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Abstract: By making use of the direct integration method, an exact analysis of the general three-dimensional
thermoelasticity problem is performed for the case of a transversely isotropic homogeneous half-space subject to local
thermal and force loadings. The material plane of isotropy is assumed to be parallel to the limiting surface of the half-
space. By reducing the original thermoelasticity equations to the governing ones for individual stress-tensor
components, the effect of material anisotropy in the stress field is analyzed with regard to the feasibility requirement,
1.e., the finiteness of the stress field at a distance from the disturbed area. As a result, the solution is constructed in the
form of explicit analytical dependencies on the force and thermal loadings for various kinds of transversely isotropic
materials and agrees with the basic principles of the continua mechanics. The solution can be efficiently used as a
benchmark one for the direct computation of temperature and thermal stresses in transversely isotropic semi-infinite
domains, as well as for the verification of solutions constructed by different means.
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0 Introduction

Transversely isotropic materials can be regard-
ed as the simplest example of materials exhibiting
spatial anisotropy. Due to the specific micro-struc-
ture (i.e., the structure of molecular lattice or specif-
ic features of the material composition) , the elastic
and thermo-physical properties of a macro-volume
remain the same within a certain plane, which is
known as the plane of isotropy'*', but are different
from the ones in the direction that is perpendicular
to the plane mentioned. The symmetry of such kind
is typical for a number of natural and composite ma-

terials, e.g., the ones with lattices of hexagonal syn-
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1451 or fiber

gony', as well as angle-ply laminates
composites with hexagonal packing'®, etc., which
can be regarded as homogeneous transversely isotro-
pic solids after utilization of certain homogenization
techniques' ™",

Despite the apparent simplicity of the trans-
versely isotropic material in comparison with the ma-
terials of rather general anisotropy, the dissimilarity
of effective properties presents a certain challenge
for the analysis of the relevant three-dimensional
problems of mechanics. Being involved in the consti-
tutive equations of the corresponding mathematical
model, the elastic and thermoelastic moduli of a

transversely isotropic material are thereby affecting
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the coefficients of the governing equations of ther-
moelasticity theory'"’. Thus, the form of a solution
to the corresponding governing equations strongly
depends on the interrelations between the material
moduli. This presents a challenge for the general
analysis of thermal stresses in transversely isotropic
solids due to the fact that a solution is to cover inter-
relations between material moduli of any kind.

This problem becomes even more involved
when analyzing local effects of force or thermal load-
ings. One of the basic models frequently used for
such analysis deals with an elastic half-space whose
surface is acted upon by locally distributed im-

paCtSV 12-13]

. Besides the satisfaction of the boundary
conditions, the solutions of such elasticity and ther-
moelasticity problems are to exhibit asymptotic be-
havior that is vanishing at a distance from the loaded
zones, which meets the feasible requirements of the

14 Because of uncertain in-

Saint-Venant’s principle
terrelation between the coefficients of the governing
equations (which, in turn, depend on the material
moduli) for any given kind of a transversely isotro-
pic material, ensuring the required asymptotic be-
havior of the solution remains an important and yet
unanswered challenge (e.g., the reviews ') espe-
cially for analytical methods based on the application
of potential functions of higher differential rate.

An efficient technique for the analysis of aniso-
tropic and inhomogeneous solids has been devel-
oped on the basis of the direct integration meth-
od *!, This technique has also been extended onto
the cases of three-dimensional problems for trans-

versely isotropic solids'™"

', It implies a reduction of
the original thermoelasticity equations to a set of
governing equations for individual stress-tensor com-
ponents with accompanying local and integral bound-
ary conditions. The fact of getting an individual
equation for a stress-tensor component can be effec-
tively used for the more accurate evaluation of the
stress asymptotic for transversely isotropic semi-infi-
nite solids.

This paper presents an attempt towards the
construction of analytical solutions to a three-dimen-

sional thermoelasticity problem for a transversely

isotropic half-space, which meets the original equa-

tions along with the given boundary conditions and
is vanishing at a distance from the loaded zones of

the limiting surface or inner heat-sources.

1 Formulation of the Problem

Consider a three-dimensional problem of the
thermoelasticity theory for a transversely isotropic
half-space (x,y,2)ER?*X R in the dimensionless
Cartesian coordinate system. Let the plane of isotro-
py be parallel to the limiting surface z = 0. Within
the framework of the quasi-static formulation in the
absence of body forces, the problem is gov-

erned'" > ' by the equilibrium equations

ao—x'l aarv ao—J'l y
~ _ 1
ar oy e 0 J_w W
the strain-compatibility equations
de.. . Ie, e,
dy* ox* dxdy (2)
2
82 € a ae.ry 85 vz as.)z y
- 5 - o e Ny
dydz  dx\ dz dx dy - 2
and the constitutive ones
1 v, .
& =f (0, — vo,,)— £ o.tal xy
1 V.
T L% E (0., +0o,)+aT (3)
1 1 .
&= G Om e = G0 ] ={z,y}

where o, = 0,:, €;, —¢,: are the stress- and strain-
tensor components, & p={x,y,2}; E, E. and G,
G. are the in- and out-of-plane (with respect to the
plane of isotropy) Young and shear moduli, respec-
tively; v, v, and a, a. are the transversely isotropic
Poisson ratios and the linear thermal expansion coef-
ficients; symbols 7 Y N and x <y imply obtain-
T <z

ing two and one more equation from the one they
follow by the cyclic and mutual, respectively, per-
mutations of indices and variables.

The stationary temperature field T'(x, y, ) can
be determined from the following heat-transfer equa-

tion"?!
*T
+ c. 7 =—Q (4)

FT T
-+ —
dx* dy

c

under the general boundary condition
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(aT+baT)‘ =T, (5)
dz

==0
where ¢ and ¢, are the heat conductivity coefficients
within the plane of isotropy and transversely;
Q(x,y,z)and T, (x,y)are the given densities of in-
ternal heat sources and thermal boundary function,
both vanishing at z*+y’+2*—>+co and x°+
y*— -+ co, respectively. Constant parameters a and
b indicate the type of boundary condition (5) : If
a7 0 and b=0, Eq.(5) is the Dirichlet condition
imposing the temperature on the boundary; if a=0
and 6 7 0, Eq.(5) is the Neumann condition impos-
ing the heat flux through the boundary; if @ 0 and
b7 0, Eq.(5) is the third-kind boundary condition
covering, for example, the heat-exchange through
the boundary'**’.

Our intent is to construct an analytical solution
to the formulated thermoelasticity Eqs. (1—3) un-
der the temperature field determined from the heat-
conduction problem Egs. (4, 5) and the force load-

ings

s={z.y} (6)

imposed on the boundary = =0, where p(x,y) and

A

q:(x,y) are given functions vanishing at x’ -+
y* — +co. Making use of equilibrium equation (1)
and boundary conditions (6) for the tangential stress

yields the condition

do.| _ [9dq. , dq,
dz z:o_ (81‘ ” ay) 7

for the partial derivative by z of the normal stress.
For the complete determination of the stress field,
the strain-compatibility condition in the following in-

tegral form'"" is to be used.

" ¢ 06, (£1,,0
Jw(el.:(;f,y, 0)— wa(iszgl)dg =

de,, (x,7m,,0
jyoc(%(x, 7,0)— vae”(lazm)dm)dn(@

2 Solution Method

To separate variables in the foregoing thermo-
elasticity and heat conduction equations and bound-

ary conditions, we employ the Fourier double-inte-

gral transform'*"

_ +oo ptoo

f(z)= J mj ch(x,y,z)exp(—1(Is_l.+y.s}‘))d1'dy

(9)

where s, and s, are the transform parameters with re-
specttox , y and 1is the imaginary unit.

Making use of transform (9) allows for solving

the problems (4) and (5) in the Fourier mapping

domain in the form as follows

—colslz Lo
T(Z): € ToﬁL 1 jo q(g)(a—e cols(z—

a 2¢0|sla

a+e*<.”\.\\(z+§))d§ (10)
b, C():\/C/C; >O, g:Q_/C‘Z.

Also, here and in what follows,

where a® =a = ¢y|s

5| indicates the ab-
solute value of s and s* = s7 + s2.

[15, 24]

By implementing the technique , we can
reduce the formulated thermoelasticity problem (1—
3) to the following system of governing equations in

terms of stresses
AA A7 O #+#7A.I‘yAlo-zz - //l+ EA.xy ><

*T
((aJr(omLaZ),a)AI‘\,TJra(lJr v)ig 3 2) (11)
z
Ao.=p A, (c+aET) (12)
d’o,, ) 9’
Ao, + 0:,‘" = ﬂ; —1 Aa:ﬁ—(l—yz)if-i—
02" Y7 dx*
o 9° [ ps0
(p1— p2) 027 ayz(;j +(1/13)0'::)
*T
2G| aAT + a.— Ty (13)
dy*
do., o e,  Jdo., y
= = ‘ 14
wway  ae oy ar g s W
where
d 0* 0*
A, + -5 A=A+ —
Y a 2 ay< 822
d* E.
Fr— 14 + Y+ z
A Z A A= G = e E
G p— e 0
#1*E,A1:(#4*1)Aw+2 #2#, F
G, 1+, E
/lz—ZENa#aiZ E. G:,;M*E
and
c=o, to,to. (15)

Having applied transform (9) to Eq.(11) and
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conditions (6) and (7) ,

boundary-value problem

we obtain the following

d'G.. d*s..
dzi — 2a,s° e + a,s'c. =
' F T E\ -
15_ lJz(oz(l-ﬁ—v) o —sz(aﬂ—aquz)T) (16)
— dg:z = =
‘70—— Cde 170— i(s.q,+s,q,) (17)
where
_ 1 (6
a7\
(18)
L[, LE\E
e=1 |1 F E.

Note that the elastic moduli involved in expres-

sions (18) meet the following physical constraints'*’

—1<<v<<{1/2, vE.<<E.— 2'E
1 E.Z>E
v.|<< (19)
E./E E.<E

E>0,E.>0,G>0,6.>0
The form of a solution to Eq.(16) along with
conditions (17) on the limiting plane * =0 and the
decreasing condition at the points of infinity
z— +-co, strongly depends on the interrelations be-
tween the coefficients (18) , as the eigenvalues of

Eq.(16) can be given in the following form

r=Jat(—1yJa—a j=12 (20)

In the context of constraints (19) and expres-
sions (18) ,
physically allowed transversely isotropic moduli so
(A) real and dis-
similar (for a? > a, and a; > 0), (B) real and mul-

a, and a, >0, which i1s the case,

we can conclude that a, >0 for all

that the eigenvalues (20) can be:

tiple (for af =
e.g., of isotropic materials) , (C) imaginary multi-
ple (for af=a, and a, <<0) ,

and dissimilar. Note that if in the latter case the ei-

and (D) complex

genvalues (20) were represented in the following

form
A=+ i, [, = Red, # 0,0, = ImA, # 0 (21)
Then due to the obvious equalities 2a; = A7+
A3 ER and a, = A7A; €R, we necessarily conclude
thata, =/1}—0:=1[;— 05, a* — a,= 41,[,0,0,, and
L=—0,0 =1, (22)

The complete analytical solution to the formu-

lated thermoelasticity problem is, obviously, to cov-
er all of the foregoing cases A—D of the eigenvalues
which results, particularly, in the character of the so-
lution’s asymptotic behavior at the points infinity.
For example, in case A of dissimilar real eigen-
values (20) , an analytical solution to Eq.(16) ,
which meets boundary conditions (17) and is limit-
ed at z— 40, can be given in the following form

_
Aol = Il

o.(2)=

( (|/11|67M"‘Z - |/12|67M1‘:),5 +

i
Is]
(J T ()l + i) (@ze ™+

(e "™ —e ")(s,q,+5,q)+

ae —M.\(z+§>)_ 2a, |/1 | —IslCR b+ Rgle)
2anfArfe T (R = Rl (@pe T —
ae [sAy (= {)))dg) (23)

where A, €R are the eigenvalues computed by
Eq.(20) at ai > a, and a, >0, and
1 aE 1 ( ., a.E.+av.E
= 2 B

N

4

T2l =24\ eE (1)
where j=1, 2.

To determine the normal stress 4, in the map-
ping domain of transform (9), we use Eq.(13),

which takes the following form

d’s,, (s V5 po—p &G | p—p d'o
= —(sk )5, = , — —
dz’ ¥ o di? n d2’
1 2 9#2_ﬂ 1 2
—|s2(1— )+ 5° G — —|s:(1—
#l( (1= ) e " (
A 2T _ _
o)+ S‘iﬂz)GZG a o —$T|—a'siT
7 2
(24)

where t=./G/G. > 0.

The total stress ¢ can be eliminated from the

latter equation by making use of Eq.(12) , which

takes the following form

1 1+ d%.. _
= —5.— ——25%= GET (25

U 7 de

in the mapping domain of transform (9). By differ-
entiating the latter equation twice and making use of

Eq.(16), we can obtain the following
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dnf,f = (1 —2(1+ v)al) d_gf + s (1+v)a,6.. —
! dz*

«aE d&*T ., E E\ -
TE—— + 1y(az+aquZ)T (26)
Now, putting Eqs.(25,26) into Eq.(24) yields
dz&\* 2= d dz&z: —
dzj —(sk )—o},},:\\v—; G T
E d'T -
— o dT (27)

where

E\s? : G
dO—E(az-ﬁ—avz )S}TLW

1— Uz + QES;,E

Ez
E[ s (v. E 1 52 Ve
dl_Z(lu(GEZ GZ)+ G:+23}E1)

E | 5%+ vs? G
o B STV,
(1 V: Ez) 1 VZ ‘841 V: Gz

E
dgffz

An analytical solution to Eq.(27) can be given

in the following form

d, _ aF
T2

Ae b 4 : 0.(2)— 1_V7_“(z)7L

axw ( z)=

[TeaotaT@ne g (28)

where
77d2+k2d1 7% aF - d()
€ ohle T 21—y 2k
Substituting Eq. (23) into Eq. (28) yields the
following
E _
Go(z)=Ae = T (2 1+
) 1—v
1 — syl —IsAqlz s\ —
——l(y.e = ulyie My ) pt
Azl 1A,

— (7 "Etye M=y M) (5,.q,F5,q,)F

|
j T(?)((|Ag|+|/h|) (azyze*\xxz\(z+§)+

alyle—ml\(ﬁ;))i 20(271|/12|e—\.\~\(/11\;+\x2\;)7
Zal72|/11|67‘A‘%‘z+wg)+( ‘/‘(2‘* |/1 1 | X

—IsAy (z—¢)l — s, (==&l —lsk(z—¢)
((12726 —apy,¢€ : H—'}’oke ‘ Ol

yﬂeiwm H‘K)erﬁzei"\‘(k:‘ M“)dé’ (29)

where

_ 4% .| o A
o W E— R

_ o 1 - 1
Yo W\ e— 1l kRl

pomd 2 | . (;dlﬁ - ;Mli)‘“
Yu = 2a,c, ﬁ A — /1? -
s Te— D =)
A, AP — A

Yie = 2a,c,

(k=AD& —25)

and A is an arbitrary constant of integration. The lat-
ter one can be determined by means of condition
(8), which takes the following form

d

. (si€.(2)—siE,(2)) ‘:O =

5,8.(0))

in the mapping domain of transform (9). Making

15,5,(5,6,.(0)—

use of Eq. (3) along with Eq. (15) and boundary
conditions (6) and (7) yields

da,,(2) syt da(z) -
dz sS(1+v) dx |

. L si—s2 aE dT(2)
i(s,q q.ts,q9 q,)+ RS ER— v70(30)
where

= ; ¢2 £ 2 22 £
q T 52(1 + V) Sa v + E; + 'Sy +(-5y -5.1'))/: El

- 1 , A, E . o E
qg = 752(1+ lJ)(l/sl.+sy(l E;) (53— s2)v. £

To derive an expression for the total stress
7(%) appearing in condition (30) , we substitute
Eq.(23) into Eq.(25), which yields

1

)= =T

(<|A1|ﬂze"*” — WolBre ") p+

i (ﬁ‘)esz‘z .

|s

IBI e*Ml‘l)( S, (jl + Sy qy)+

[T ORI+ D) (e ™5+

all@]e—wuu))i Zagﬂ]‘/12‘67“\“(“]‘:+MZ‘§) .

2a, BaAsle "I (ol — A D)X

(azﬁze—w:—m _ alﬂlef‘“'(ﬁm))dé‘ _

aF

T (31)

2 T(z)
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where

Bi=1+v. gf(lJru)/lf

i=1,2

Now, using Egs.(29, 31) together with condi-
tion (30) allows for eliminating constant A. As a
result, the stress o,, can be given in the following
form

aE — 1 —|sA,lz
p (|/1 | . €
ol — A\

T (gt e ) p+ ||

,}/: )e*\x\}zz + yze*\ﬁ/\g\z _ }/167“\/11‘2)(? + | |

|/12|}/1€ ((}’oq+

7()(/ +

}/*\ )e*\x\ﬁ: + yZQ*Mz\: —ye — Al )q> -+

[ TR+ ) Caryae ™ 4

—lsAl(z+¢) — ISR )+ 12518)
0(1’}/ e ! )_ 2a2y1‘/12|e ! -

20(1)’2|/1 |e AR (Mz‘* Ml|)(0(2}’ze e
011}’167%' =)l )erm(e [sk(= ;>\+e \.\-Vz<z<§)) +
(yﬁ1+}/ﬁl) s e +(}/k2+
y;z)e*\.\\(k:' Azf))dé,) (32)
where

. 1| 55 Jr ys”

Yo — 2 }'1*)’2+ (/11*/1 )= 7o

S P o

e\ 52(1—|-1/)Bl E\7

\f, + VSJQ. |/11|7 |/12| +
s2(1+u)62)+ [

i A2, A s2 4 st
Y= @ 1;, (—1y|1= 2

(Al —29),

}’ZJV}’I)}’@‘ j=12

In such a manner, the transversal and normal
stresses, 0..(z) and 6,,(z), are found in the map-
ping domain of transform (9) in Eqs.(23,32), re-
spectively. The stress 7., (z) can be found in a simi-
lar form by making use of formula (A1) presented
in Appendix.

In order to derive the tangential stress-tensor
components, we use Eq.(14) ,

which can be pre-

sented as

_ —1 d’6..(2)
o.,(2)= 25, ( L (2) 505, (2)+ dz))
(33)
Ty (34)

Making use of Eqgs. (33, 34) along with
Eqs.(15,25) yields the expressions of the tangential
stresses in terms of the key ones in the forms given
by formulae (A2—A4) in Appendix.

In case B of the multiple real eigenvalues
(20), coefficients (18) of Eq.(16) are to meet the
=qp and a, >0. In
view of Eq.(18), these conditions imply

following conditions: ai = a,

V. 1 E. 1—v
4uz(1+v)(2E: G:)JFG: =2 G (35)
and
2v.(1+v)<< G

Hence, a solution to Eq.(16) which meets con-
ditions (17) and vanishes at infinitely distant points
can be given in the following form

G (2)=—((1+ lagslz) p + (5.3, +5,q,)2)e ™"

f T(¢

(af — &aps|(z — &)+ 2apslz(af +

—lsaglk — ¢l
(@) + aSlaosllz — ghe ™7 —

aSlasslg))e T de (36)
where
G s o E
a.?:m P (a((l)’aa(1+V)V:E:)a:)
and j=1, 2.

After stress 6..(2) is determined in Eq.(36) ,
the total stress for case B can be found from
Eq.(25) ; stresses 6,,(2) and 7., (2) are then to be
subsequently determined from Eq. (28) along with
condition (30) and Eq.(A1l), respectively; then the
tangential stresses can be computed by means of
Eqs.(A2—A4).

In case C of the multiple imaginary eigenvalues
(20) , coefficients (18) meet the conditions &=
a,=a" and a, << 0. Then Eq.(35) holds, while

2v.(1+v)> i (37)

Although Eq.(37) may seem unrealistic, there
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is however a practical possibility of the existence of N IsIG
L a; = ERRT al =(1+v)X
such materials in view of Eq.(19). 20u( A+ ) (1 —v)

A solution to Eq.(16) in this case can be given

as
G.(2)=(C,+ zC,)sin (saz )+ (Cys+

2Ceos (saz)+ | T(E)(a sin(asle — g+

a aslzr — ¢ cos(sa(z—¢&)))dE (38)
where
L sG , £
a = 72013(1— lJ)(oz(a (1+v)x V:E:) +a;)

The constants of integration C,, j= 1,4 in
Eq.(38) can be eliminated by making use of the van-
ishing conditions at the points of infinity and the
boundary conditions (17). As a result, the stress
takes the following form

sin (saz)

6..(2)=—pcos(saz)+i(s,.q, +5,q,) +

sa
joﬂc T(¢)(a (sin(ask — ¢)+ sin (as(z —
)N+ a (as(r—&—=2— & )cos(salz—
)+ sin(sa(z+¢))))d¢
In case D of the dissimilar complex eigenvalues
(20), their real /; and imaginary ¢, parts indicated in
Eq.(21), meet necessary conditions (22). By de-
noting A=1/,| and = |¢;|, we can construct the van-
ishing solution to Eq. (16) with conditions (17) in

the form as follows

&zz(z)((ycos(p.lslz)+Asin(,ulsz))ﬁ+

— Alslz

% (.G, +5,q,)sin (sl ) +

[T eos (ke )+

£ )sin (p]s]z))e Mo+
(Aa. sin (plsllz — &)+ pa. cos(plsl(z —
£)))e MEOdg
where
[:(8)=—2a/ sin(plslg)— pa. cos(ulslf)
()= 2(a; — 2a)cos (ulslf ) —

a. 4 22%a .
#—SIH(ﬂIS\§)

and

(A )~ u,f) - a)

Then the rest of the stresses for cases C and D
can be found by the routine used for the foregoing
cases A and B.

After the stress-tensor components are found in
the mapping domain of the Fourier integral trans-
form (9), they can be restored in the physical do-

main by making use of the inverse transform
1
4r”

realized either numerically or by an analytical mean.

. e e i(rs, + )
flayor=— | | Flee™ s ds, (39)

Similarly, the physical value of the temperature can

be computed by applying Eq.(39) to Eq.(10).

3 Numerical Examples and Discus-

sion

To verify the efficiency of the constructed solu-
tion, we compute the stresses in various transverse-
ly isotropic materials (‘Table 1) under the local nor-
mal force loading Eq.(6) of the following profile
pP=po= L (oy)el—L1F q.=—q,=—0 (40)

0 else
where p, is a constant in the dimension of stresses.
Note that the properties of materials presented in

rows 1—3 of Table 1 correspond to case A, while

the material in the 4th row corresponds to case D.

Table 1 Elastic moduli of the considered transversely

6.26]

isotropic materials"

E/ E./ G/ G/
GPa GPa GPa GPa
Carbon fiber 15.00 232.00 0.49 0.28 5.03 24.00
Ceramic PZT-4  81.28 64.53 0.33 0.34 30.56 25.60
Composite 60% fiber 9.95 141.10 0.50 0.27 3.32 6.00
13.56 5.04 0.21 0.17 5.60 3.85

Material

Hexagonal zinc

Fig.1 presents the full-field analysis of the
stress o.. normalized by the parameter p, at the
cross-section x =0. As we can observe, the com-
puted stress exactly satisfies the boundary condi-

tions (6, 40), and vanishes at a distance from the
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(d) Hexagonal zinc

Fig.1 Full-field distributions of normal stress o../p, at x =

0 for different transversely isotropic materials under
loading (40)

loaded segment of the surface 2 = 0. It is also nota-
ble that the material properties play a crucial role in
the quantitative behavior of the stress.

The effect of material properties in the stress
distribution 1s clearly pronounced in Fig.2 present-

ing the same stress under the center of the loaded
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Fig.2 Normal stress o../p, at x =10, y=0 for carbon fiber
(curve 1), ceramic PZT-4 (curve 2), composite 60%

fiber (curve 3), and hexagonal zinc (curve 4)

zone: x=y=_0. It is also notable that the curves
presented in this figure are orthogonal (in the mean-
ing of differential geometry) to the surface at x =0,
which in view of the equilibrium Eq. (1) indicates
the zero boundary conditions for the tangential
stress. The latter conclusion agrees with the bound-
ary conditions (40) and Eq.(7).

Consider the results of computation of thermal
stresses in a transversely isotropic half-space made
of hexagonal zinc (Table 1, the 4th row) , for
which™: ¢=¢,=124[ W/(K-m)], a=5.818 X
10°°[1/K ], and a.=15.350 X 10 °[1/K ]. As-
sume the surface = 0 of the half-space to be free of
force loadings, i.e. p=¢q,=q,=0. Instead, the
surface undergoes the thermal impact (5), where

1 (x,y)e[—1,17F

0 else

T=T,= a=1,=0 (41)

and T, is a constant parameter in the dimension of
temperature.

Fig.3 presents the full-field distribution of tem-
perature (10) in the physical domain of inverse
transform (39) under condition (41) and the corre-
sponding thermal stress o... For the considered
steady-state case, the disturbance of temperature
occurs in the vicinity of the heated zone of the sur-
face and decreases rapidly when moving away from
it. The stress meets homogeneous boundary condi-
tion and is also locally disturbed over the area under
the heated segment of the surface. In Fig.4, stress

o.. 1S shown in some characteristic cross-sections of
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(a) Due to thermal loading (41) and the corresponding
stress o,/ T,

(b) In the cross-section x = 0
Fig.3 Full-field distributions of the dimensionless tempera-

ture T/ T, under different conditions
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(a) Distribution along y axis

(b) Distribution along z axis

Fig.4 Distributions of the stress o../T, in the characteristic
cross-sections of the thermally loaded half-space
(x=0)

the half-space in the vicinity of the thermally affect-

ed area.

4 Conclusions

This paper presents an analytical technique for
exact thermoelastic analysis of a transversely isotro-
pic half-space subject to local thermal and force load-
ings. The technique is based on the application of
the direct integration method which allows for the
reduction of the original thermoelasticity problem to
a set of governing equations for the individual stress-
tensor components. The equations are accompanied
by the corresponding local and integral boundary
conditions.

Making use of the proposed solution technique
allows for capturing explicit dependencies between
the applied thermal and force impacts and the in-
duced stress field for any possible case of interrela-
tions between the effective moduli of transversely
isotropic material. Special attention is given to the
correct asymptotic of the constructed solutions when
moving away from the zones where the loadings
were applied.

The constructed solutions can be used for the
analysis of thermal and force impacts on the elastic
semi-infinite composites made of materials exhibit-
ing transversal isotropic properties. Due to its explic-
it form, it may serve as an efficient tool in solving

1 as well as the verification of re-

inverse problems'"’
sults gained by either numerical or semi-analytical

means.

Appendix Formulae for computation of the normal and tan-
gential stresses by the known key stresses
The normal stress
7. (2)=5(2)— 5, () G..(2) (AD)

The tangential stresses

) 1 gifusjf._ 4 (2 — 25 +
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