q，we use each model in ensem⁃
ble classifier to predict it once. Because of the limit⁃
ed number of true FEs in past generations，the mod⁃
els are not very accurate. To solve this problem，we
consider the accuracies of each model as the weight
of them. Therefore，the predicted label of each mod⁃
el is multiplied by the weight of the corresponding
model and the predicted label of the corresponding
model. Then we add up all the predicted labels to
get the final predicted result pre of each solution. Af⁃
ter rounding the predicted result pre up，we choose
solutions with the largest label become promising so⁃
lutions，and add them to Q'.

3 Experimental Studies and Discus⁃

sion

In this section，we first compare the perfor⁃
mance of the original NSGA-II and two expensive
MOEAs（i.e. MOEA/D-EGO［28］ and CSEA［19］）on
DTLZ［28］ problems and ZDT［3］ problems. Then，
the influence of the ensemble classifier on the perfor⁃
mance of MOEA-EC is investigated. All compared
algorithm are implemented in PlatEMO［29］.

3. 1 Parameters settings

To make a fair comparison，the following pa⁃
rameters of all the compared algorithms are set in
our experimental studies.

Dimension of objective space： M = 3 for
DTLZ test instances and M = 2 for DTLZ test in⁃
stances；

Dimension of decision space：d= 10 for all
test instances；

Population size N is 50 for all test instance；
Maximal number of FEs is 300，including the

initial evaluations；
For MOEA/D-EGO，the number of surrogate

assisted fitness evaluations before updating the mod⁃
els is set to 2*（11d-1），and the other parameter
settings can be found in Ref.［30］；

For CSEA，number of solutions evaluated by
surrogate model is gmax=3 000 and the number of
reference solutions is k = 6；Detailed parameter set⁃
ting for ParEGO can be found in Ref.［19］；

In MOEA-EC，the number of classifiers is dy⁃
namic and adaptive instead of a fixed value；

For MOEA-EC， we use nonparametric
CART learning model，so the default settings in
Ref.［31］are set. The other parameter settings are
set as NSGA-II in Ref.［3］.

3. 2 Performance metrics

Inverted generational distance（IGD）［32］ ： It
measures the average distance from a set of refer⁃
ence points P* in the PF to the approximation set P.
It can be formulated as follows

IGD( P,P* )= 1
|| P* ∑
v∈ P*
dist ( v,P ) (2)

where dist ( v，P ) is the Euclidean distance between
the solution v and its nearest point in P.

Algorithm 4 ModelSelect(R, S)

1
2
3
4

5
6

7
8
9
10

Input: models: the CART models set;
acc: a set of accuracies of each model;
Q: offspring solutions;

Output: Q’: the solutions selected by ensem⁃
ble classifier
Q’←∅;
for each x∈Q do

Pre = 0;
for j= 1→ |models | do

pre= pre+ acc j×
predict ( models j,x );

end

/* calculate the integrated label for solu⁃
tion x */

labelx= é ùpre ;
end

Q'← select solutions with max label from Q;
return Q'
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IGD is believed to be able to account for both
convergence and diversity of the nondominated solu⁃
tions，and a smaller IGD value indicates better per⁃
formance of the MOEA. Since IGD requires a refer⁃
ence set，which should be evenly distributed on the
Pareto optimal front of test problems. For all test
problems，the closest integer to 10 000 is used as
the number of reference points for IGD calculation.

3. 3 Experiment on DTLZ problems

The IGD values achieved by the four compared

algorithms over ten independent runs on DTLZ
problems are summarized in Table 1，where the
best results are highlighted. It can be observed that
MOEA-EC has achieved the best results on all the
benchmark problems except for DTLZ7. In
DTLZ7，MOEA-EC achieves the second-best per⁃
formance，where MOEA/D-EGO has the best per⁃
formance. Fig. 1 plots the final nondominated solu⁃
tion set obtained by the four compared algorithms in
all ten runs on DTLZ2 and DTLZ4-7.

Table 1 Mean and std IGD values obtained of compared algorithms over 10 runs on DTLZ

Problem
DTLZ1
DTLZ2
DTLZ3
DTLZ4
DTLZ5
DTLZ6
DTLZ7
+/-/=

M
3
3
3
3
3
3
3

NSGA⁃II
9.166 0e+1 (1.66e+1) -
2.760 6e-1 (3.30e-2) -
2.254 4e+2 (4.67e+1) -
7.610 5e-1 (1.92e-1) -
1.760 1e-1 (1.90e-2) -
5.904 3e+0 (3.04e-1) -
3.975 2e+0 (9.54e-1) -

0/7/0

MOEA/D⁃EGO
7.981 4e+1 (1.33e+1) -
3.254 1e-1 (3.08e-2) -
2.011 4e+2 (1.07e+1) -
6.489 9e-1 (6.44e-2) -
2.636 5e-1 (3.56e-2) -
2.333 3e+0 (7.94e-1) -
2.414 8e-1 (1.34e-1) +

1/6/0

CSEA
7.468 9e+1 (7.86e+0) -
2.427 9e-1 (1.61e-2) -
1.877 2e+2 (9.59e+0) =
6.188 0e-1 (4.77e-2) -
1.111 1e-1 (2.22e-2) -
5.460 2e+0 (5.50e-1) -
2.044 6e+0 (2.73e-1) -

0/6/1

MOEA⁃EC
6.702 8e+1 (8.59e+0)
2.026 6e-1 (3.61e-2)
1.735 9e+2 (4.20e+1)
5.389 3e-1 (1.04e-1)
8.246 7e-2 (3.60e-2)
2.088 6e+0 (8.79e-1)
1.580 9e+0 (6.63e-1)

Wilcoxon’s rank sum test at a 0.05 significance level is performed to IGD values on DTLZ problem.“+”means the IGD
value of the algorithm on this problem is significantly better than that of MOEA⁃EC.“-”means the IGD value of the algorithm
on this problem is significantly worse than that of MOEA⁃EC.“=”means there is no significant difference between the com⁃
pared results.
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Both DTLZ1 and DTLZ3 have complex multi-
modal landscapes，which makes them difficult for
MOEAs to converge with a small number of FEs.
After 300 FEs，the approximations obtained by the
four compared algorithms on both DTLZ1 and
DTLZ3 are far from the real PFs，thus they have
not been included in Fig. 1. Nevertheless，it can be
observed from Table 1 that MOEA-EC has the best
performance in terms of IGD values，followed by
CSEA，MOEA/D-EGO and NSGA-II.

For DTLZ2，as shown in Figs.1（a）—（d），

MOEA-EC has the best performance in terms of
both convergence and diversity，while the nondomi⁃
nated solution sets obtained by MOEA/D-EGO and
CSEA are not diversely-distributed；and that ob⁃
tained by NSGA-II is not well-converged. These ob⁃
servations are consistent with the results presented
in Table 1.

For DTLZ4，as shown in Figs.1（e）—（h），

MOEA-EC outperforms other compared algo⁃
rithms，especially in convergence，although the so⁃
lution sets delivered by all the compared algorithms
do not have satisfactory diversity. It can be also ob⁃
served in Table 1 that MOEA-EC achieves the best
performance in terms of IGD values.

DTLZ5 and DTLZ6 contain the degenerated
PFs. It can be observed from Figs.1（i）—（l） that
MOEA-EC has the best convergence on DTLZ5

which might be attributed to the domination-based
algorithm framework. For DTLZ6，the nondominat⁃
ed solution set obtained by MOEA-EC is not di⁃
versely-distributed but well-converged as shown in
Figs.1（m）—（p）. By contrast，the compared algo⁃
rithms fail to achieve a set of well-converged solu⁃
tions.

The real PF of DTLZ7 is discontinuous，and
therefore diversity maintenance is challenging. It
can be observed from Figs. 1（q）—（t）and Table 1
that MOEA/D-EGO has the best performance，fol⁃
lowed by MOEA-EC.

It can be seen from Table 1 that MOEA-EC is
significantly better than NSGA-2 in all DTLZ test
problems，and significantly better than MOEA/D-

EGO in all test problems except for DTLZ7. Com⁃
pared with CSEA，MOEA-EC is significantly bet⁃
ter than CSEA in all test problems except for
DTLZ3，but IGD value obtained by MOEA-EC on
DTLZ3 is better than CSEA.

Fig.2 presents the evolutions of the median
IGD values obtained by different algorithms on
DTLZ test problems with 10 variables. It is clear
that MOEA-EC converges faster than other algo⁃
rithms in most test problems. In DTLZ1 and
DTLZ6，MOEA-EC obtains the best final IGD val⁃
ues even if the convergence speed is slightly slower
than MOEA/D-EGO. In DTLZ7，MOEA-EC has

Fig.1 Final nondominated solution set obtained by four algorithms in all 10 runs on DTLZ2 and DTLZ4-7 with 10 variables
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achieved second-ranked results in both convergence
speed and IGD value.

In conclusion，MOEA-EC performs well in
solving multi-modal landscapes，non-convex and de⁃
generate problems，and has acceptable performance
in solving discontinuous problems.

3. 4 Experiment on ZDT problems

The IGD values achieved by the four compared
algorithms over ten independent runs on ZDT prob⁃
lems are summarized in Table 2，where the best re⁃
sults are highlighted. It can be observed that
MOEA-EC has achieved the best results on all the

benchmark problems. Fig.3 plots the final nondomi⁃
nated solution set obtained by the four compared al⁃
gorithms in all ten runs on ZDT1—4 and ZDT6.

ZDT1 has a convex Pareto optimal front and
ZDT2 has a non-convex Pareto optimal front. It can
be observed from Figs.3（a）—（b）that MOEA-EC
has the best convergence. Because of the dominant
framework used in MOEA-EC，the diversity perfor⁃
mance of MOEA-EC is slightly worse than that of
MOEA/D-EGO based on decomposition frame⁃
work，but the diversity performance of MOEA-EC
in the middle space is better than that of MOEA/D-

EGO.

Fig.2 Evolutions of the mean IGD values obtained by different algorithms versus the number of function evaluations for DTLZ
test instances with 10 variables

83



Vol. 37Transactions of Nanjing University of Aeronautics and Astronautics

ZDT3 has several non-contiguous convex parts
in Pareto optimal front， as shown in Fig.3（c），

MOEA-EC outperforms other compared algorithms
in terms of both convergence and diversity. Al⁃
though MOEA/D-EGO can obtain the diversity at
the boundary well，MOEA-EC achieves better di⁃
versity at the global space.

ZDT4 has multi-modal landscapes. ZDT6 con⁃
tains two difficulties： Non-uniformity of search
space and the low density of solutions near the Pare⁃
to optimal front. It can be observed from Figs.3（d）—

（e） that all the comparison algorithms fail to con⁃

verge to the reference PF，but MOEA-EC obtains
the best convergence performance on both test prob⁃
lems and the best diversity performance on ZDT6.

It can be seen from Table 2 that MOEA-EC is
significantly better than NSGA-2 in all ZDT test
problems，significantly better than MOEA/D-EGO
in all test problems except for ZDT6 and significant⁃
ly better than CSEA in all test problems except for
ZDT4. On ZDT4 and ZDT6，MOEA-EC is not
significantly different from CSEA or MOEA/D-

EGO，but the IGD value obtained by MOEA-EC
are better than other algorithms.

Table 2 Mean and std IGD values obtained by compared algorithms over 10 runs ON ZDT

Problem
ZDT1
ZDT2
ZDT3
ZDT4
ZDT6
+/-/=

M
2
2
2
2
2

NSGA⁃II
9.859 6e+0 (2.51e+0) -
1.199 4e+1 (2.57e+0) -
1.175 7e+1 (2.56e+0) -
5.694 4e+1 (9.53e+0) -
1.012 6e+1 (4.22e-1) -

0/5/0

MOEAD⁃EGO
1.789 6e-1 (1.36e-1) -
2.428 4e-1 (2.27e-1) -
2.883 8e-1 (7.89e-2) -
8.740 6e+1 (7.43e+0) -
2.734 8e+0 (1.58e+0) =

0/4/1

CSEA
1.810 1e+0 (8.49e-1) -
3.667 8e+0 (2.07e+0) -
2.124 5e+0 (5.17e-1) -
3.880 9e+1 (7.73e+0) =
6.697 3e+0 (1.22e+0) -

0/4/1

MOEA⁃EC
3.297 5e-2 (1.24e-2)
4.137 5e-2 (1.72e-2)
5.037 3e-2 (2.33e-2)
3.435 7e+1 (9.49e+0)
1.610 1e+0 (2.15e-1)

Wilcoxon’s rank sum test at a 0.05 significance level is performed to IGD values on ZDT problem.“+”means the IGD
value of the algorithm on this problem is significantly better than that of MOEA⁃EC.“-”means the IGD value of the algorithm
on this problem is significantly worse than that of MOEA⁃EC.“=”means there is no significant difference between the com⁃
pared results.

Fig.3 Final nondominated solution set obtained by four algorithms in all 10 runs on ZDT1—4 and ZDT6 with 10 variables
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Fig.4 presents the evolutions of the median
IGD values obtained by different algorithms on
ZDT test problems with 10 variables. It is clear that
MOEA-EC converges faster than other algorithms
and achieve the best IGD value in all test problems.

The experimental results confirm once again
that MOEA-EC performs well in solving multi-mod⁃
al landscapes， non-convex and degenerate prob⁃
lems，and has good performance in solving two-ob⁃
jective discontinuous problems.

4 Conclusions

In this paper，we propose a multiobjective evo⁃
lutionary algorithm with an ensemble classifier，
called MOEA-EC，for the expensive multiobjective
optimization problems. The ensemble classifier con⁃
sists of multiple CART models，which is used to
identify the promising solutions from candidate off⁃
spring for real FEs during search procedure. The ef⁃
fects of the ensemble classifier are empirically inves⁃
tigated and the experimental results confirmed that
the proposed MOEA-EC significantly outperforms
other compared algorithms.

The work reported in this paper is very prelimi⁃
nary. More advanced machine learning model can be
further incorporated into MOEAs for enhancing

their performance on EMOPs.
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基于集成分类器代理模型的昂贵多目标进化算法

蓝 天
（南京航空航天大学计算机科学与技术学院，南京 211106，中国）

摘要：对于许多现实世界中的多目标优化问题，它们目标函数的评估在计算上通常成本高昂，这些问题称为昂贵

多目标优化问题（Expensive multiobjective optimization problems，EMOP）。 现有的解决昂贵多目标优化问题的

一种可行方式是引入计算效率较高的代理模型来减少函数评估的次数。受集成学习启发，本文针对 EMOP，提

出了基于集成分类器代理模型的多目标进化算法（Multiobjective evolutionary algorithm with an ensemble classifi⁃
er，MOEA⁃EC）。具体来说，多个决策树（Classification and regression tree，CART）模型组成一个集成分类器用

于进行于选择操作。相比于使用单个不准确的模型参与计算，这种方法可以更有效地减少解的函数评估次数。

为了验证MOEA⁃EC算法的有效性，本文进行了实验研究，并与几种先进的昂贵多目标优化算法进行了比较。

实验结果表明，MOEA⁃EC算法的性能优于其他比较算法。

关键词：多目标进化算法；昂贵多目标优化；集成分类器；代理模型
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