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Abstract: In order to investigate the dynamic behavior of non-conservative systems, the Lie symmetries and
conserved quantities of fractional Birkhoffian dynamics based on quasi-fractional dynamics model are proposed and
studied. The quasi-fractional dynamics model here refers to the variational problem based on the definition of Riemann-
Liouville fractional integral (RLFI) , the variational problem based on the definition of extended exponentially
fractional integral (EEFI) , and the variational problem based on the definition of fractional integral extended by
periodic laws (FIEPL). First, the fractional Pfaff-Birkhoff principles based on quasi-fractional dynamics models are
established, and the corresponding Birkhoff’ s equations and the determining equations of Lie symmetry are obtained.
Second, for fractional Birkhoffian systems based on quasi-fractional models, the conditions and forms of conserved
quantities are given, and Lie symmetry theorems are proved. The Pfaff-Birkhoff principles, Birkhoff’s equations and
Lie symmetry theorems of quasi-fractional Birkhoffian systems and classical Birkhoffian systems are special cases of
this article. Finally, some examples are given.
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0 Introduction

Fractional calculus has been widely used in var-
ious fields of engineering and science''® in recent
years, because it is more accurate to describe the dy-
namic behavior and physical process of complex sys-
tems than the integral order model. They are also
used in many dynamical systems in interdisciplinary
fields, such as electromechanical Systemsm , bio-

medical systems'” , mechanical systems'” and

mathematical systems'®’. In 1996—1997, Riewe'*""’
introduced fractional calculus into dynamics model-
ing of non-conservative systems and established frac-
tional Hamilton equations and fractional lagrange
equations. For fractional variational problems,
Agrawal et al., Atanackovi¢ et al., and Torres et

al. have made a more in-depth study''"**’.
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As a natural extension of Hamiltonian mechan-
ics, Birkhoffian mechanics are more general than
Hamiltonian mechanics. In 1927, Birkhoff intro-
duced a more general equation than Hamilton equa-
tion'"” , which was named Birkhoff’ s equation by
Santilli'® in 1983. After that, Santilli studied the
Birkhoff’ s equation and its transformation theory. In
1996, Mei et al. set up the theoretical framework of

[19]

Birkhoffian mechanics "' and put forward its symme-

[20-22]

try theory . Due to the generality of Birkhoffian

system, many scholars have introduced it into non-

linear dynamical systems'***

, constrained dynami-
cal systems™ and quantum systems'”'. Moreover,
fractional calculus has been introduced into Birkhof-
fian system by many scholars and the corresponding
27-33]

symmetries have been obtained'
In 1979, Lutzky* introduced the Lie method
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into the dynamical system, studied the invariant
properties of second-order dynamical system under
infinitesimal transformations of time, coordinates
and velocity, and established the relation between
Lie symmetry and Noether conserved quantities.

Since then, Prince and Eliezer™

"extended Lutzky’s
research to the classical Kepler problem, and ob-
tained the corresponding Lie symmetry. In 1994,
Zhao'*' extended Lie symmetry to non-conservative
dynamical systems. Lie symmetries and conserved
quantities have made important progress in con-
strained mechanical systems, nonholonomic sys-
tems and Birkhoffian system on time scales in recent
years ¥

In 2005, EI-Nabulsi proposed a kind of non-
conservative dynamics models based on the defini-
tion of Riemann-Liouville fractional integration
(RLFI) ", and further put forward the dynamics
models based on the definition of extended exponen-
tially fractional integral (EEFIT) """ and based on the
definition of fractional integral extended by periodic
laws (FIEPL ). These three models are known as
quasi-fractional dynamics models or EI-Nabulsi
models. The dynamic equations based on these mod-
els are simple and similar to the classical conserva-
tive system’s Lagrange equation. Its novelty lies in
that the generalized fractional order external force
corresponding to the dissipative force appears in the
equations instead of the fractional order derivative,
and the fractional order time integration only needs
one parameter, while any number of fractional order
parameters will appear in other models. After that,
El-Nabulsi et al. and Frederico et al. established the
equations of motion of the quasi-fractional dynamics
models, and extended them to nonholonomic, holo-

9500 In re-

nomic and dissipative dynamical system'
cent years, Zhang and his colleagues obtained the
differential equations and symmetry theory of these
models in Lagrangian system, Birkhoffian system
and Hamiltonian system'”""'. However, these stud-
ies are limited to the integer order, and the fraction-
al order is more accurate than the integer order in de-
scribing the mechanical and physical behavior of

complex systems. Therefore, in this article, we fur-

ther consider the Lie symmetry for fractional Birk-
hoffian system with Riemann-Liouville derivatives

based on quasi-fractional dynamics models.

1 Preliminaries

We list some basic properties and definitions of
fractional derivatives. For more detailed discussion
and proof, please refer to Ref.[ 3].

If functions f(7) and g(z) are integrable and
continuous on interval [ a, #], the definitions of Rie-

mann-Liouville derivative of order a 1s

a _ 1 d[ a
Jlf(ﬂ-mafu(f_f) f(ode (1)
S d\ -
,th(f)—w(d[)f/(fl‘) S(0)dz (2)

where I' (%) is the Euler-Gamma function and 0<<
a<1.
If DY ¢ f(2) exits and >0, #=>> 0, we have
DID, " f(2))= DI " f(2) (3)
For0<<a<{1, >0, we have
DD f ()= Di (1) —

p—1

1 5 (t—a)
[.Di 'S (1) L:“Tﬁ) (4)
If /(¢) vanishes at /=a and 0<la<T1, we
have
L =03 r=0r 1)
dr dr

If \Dfg(t) and ,Dj /(1) are existent and contin-
uous for 1€ [a,b], and f(¢) vanishes at t=a or

g (¢) vanishes at 1= b, we have

[r.pigar= [ g pifa ©

a

2 Fractional Birkhoff’s Equations
Under Quasi-fractional Dynam -
ics Models

2.1 Fractional Birkhoff’s equations based on
RLFI

According to Rel.[46], the fractional Pfaff ac-

tion based on RLFI can be expressed as

— 1 ’ v B
Sk = e U[R,!(Z',a)(,D,a
B(r,a) ] (t—10)" 'dr 7)
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where «* are Birkhoff’s variables; B= B(z, ") is
the Birkhoffian; R, = R, (z, a*) are Birkhoff’ s func-
tions, 0<< B <15 ¢ is the observer time; 7 is the in-
trinsic time; 7 7, functions B and R, are C* func-
tions of their variables.

The fractional Pfaff-Birkhoff variational princi-
ple based on RLFI can be expressed as

1 b
— B m Bat)—
08 = 1o L[é‘RMDra + R,6(.Dia")
0B](t— 1) 'dr=0 (8)

It is under the commutative conditions
0. D" = Df6a* p=1,2,---,2n (9)
and given terminal conditions

b:aé‘ p=1,2,-,2n (10)

a" =al,a"
T—a T

Using integration by parts to calculate the sec-

ond term in Eq.(8) and considering Eq. (10) , we

have
I bR#é‘(“Dfa")(l*r)aildr:
I'(a) e
L ("R DM0a) (1 — o) de=
I'(a) 7
e ié‘a*’,Df[Rﬂ(Z*r)ail]dz' (11)

Substituting Eq.(11) into principle in Eq.(8),

1 (R B -
=~ Dfg” — L — +
() J {( aar aa/‘)( )

we get

DI[R,(:1—0)" "Joa"de=0 (12)

Since Eq.(12) is true for any integral interval

[a, b] and the independence of da”, by using the fun-

[58]

damental lemma"™® of the calculus of variations, we

have
IR dB a1
= Dfat — — (1t —
(aa"‘ Dia aa")(t )+

Di[R(t—0" '1=0 p=1,2,--.22 (13)
Eq.(13) is the bundle of fractional Birkhoff’ s
equations based on RLFT.

2.2 Fractional Birkhoff’s equations based on
EEFI

According to Ref.[47], the fractional Pfaff ac-

tion based on EEFT can be expressed as

1
I'(a)

B(r,a") ] (coshzfcoshr)rldr (14)

b
Sy = [R,(7,a") . Dia" —

The fractional Pfaff-Birkhoff variational princi-

ple based on EEFI can be expressed as

1 b
— B u Bary — .
05 = i | [0R, .Dia" + R,0(Dia") o8]
(coshz— Coshz')afldz':O (15)

under the commutative conditions
o Diat = Dioa” p=1,2,---,2n  (16)
and given terminal conditions

=ay p=1,2,-,2n (17)

a" =a,a"

T=a =10

Similar to Eq.(12) , from Eq.(17), we can

easily get
1 v dR, ) JB a—1
(e L{( Y D — 3a“) -(cosht— coshr) +

DI R,(coshz— Coshr)rl]} 0a'dr=0 (18)

On account of the independence of da” and the

lemma of the calculus of variations, from Eq.(18),

we obtain
IR, JaB o
Dfa’ — —|(coshz— coshr) "4
da" da”
D} R,(coshz— coshr)ail]: 0

p=1,2,- 2n (19)
Eq.(19) is the bundle of fractional Birkhoff’ s
equations based on EEFI.

2.3 Fractional Birkhoff’ s equations based on
FIEPL

According to Refl.[48], the fractional Pfaff ac-

tion based on FIEPL can be expressed as

Sp= F(la)Jj[R,u(r,a”) Dia" — B(zr,a") ]Sin[(a—

D(r— 1) +72‘}df (20)

The fractional Pfaff-Birkhoff variational princi-
ple based on FIEPL can be expressed as

1 b
0Sy = ——| [0R,.Dia"+ R,0(.Dia")—
I'(a) L LR, a ( a’)
o“B]sin[(a—l)(z—r) +’2‘}df—o (21)

under the commutative conditions
0 Dl = Dioa" p=1,2,--,2n (22)

and given terminal conditions
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—at p=1,2,--.2n (23)

a" =a/, a"

T=a

T=b
Similar to Eq. (12) , from Eq.(20) , we can
easily get

1 (R aB
- Dla— S
I'(a) I{(aa “ 3a“)

Sil’l|:(0( H(t—17) + ;} +

rDZ{R# Sin((a —D(t—17) + g)}} -0a"dr =0
(24)
On account of the independence of da" and the

lemma of the calculus of variations, from Eq.(24),

we obtain
IR B
(aa; Dia’ — aa#)sin{(a )(1—17) + ’;} +

TDQ{R# sin{(a— D(t—1) + ﬂ} =0

u=1,2,-,2n (25)

Eq.(25) is the bundle of fractional Birkhoff’ s
equations based on FIEPL.

If —~1, Eqgs.(13,19, 25) become Birkhoff’ s

equations based on quasi-fractional models. If

1, a—>1, Egs. (13,19, 25) become the stan-

19]

dard Birkhoff’s equations'

3 Lie Fractional

Birkhoffian System

Symmetry for

3.1 Lie symmetry based on RLFI

The infinitesimal transformation of the group is
introduced as
T—r7r+ Ar,a"*(7) —a"(7) + Ad”
p=1,2,- 2n (26)
and the extension formulas are
T=rt+ef(r,a")
a'(t) =a"(r) + e, (r,a)
p=1,2,- 2n (27)
where &, and &, are the infinitesimal generators; and
e 1s an infinitesimal parameter.
Under infinitesimal transformation in Eq.(26) ,
there are' ™’
Dia(7) = Dia+ DINa" — DE(d"At) +
At DE p=1,2, 2n;0<<p <1 (28)

The infinitesimal generator vector is introduced

d d
0—e 9
XO=fo b (29)
and its 8 extension ™ is
X=X+ (Dig, — Di@)+
5. ad
§0 uD‘fa#) a“lea# (30)

Because of the invariance theory of differential
equation under infinitesimal transformation, the in-
Birkhoff’s

Eq.(13) under the infinitesimal transformation in

variance of fractional equations  in

Eq.(27) can lead to the following equations

X(’@){(aRL Dia — aB)(t— r)ail+

da” A"
,D//f[Rﬂ(Z* T)Hl]} —0

p=1,2,-,2n (31)
By substituting operator in Eq.(30) into
Eq.(31), we get

IR\ ., . A B e
N L
X DR =" )+
2[R, _, B
§0(17 a/)(li T) (aa/l MD/:'aV— aa,u)

. .. IR,
(.Di§, — Di(a§)+ & Did) P

(t—0)" '=0 u=1,2,-.2n (32)
Eq.(32) is the determining equation.

Definition 1  For the transformation in
Eq.(27), if the determining equations in Eq.(32) are
satisfied, the symmetry is the Lie symmetry of frac-

tional Birkhoffian system Eq.(13) based on RLFI.
3.2 Lie symmetry based on EEFI

The invariance of Eq.(19) under the infinitesi-
mal transformation in Eq.(27) can lead to the fol-

lowing equations

JR, JdB «
xW ( D?a"— —|-(coshtz— coshr) s
da" da"

.D?[ R,(cosht— coshr)” 1]} =0

p=1,2,-,2n (33)
By substituting operator Eq.(30) into Eq.(33),

we get
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s

—1
) Dfa*(cosht — coshr)”  —

X“’( ) (coshz— cosh7) SRS

{ (coshz— coshr)” l]} +

—2

& (a— 1)sinhz(coshz — coshz)”

R B
(a s Dl ——— )+([,D’9§ — D)+

a—1

& .Dia ) -(cosht — coshr) =0

20"
p=1,2,-,2n (34)
Eq.(34) is the determining equation.

Definition 2  For the transformation in
Eq.(27) , if the determining equations in Eq. (34)
are satisfied, the symmetry is the Lie symmetry of
fractional Birkhoffian system in Eq. (19) based on

EEFL
3.3 Lie symmetry based on FIEPL

The invariance of Eq.(25) under the infinitesi-
mal transformation in Eq.(27) can obtian the follow-

ing equations

@[ IR, _ 9B\
X {(851“ T g
. T
sm{(a D(t—17) + 2} +

rDi{R# sin((a — ) (t—1) + g)}} —0

p=1,2,- 2n (35)
Eq.(30) into

By  substituting  operator

Eq.(35), we get

X aRf Dia’sin|(a—1)(t— 1) + 2| -
da" 2

o[ 9B] .. _ _ T
X! (aaﬂ)sm{(af 1)(¢ r)+2}+

,D’,f[R# sin{(a — 1) (t—1) + ’;ﬂ} +

E(1— a)co{(a D(t—17) + g}

X(ﬂ)

IR oB
( ;mwj+@ma1mwm+
da’ da’
IR
g8 L il (@ 10— o)+ | =
da" 2

Eq.(36) is the determining equation.

Definition 3 For the transformation Eq.(27),
if the determining equations in Eq.(36) are satis-
fied, the symmetry is the Lie symmetry of fractional

Birkhoffian system in Eq.(25) based on FIEPL..

4 Lie Symmetry Theorem of Frac-

tional Birkhoffian System

Lie symmetry does not necessarily lead to con-
served quantities. For the systems based on quasi-
fractional models, the following theorems give the
conditions and the conserved quantities led by Lie
symmetry of this system.

4.1 Lie symmetry theorem based on RLFI

Theorem 1 If the generators &, &, satisfy the
formula in Eq.(32) and there exists a gauge function
G = G(t,a’) that satisfies the following structural

equation

dR aB IR, aB
( '1/ Dlga”‘ )g + ( JArad — )§o+
a dr

(R, D! ”—B)éﬁR,go D+ R, D& —
. 1—«a
Clbfo)Jr(Ruule "—B)é I— 1 -

—a

—G(t—1) (37)

then the fractional Birkhoffian system in Eq.(13)
based on RLFT has the following conserved quantity

a—1

I=(R, Dia"—B)&(t— 1) +

_S)" v

&, — d"&) 1ds+ G = const

[ TR.DI — g (4

Di(R,(1—5)" )

(38)

Proof

drI L BYE (s ]

dZ' =(R, aDﬂ )fo(f T) =+
d(R,.Déa’—B), o b

dT go(l‘ T) +(RH,D,

B)g()(lia)(zir)a <+RuuD (5
@&)(t—o) = DIR,(t— )" )& —
@&+ G (39)

Substituting Eq.(37) into Eq.(39), we get
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dI d(R, D¢’ — B -
E: ( dz_ )50([72.) 1+RP(1D£($D7
@) (t—1)" = DIR,(t—1)" )& —
OR, B -
a"§y)— ( P - Dla— ﬂ)sﬁ(l‘,r) =
da’ da
OR, B a1
(a B _al_)fo(f_f) -
RILDIGE+ DI, — @) i— )" =
aRy . M a—1
ﬁa"qua E(t— 1) —
B .y a—1 ) a—1
P as(t—rc) — Di(R,(t—1) )& —
da
IR, B «
aﬂgo)_( —aa#)éﬁ(i—f) =
aR» aB o o a 1_
(aa#“ aa#)(& @) (1= 7)

(&, — @&) DR, (t—1)" )
Due to Eq.(13), we obtain

dI
E—O

Therefore, the theorem is proved.
We can describe Theorem 1 as Lie symmetry

theorem of system (13).

When §—1, the fractional Birkhoff’s equa-
tions in Eq.(13) are reduced to
(aR» B aR#) L, 9B IR, 1—a
da" da’ da" dr t—t "
p=1,2,- 2n (40)

Eqs.(40) are Birkhoff’s
quasi-fractional model given in Rel.[56]. And The-

equations based on

orem 1 is reduced to the following theorem.
Theorem 2 If the generators &, and &, satisfy

the following Lie symmetry equations

xS et
R T
XUT(1—a)(t—0)" "R+
(Zf; aaif)(sévd"éo)(tr)“l+
oo [
gi_aaﬂ—o p=1.2, .20 (41)

and there exists a gauge function G = G(r,a")

which satisfies the following structural equation

R, IR,

(aﬂ )5‘ ( ac )50 e
B)é +R.(E—d &) H(Ra —B)E 1:? =
—G(t—1) ° (42)

then the system (40) has the following conserved
quantity
I=(R.,& —B&)(t—1)" + G=const (43)
When f—>1 and a— 1, Theorem 1 becomes
the Lie symmetry theorem of classical Birkhoffian
system ™/
4.2 Lie symmetry theorem based on EEFI

Theorem 3 If the generators &,, &, satisfy
Eq.(34) and there exists a gauge function G =

G (7, ") that satisfies the following structural equa-

aB
a az-)go+

)f() + Rv§0 angu+ Ru qu(éf/t o

(a—1)sinht
" coshr— coshr

—G(coshz— coshr)lw (44)
then the fractional Birkhoffian system (19) based on

tion

dR B IR,
( - D’z?ayi a )§M+( a

da" *
(R..Dia"— B

a"&) (R, Dia"— B)§

EEFT has the following conserved quantity
I=(R,,Dfa"— B)&(cosht— coshr)r1 +

| [R..DI (g — @8 (cosht— oshe)” " —

Di(R,(cosht—osht)* )&, — d'&) ]ds+ G=
const (45)
Theorem 3 Theorem 3 can be called LLie sym-

metry theorem of fractional Birkhoffian system in
Eq.(19) based on EEFI.

When f—1, the fractional Birkhoff’ s equa-
tions in Eq.(19) are reduced to
JR, OR,\. dB IR,
da" da’ da" Jr
— 1) sinh
(a— Dsinhe o 1 2 2 (46)

coshz — coshr

Eqs.(46) are Birkhoff’s equations based on
quasi-fractional models given in Refl.[56]. And The-
orem 3 is reduced to the following theorem.

Theorem 4 If the generators &, £, satisfy the

following equations
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JR, JR,)\ . a ‘ .
X — 221 @ (coshz — coshr)” ' — I=(R, . Dia"— B)& - sin (c)(*l)(z‘*r)JrE +
da" da’ 2
X 9B | IR, (cosht — coshr)” ' — J{ DY (& —a'&) bm{(a—l)(t—r)ﬂLn}—
da" dr 2
X[ (a—1)sinhz(coshz— coshz) "R,]+ _\D€|:R# sin{(a1)(12‘)+72tﬂ(§,1d”§o)}ds+
dR, OR,\  :
W o (& — G = const (51)
ié)) (cosht — cosh T)afl X Theorem 5 Theo.rem 5 ca.m be c..alled Lie sy@*
. L metry theorem of fractional Birkhoffian system in
&(a— 1)sinhz(cosh?— cosh) Eq.(25) based on FIEPL.
(aR» o 3Rp)du o 573 IR, —0 (47) When f—1, the fractional Birkhoff’ s equa-
da" da’ da" dr

and there exsits a gauge function G = G(z,a")

which satisfies the following structural equation

R, . R, .
(a~ )5" ( )go (R
B)§O+Rv(§#* aé)t+(R,a—
(a—1)sinht
B coshz — coshr
*G(coshzf coshr)lfa (48)

then the system (46) contains the following con-
served quantity

I=(R.£,— B&,) (coshz — coshr)a '+ G = const

(49)

When f—1 and a— 1, Theorem 3 becomes

Lie symmetry theorem of classical Birkhoffian sys-

tem.

4.3 Lie symmetry theorem based on FIEPL

Theorem 5 If the generators &,, &, satisfy
Eq.(36) and there exists a gauge function G =
G (7, a") that satisfies the following structural equa-

tion

IR, IR, B
B ov__ B,y __
(a ~ .Dia ﬂ)g,l ( Dia ar)gfﬁ

(R,.D!a*— B)é + R.& Di@* + R, D& —
db$<))+(R»aD§ab —B )50(1 -

a)cot[(a D(1—17) + ’2‘} —

Gsinl[(an(zrw;‘} (50)

then the fractional Birkhoffian system in Eq.(25)
based on FIEPL has the following conserved quanti-

ty

tions in Eq.(25) become
R, R, . B 0R,
da* da’ da" Jr

R,l(la)cot[(a 1)(z— 1) +72r}

=1,2,-,2n (52)
Egs.(52) are Birkhoff’ s equations based on
quasi-fractional models given in Refl.[56]. And The-
orem 5 is reduced to the following theorem
Theorem 6 If the infinitesimal generators &,
£, satisfy the following equations
X”(E;I; E;I;V)a >1n|:(a—1)(l—r)+g}—

(O)(gfﬂ aaRT)@m{(al)(tr)+g}

Xm{(l— a)COS[(a_ D(—1) Jr;}R#} ’

EAR TR SRR

fo(la)COS|:(0(1)([z-) +72[}

dR, OJR,\. dB OR, _0
da” da’ 4 da" dr

p=1,2,-,2n (53)

and there exists a gauge function G= G(z,a’)

which satisfies the following structural equation

R, . R,

e 2
B)éo+ R,(£,— d'&)+(
a)co{(a D(t—17) + 721} -

)50 (R,a"—

R, —B)&(1—

Garcsin{(al)(zﬁr) Jr;} (54)

then the system (42) contains the following con-
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served quantity
I=(R,E, — Bfo)sin{(a H(t—1)+ g} +G=

const (55)

When f—1 and a— 1, Theorem 5 becomes
Lie symmetry theorem of classical Birkhoffian sys-

tem"?.

5 Examples

(1) Example 1
A fractional Birkhoffian system is studied

based on RLFI. Its Pfaff action is

1
_ 2 el
Sv= T j [&,Dfa' +
at anaS*aza‘%](Z*r)aildr (56)

According to Eq.(13), Birkhoff’s equations of
the system can be written as

Dila*(t— r)ail]:O,anal*agzo

a—1 —1

+ .Di[a'(t—1)" ]=0
Dla*=0 (57)
The structural Eq.(37) gives
(.Dfa' = ') — @'t DEa'E, +(a* Dl +
a* Dfa* — da®) &+ a*&, DPa' +
a4§Oqu(’i3 + azqu(éfl - d150)+ a4uD€($3 -

—a*(t—r1)

) 1
d3§0)+(azaD€al +Cl4aDi§a3 *(ZZQS) 50 [_j —
—Gt—7) (58)
Then

§o=1, 5‘:‘11’ 5= j* T a’, §3:a3, & =0 (59)

The generators in Eq.(59) satisfy Eq.(32).
Substituting the generators in Eq.(59) into Eq.(58),
we have

G=0 (60)

According to Theorem 1, we obtain

a1

I=(a",Dfa' + a* . Did’ — a*d®) (1t — 1)  +
j]ﬁpﬂw—wxrwf”+
@' Dl —d')(1—s5)"  —
(a'—a) Dila*(t—9)" '1—
(@ —a@).Dila(t—5)" fds (61

Eq.(61) is the conserved quantity.

When f—> 1, Eq.(61) is reduced to

1

I=(a*a'+a'd’*—a*d®) (t—1)" (62)
Eq.(62) is the conserved quantity of the quasi-
fractional Birkhoffian system.
When f—1,a— 1, Eq.(61) is reduced to
I=a’a' +a'a’— a*a’ (63)
Eq. (63) is the conserved quantity of classical
Birkhoffian system.
(2) Example 2
A fractional Birkhoffian system based on EEFI

1s elabrated. Its Pfaff action is

1 b
_ 3 e 1 I P
Sy = (e L [a’ Dia' + a* Dt
1, .. 1, ., a1
E(a) + g(a) (coshtz— coshz) dr (64)

Birkhofl’ s equations based on EEFT are
.Df[ a’(cosht — coshr) “N=0
.Di[a*(coshz— coshz)” l]: 0
Did'—a*=0,,Dld*—a'=0 (65)
The structural Eq.(44) gives

(.Dfa' —a”) &+ (Dia” — a') &, + {cf Dia' +

at . Dfa* —{l(ag)2 + %(cf) Z}} £+ d’&,, Diat +

a4§OuDr3d2 + asaD/f(gl 7 dl§0)+ aActD[r?(gZ 7

a*gy)+ {a:;anal +a',Dia"—

1,2, 1, .2 (a—1)sinhc
[%a)+2w>ﬁﬁ

coshz — coshr

1—

— G (coshz— coshz) ° (66)

Then
§=0,6=d" & =—ad', &=0,£=0 (67)
The generators in Eq.(67) satisfy Eq.(34).
Substituting  the Eq.(67) into

Eq.(66), we have

generators  in

G=0 (68)
According to Theorem 3, we obtain
I= Jr{ag Dfa*(cosht — Coshs)rl —
a* .DPa'(coshs— coshs)” =
a—1

a* .Di[ a’(cosht — coshs) ]+
a' D3l a*(cosht— Coshs)kl]}ds (69)
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Eq.(69) is the conserved quantity.
When g—> 1, from Eq.(69), we have

a—1

I=(d’a®— a'a")(cosh ¢t — coshr) (70)
Eq. (70) is the conserved quantity of Birkhof-
fian system based on EEFT.
When f—>1,a—>1, Eq.(69) becomes
I=d'a*— a*a (71)
Eq. (71) is the conserved quantity of classical
Birkhoffian system.
(3) Example 3
Now we study a fractional Birkhoffian system

based on FIEPL. Its Pfaff action is

1 b 2 3 g1 1 g3
(e L [ (a®+ a°) Dia' +a* D

SP:

(azas—l—(as)z)]sin{(a— D(t—r17)+ g}dr

(72)
Birkhoff’s equations under FIEPL are

,Df{(aerag)sin((a D(t—1) + ’2‘)} —0

(qual —a — 2a3)sin|:(a H(r—17)+ Tgt:| +

,D’,{a4 Sin[(a H(r— 1)+ Z:H =0

Diad'—a’=0,,Dia’* =0 (73)
The structural Eq.(50) gives
(,Dfa' —a’) &+ (,Dia' — a® — 24°) &+
DidE +((ad° + a°) Dia' + a* \Dia® — a*a’ —
(@))€ + (a4 a') &, D' + a* &, Da* +
(a’ +a’) Di(§ —a'&)ta D& —ad'§)+
((a’+a*) ,Dia' +a* ,Dia’— a*a’ —
(a*V)&(1— a)-cot[(a— )(1—1) + “} —
Garcsin{(al)(z‘r) +;} (74)
It 1s easy to verily that the system has the Lie
symmetry
50:17 gl:alv "5220, §3:a$, 5420 (75)
According to Theorem 5, corresponding to Lie

symmetry in Eq.(75), the system has the following

conserved quantity

I=((a"+ a*) Dia' + a' ,Dia’ — a’a® —

(as)z')sin[(a D(t—1) + g} +

j{(a +a') Dl (a' — d) -

sin|:(0z— )(r—s) + TZ‘} + 4t D (a® —
d“)sin[(a— D(r—s) + ’2‘} —(a" —

al) - ,\Di{(a% ) sin((a )(z—s) + g)} —

(@®— &) iD{f|:a4 sin((a —1)(t—s) + g)j“ ds (76)
Ifg—1, we get
I=[(a"+d’)a' +a'a’— d*d’ —

(as)z]sin{(a— (71— 1) +’2t} (77)

Eq.(76) is the conserved quantity of Birkhof-
fian system based on FIEPL.
Ifg—1,anda—>1, we get
I=(a*+d)a' +a'a’— d*d’ —(a’)y (78)
Eq. (78) is the conserved quantity of classical

Birkhoffian system.

6 Conclusions

Since the fractional models can describe the dy-
namics behavior of complex systems more accurate-
ly, the research of fractional Birkhoffian system has
always been a hot topic. The quasi-fractional dynam-
ics models can simplify some complex problems in
non-conservative dynamics, so it is quite valuable to
study the symmetry of fractional Birkhoffian system
based on quasi-fractional dynamics models. The Lie
symmetry of fractional Birkhoffian system based on
quasi-fractional dynamics models is proposed and
studied in this paper. The determining equations for
the systems based on RLFI, EEFI and FIEPL are
established seperately. The corresponding structural
Egs.(44, 50) and the conserved quantities of
Eqs.(39, 45, 51) are obtained. The Lie symmetry
theorems of quasi-fractional Birkhoffian systems and

classical Birkhoffian systems are special cases of this

paper.
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