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Abstract: This paper proposes a straightforward and concise approach to analyze the Saint-Venant’s torsion of a

circular shaft containing multiple elliptical inclusions or cracks based on the complex variable method. The complex

potentials are first derived for the shaft with N elliptical inclusions by introducing Faber series expansion, and then the

shear stresses and torsional rigidity are calculated. When the inclusions degenerate into cracks, the solutions for the

intensity factors of stress are obtained. Finally, several numerical examples are carried out to discuss the effects of

geometry parameters, different shear modulus ratios and array-types of the elliptical inclusions/cracks on the fields of

stresses. The obtained results show that the proposed approach has advantages such as high accuracy and good

convergence.
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0 Introduction

Circular shafts under torsion are widely used in
engineering. To raise the undergoing-load level of
the shafts, they are often holed or made into com-
posite shafts reinforced by other materials. Thus, it
is of not only theoretical interest but also practical
importance to study the torsion of circular shafts
containing holes or inclusions.

Lil’lg“l

investigated the Saint-Venant’ s torsion
problem of a circular bar with a ring of uniformly dis-
tributed circular holes of equal radii using a special
class of harmonic functions introduced by How-
land®. Kuo et al.""* studied the torsion of a circular
tube with circular holes and a cylinder which is rein-
forced with circular inclusions by constructing a real
stress function, respectively. Jaswon et al.”’ pro-
posed an integral equation solution for the classical
torsion problem of Saint-Venant through numerical-
ly solving a Neumann-type boundary-value equation.

The solution for torsion problem of a circular

shaft can always be solved by using numerical tech-
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niques “"'. Katsikadelis et al.'” presented the bound-
ary element solution for the Saint-Venant torsion
problem of composite cylindrical bars of arbitrary

cross section. Spountzakis et al.'™

developed the
boundary element method for the nonuniform tor-
sion of composite bars of arbitrary constant cross
section by using domain discretization and an effec-
tive Gaussian integration over domains of arbitrary

1.1 studied the Saint-Venant’s torsion

shape. Liet a
problem of the arbitrarily shaped bar made of differ-
ent materials based on finite element method. Refs.
[10-11] adopted the null-field approach to solve the
Saint-Venant’ s problem of a circular bar with circu-
lar holes or inclusions, respectively.

Recently, the research on torsion of advanced
materials has attracted extensive attention. Ecsedi
et al.'”®' generalized the known elastic solution of
Saint-Venant’s torsional problem developed by
Prandtl to piezoelectric beams, and later they inves-

tigated the Saint-Venant torsion of non-homoge-

neous and circular cylinder made of orthotropic
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piezoelectric material /. Wang et al.'™* studied the
effects of surface elasticity in the Saint-Venant tor-

sion problem. Hassani et al.'"”’

analyzed the Saint-
Venant torsion of an orthotropic bar with multiple
curved cracks. However, it should be noted that the
above work was all made by real variable method.

Muskhelishvili' developed a complex variable
method to address the Saint-Venant’s torsion of
composite circular shafts and solved the problem of
a circular shaft containing an eccentric circular inclu-
sion. Based on the Muskhelishvili’s method, Yue
et al.'"" dealt with the torsion problem of a compos-
ite cylinder with cracks and inclusions by introduc-
ing the Mellin transforms and solving a set of mixed-
type integral equations. Refs.[18-19] showed that,
based on the complex variable method, the interac-
tion between porous/inclusions can be effectively
solved. However, to the author’ s knowledge, no
work can be found for the solution to the Saint-Ve-
nant’s torsion of a circular shaft containing multiple
elliptical inclusions based on the complex variable
method.

In this paper, we propose a straightforward and
concise approach to analyze the problem of interact-
ing elliptical inclusions in a circular shaft of torsion
based on complex variable theory. The key step in
the present work is to express the complex poten-
tials in the matrix with elliptical holes (a multiply-
connected region) in the form of Faber series, and
then the continuous conditions between the inclu-
sions and the matrix are used to determine the un-
known coefficients involved in these complex poten-
tials. Thus, the novel feature of this paper is to pres-
ent a straightforward and concise method to solve
the problem of the Saint-Venant’s torsion of a circu-
lar shaft containing multiple elliptical inclusions or

cracks effectively with high accuracy.

1 Basic Equations

In a rectangular coordinate system x-y-z, con-
sider a circular shaft containing N elliptical inclu-
sions which are parallel to each other along the z di-

rection. The cross-section of the shaft is shown in

Fig.1, where a, and b,(p=1,2,---,N) are the

lengths of the elliptical inclusions’ semi-axis, and
2, are the center coordinates of inclusions, respec-
tively. All the inclusions are assumed to be com-
pletely bounded to the matrix. The boundaries of
the inclusions and the outer contour of the shaft are
denoted by L,(k=0,1,2,---,N). We now study
Saint-Venant torsion problem of the composite shaft

loaded by the torque T applied at its two ends.

Fig.1 Torsion of a circular shaft containing multiple ellipti-

cal inclusions

In this case, the components of displacement
(u, v, w) can be expressed as

u=—rzy, v=rzxr, w=re(x,y) (1)
where 7 is the angle of twist per unit length along
the = direction and ¢(x,y) the warping function.

The corresponding stresses are

) =0, o. , 0,=0
o)
J (2)
,uﬁr( I) k=0,1,2,---,N

where 4, 1s the shear modulus of the matrix, and
pi(k=1,2, -+, N) are the shear modulus of the £-th
inclusion. For this problem, the equilibrium equa-

tion becomes that'®’

ag;zz agyz _
dx - dy =0 (3)

where the body force is neglected. Substituting

Eq.(2) into Eq.(3) leads to the Laplace equation

o o
—— + —=—=0 4
Fx Ay @

The solution of Eq.(4) is
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¢=Re[F(z2)] z=ax+1iy (5)
where F(z) is called as the complex potential. Sub-
stituting Eq.(5) into Egs.(1—2), the displacement
and stress can finally be expressed as''*’

1 N
wZET[F(z)-Q—F(z)] (6)
0. — o, = mt(F'(z) —i7) (7)
Once F(z) is obtained, the torsional rigidity D

can be calculated by""’

T

TS oy oy d9 0
D= T/Z;)mﬂ(x + eray Yy dxdy

(8)
To solve F(z), we introduce the resultant trac-

tion p on any boundary as
p= | oudy—o,de (9)

Inserting Eq.(7) into Eq.(9) leads to

T .
p= % [F(2)— F(z) —izg+ C,]  (10)
where C, is a constant and it can be assumed to be
zero without affecting the stresses. Since there is no
external traction on the cylindrical surface, p=20

and the boundary condition on L, can be derived

from Eq.(10) that

Fo(z) — Fo(2) —i22=0 (11)
where the subscripts “0” denote the matrix. At the
interface between the matrix and inclusions L, (4=
0,1, 2, -+, N), the continuity conditions require that

Wy =— W, (12)

Do=D» (13)

where w, and p, stand for the displacement and re-

sultant traction along the 4th inclusion’s boundary,

respectively. Substituting Egs.(6,10) into Egs.(12,
13), we have

Fo(z) + Fo(2) = Fu(2) + Fu(2) (14)

(Fo(2) = Fo(2) )= ge(Fu(2) — Fiu(2) )—
(11— g)zz+C,=0 (15)

where g, = M/,ao (k=1,2,--,N) denotes the
shear modulus ratios, and C,(k=—1, 2, -+, N) the

constants to be determined.

2 Theoretical Analyses

In this case, the matrix is a multiple-connected
region containing N elliptic holes and enclosed by
the circle, so the complex potential in the matrix

has the form that
Fo(x) =fi(=) + D)fi(2) (16)

where f,(z) is an analytical function inside L,, and
/:(2) is another analytical function outside the ellipti-
cal hole L, Thus /;(z) can be expanded into the

Taylor series as

i
filz) = DIA |- (17)

j=0 R
where A, are unknown coefficients. Introduce the

following conformal mapping function

Z_Zko—w(fk)_zko—Rk(§k+7m) (18)

ak+bk _akibk

R7: s _—
‘ 2 T L,

(19)

which conformably maps the region outside the ellip-
tical hole L, onto the external region of a unit circle
of &=2¢" in the & plane, and thus f;(2) can be ex-

panded into the Laurent series as

fi(z) = D> BPE (=) (20)

=0
where B” are unknown coefficients. Inserting

Eqgs.(17,20) into Eq.(16) yields that

o

am_z&GJ+§2www<m

j=0
On the surface of the shaft L,, s = R,e’ = R0
and thus Eq.(21) has the form that

o

Fo(o) = A0+ SIS B e (o) (22)

On the other hand, &,7/(o) can be expanded in-

to the complex Fourier series on the unit circle as

E(o) = D) Bio" (23)
B %fﬁ &0 "do (24)

where the unknown function 5[1(‘ 5[1‘ < 1) can be

determined from Eq.(18) as
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2
LR 2 2 2 1
, = — - — 2
i 2R, ,m, /( ZRmu) m, (25)

which can be used to determine the coefficients by
Eq.(24). Substituting Eq.(22) into Eq.(11), after

some rearrangement, we can get that

S0+ 313 3 B e -

=1j=0n=—o0

2E0f+iii

kj,,a "| =1iRS (26)

On the other hand, for any inclusion L,(p=
1,2, -+, N), moving the origin of the global system
x—y in to the point z,, that is, making the follow-
ing coordinate translation: z —z,=z2", one can ex-
press the complex potential in the matrix and inside

the inclusions, in the local coordinate system

Ly Vp» 85
- . i
Fo(z) = ZAj(z ;%) +
j=0 0
EB ) + ZZB(Mf (27)
i=0 ==
kFp

F(2) = D) i =) e8)

where ") are unknown coefficients. In Eq.(27) , we
define &(z") = ((z"+z,)/R,)’, and it can be ex-

panded into the complex Fourier series as

£(2) — R,(6+m,c ")+ 2, (29)
R,

i (30)

o= %Lgs(z*) NIy

From Eqgs.(29—31), we can obtain the coeffi-

cients 16’((52 In Eq.(27), the term £,7(2") is a given

function that is analytic inside the inclusion

L,(p7# k), and thus it can be expanded into the

Faber series as 2"

5/\’ ](Z ZA/]II n (32)
P,‘f’(z): P mpg (33)
() 1 o mind

Al = éfk ( Ye "do (34)

where the known function £&; ' (‘ &' ‘ < 1) can be de-

termined as

5& l(z*) —d1+d2_/(d1+d2)2 _% (35)

1y

m

P
R o+ 22

Zp0 T Rk o

dr= 2R ,m, do = 2R, m, (36)

After the coefficients A(ﬂl are obtained from
Eqgs. (34, 35),

be easily calculated by using the following recur-

the coefficients Aﬁj,, in Eq.(32) can

rence relations'?’

/7
A j+1

Zm,,

Inserting Eqs.(27,28) into Eqs.(14,15) yields

ZAKVJN A(ﬁp)l\_._
(37)
,( l nts + A/ Jonts A(/z/?)l,\)

that
Z;A Z ,80],, o' + z;B o+
j n=—co j
225 EAL,,, { (EE 3 ple +
U e
iB.E/)) DJ + iiB(/ ZA}WZ n ) —
=0 f//l’] 0 n=
i(}(p)(ajerja d i o'+ mje’) (38)
i=0 =
ZOO)A, i IBOJ,,UH + iB(f’ o+
=0 amw =
N e fee)
2235‘ ZAm EA S e+
k= =0 =0 n=—oo
/c//)

> B7s EZB EAw (o)~
j=0 k=1 j=
kFp

g{EC}")(aUr mjo ') —

~.

(39)
where P,(f’) ="+ m,o ". Comparison of the coeffi-
cients of ¢ (m=1) at the two sides of Egs. (26,
37,38) yields that
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AN easily determined by
Am + Z ZB;MB;’/UI 2 EB ﬂﬁj m) (4'0) N
r=1j=1 k= N
e D=D,+ > D, (48)
Am + ZZBEU Ej?u)x - 22 5 ﬁ/\j( m) - (4'1) e
r=1j=1 r=1j=1 where
N o © N
ZA&W SYSBPAY, + AN+ Dy=E5 ], G Hw(§)dw(§)
k=1j=1 j=1 j=0""
kFp

z

o

BY + YSBI A mp =W+ Wy (42)
h=1j=1
kF D

EA BY) + ZEB“AW + ZA gy, +

A%/;

N e
BE//;)+ ZZB&{’)A(&Q,TH; - (/m + m};“ 1(7{)) (43)

k=1j=1
k#p
SA B SIS AR — ST B -
kFp B
N co ___
SSNBIAD my — g, (CO— P mpy=0o
S
(44)
© _ — N oo ____
Z;A./ﬂﬁ(;m + /Z;ZB(/ //m EA Buj —m) Bm
i= =1j=
k#p

N o —_ _
DIIBIAD M — g, (CY —myclh) =46
1

e
(45)
where m =1, 2, -+, M and
(1= g )(R,Z0 T Ryz,om,) m=1
0=1i(l1—g,)(R;m,) m=2 (46)
0 m=3

In detail, a system of linear equations with re-
spect to the unknown coefficients A;, A;, B{", B,
c, CY(k=1,2,--,N;j=1,2,+--,M ) can be
obtained by equating the corresponding coefficients
on the two sides of Eqs.(40—45). In addition,
C,.(m7#0) can be determined by equaling the con-
stant terms on the two sides of Eq.(39), but they
have no influence on stresses, and thus are ignored.

Once all the complex coefficients are deter-
mined from these linear equations, the stresses both

in the matrix and the inclusions can be obtained by''"

@m—-mﬁ‘um@ (@ (E)w(£)] (47)

lo'(¢)

At the same time, the torsional rigidity can be

L1 Re[F(§))d[alDa(e)]  (50)

If one assumes p, — 0, and the short-axis radi-
us of the ellipse 6, =0, thus the inclusion L, degen-
erates into a crack parallel to the z-axis. In this case
one can calculate the stress intensity factor for the

shaft with the crack by
Velw(@)—w(§)]]e (51

K= lim

§7 5

where &, is the point at the unit circle of £ plane, and
it is corresponding to the tip of the crack in the z-
plane. Substituting Eq.(18) into Eq.(51), we final-
ly have

Ky = L ‘{Im [#oféfoF/(fo”} (52)

o)
3 Numerical Results and Discussion

3.1 Torsion of a circular shaft containing a cir-

cular inclusion

In order to show validity of the present meth-
od, we make some comparisons with the related
work in Ref.[ 11], which considered a circular shaft
of radius containing a circular inclusion, as shown in
Fig.2. In the example we take the ratio of R,/R,=
0.3, /R, =0.6 and the shear modulus ratio g, =
w1/ 1o =0.6. The numerical results for the non-di-
mensional torsional rigidity D= 2D/( uynR5) ver-
sus the number of power series terms are shown in
Fig. 3. It is shown that the results are accurate
enough when the numbers of power series terms are
above five. Furthermore, the variations of D" as

functions of the shear modulus ratio g, are shown in

Table 1, where results in Refs.[ 16,17 ] using the in-
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tegral formulation and in Ref.[ 11] based on the null-
field integral approach are also listed. It can be seen
that the results obtained in the present work are well

consistent with those in the previous works.

Fig.2 Torsion of a circular shaft containing a circular inclu-

sion

0.963 2

0.963 0

'R 09628

\
0.962 6 \

0000000000000 00

G324, 4 8 12 16 20

Number of power series M/ item

T

Fig.3 Torsional rigidity versus the number of power series

terms

Table 1 Torsional rigidity of a circular shaft containing

a circular inclusion

D

g1 Present

Ref.[16] Ref.[17] Ref.[11]
method
0 0.82370 0.82377 0.823 70 0.823 70
0.6 0.96246  0.96246 0.962 46 0.962 46
1 1.000 00 1.000 00  1.000 00 1.000 00
20 1.25224 1.25181 1.252 24 1.252 24
1 000 9.198 66 N/A 9.198 66 9.198 65

1000000 8101.100 12 N/A  8101.098 83 8101.093 44

3.2 Torsion of a circular shaft containing mul-

tiple circular inclusions

Consider the case of four circular inclusions lo-
cated in a rhombic array, as shown in Fig.4. For
comparison with previous work, we take the same

parameters as those in Refs.[3, 4, 11] as follows:

I/R,=0.6, g, =294 and R,/R,=0.25 (k=
1,2,3,4). The results of the non-dimensional tor-
sional rigidity D" are shown in Table 2, and it is
shown that the present solutions are in very agree-
ment with the work in Ref.[11], and more accurate

than the results in Refs.[3,4].

Fig.4 Torsion of a circular shaft containing four circular in-

clusions of equal radii

Table 2 Torsional rigidity of a circular shaft containing
four circular inclusions

Ref.[11]
1.774 0

Parameter Refs.[3,4]

D’ 1.570 6

Present result
1.774 045

As special cases, the torsion of a circular shaft
containing three circular holes of equal radii is also
given, as shown in Fig.5, where //R, = 0.6, g,=
0 and R,/R, =0.2(k=1,2,3). When taking the
series expansion as M =20, the shear stresses
along the boundaries are shown in Table 3, and it
can be found that the present solutions are well con-

sistent with the results in Ref.[1].

Fig.5 Torsion of a circular shaft containing three circular

holes of equal radii
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Table 3 Shear stresses o,/u7R, along the boundaries (M=20)

L, (Exterior boundary)

L, (Central hole)

L, (Eccentric holes)

v Ref.[1] Present result Ref.[1] Present result Ref.[1] Present result

0 1.308 1.307 8 0.459 0.458 9 1.547 1.546 7
n/6 0.967 0.966 4 0.277 0.277 0 1.327 1.327 3
n/3 0.928 0.928 2 0.081 0.080 7 0.793 0.792 5
n/2 0.932 0.9324 0.026 0.025 8 0.145 0.1451
2n/3 0.928 0.928 2 0.081 0.080 7 —0.451 —0.450 8
5n/6 0.967 0.966 4 0.277 0.277 0 —0.871 —0.870 8

b 1.308 1.307 8 0.459 0.458 9 —1.033 —1.033 3

3.3 Torsion of a circular shaft containing mul-

tiple elliptical inclusions

Consider the case of the circular shaft with two
elliptical inclusions, as shown in Fig.6, where a;, =
a,=0.2R,, b, =10, as variables, //R, =0.6, and
we=p(k=1,2). When g=p/u, >1, the inclu-
sions are called as hard inclusions, and when g <1,
they are called as soft inclusions. Specially, when
g =20, the inclusion becomes an elliptic hole. The
non-dimensional torsional rigidity D" for different

values of ,/a; is shown in Fig.7, which shows that

Fig.6  Torsion of a circular shaft containing two elliptical in-

clusions
LS5
L10f Ig;?'
“*g=35
1.05F -g=1

'R 1.00 g . o

0.95

0.90 \'\-\_\-

0833 04 0.6 0.3 1.0

b/a,

Fig.7 Non-dimensional torsional rigidity D" versus b,/a,

for the soft inclusions, the torsional rigidity greatly
decreases as the inclusions become softer, and for
the hard inclusions, the torsional rigidity greatly in-
creases as the inclusions become harder. On the oth-
er hand, the stresses at the interface between the
matrix and the inclusions are shown in Figs.8—10
for three different cases. It is found from Fig.8 that
when g =0, the greatest stress occurs at the points
on the hole’s boundary nearest to the exterior sur-
face of the shaft. Fig.9 is the case of the shaft with
two soft elliptic inclusions (g =0.5), and it is found

that the maximum stress g, along the surface be-

2.5
20F
1.5
1.0
0.5
0.0
-0.5
-1.0
=15
2.0

b,=0.5q,
g=0

0,/14,TR,

Il L

3 4 5 6
6/ rad

._._
[\S]

0

Fig.8 Shaft with two elliptic holes: Stress along the bound-
aries of the shaft and holes
1.6
1.2k
0.8
B
< 04
S
0.0
-0.4
O
6/ rad
Fig.9 Shaft with two soft elliptic inclusions: Stress along

the boundaries of the shaft and inclusions
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1.2

0.9r T

L
b,=0.5a, °

0,/14,TR,

6/ rad
Fig.10  Shaft with two hard elliptic inclusions: Stress along

the boundaries of the shaft and inclusions

tween the matrix and inclusions decreases compared
with that in the case of g=— 0. However, for the
case of two hard inclusions, the maximum value of
the stress occurs on the exterior surface of the shaft
rather than at the boundary of the inclusions, as

shown in Fig.10.

3.4 Torsion of a circular shaft containing mul-

tiple elliptical inclusions and cracks

Consider the case of the circular shaft with two
elliptical inclusions and two cracks shown in
Fig.11, where a,—a, as variables, a;=—a,—
0.1R,, b,=0b,=0, by=0b,—=0.2R,, /R, = 0.6,
s =, =0, py = py = p. The non-dimensional tor-
sional rigidity D" for different values of a,/R, are
shown in Fig.12, which shows that with the larger
ratio of a,/R,, the loss of relative D" changes great-
er. Owing to its geometrical symmetry, we just dis-
cuss the stress intensity factors of the crack on the

right of the circular. Therefore, the non-dimensional

stress intensity factors Ky(c) =
|Ke(0)/(ueRo/a D) and  Ki(d) =
Fig.11 Torsion of a circular shaft containing two elliptical

inclusions and cracks

1.1
1.0
0.91

fa)
0.8

0.7}

9600 0.1 02 03 0.4

a,/R,

Fig.12 Non-dimensional torsional rigidity D" versus a,/R,

‘Km(a’)/(,uoz-RO a; D*)’ for different values of

a]/Ro are shown in Fig.13. It is shown that with the
increase of the g, the variation of the stress intensity
factor Ky (¢) is larger than that of Ky (d), and as
the crack length becomes large, the Ky (d) sharply

increases while the K (¢) decreases slowly.

09F
"./

0.8F N o
g Km(?",.-‘ —-a—g= 0
< 07t e ~-g=02
2 —e—g=1
E:é —*—g=35

: Ki(©)

a/R,

Fig.13 Non-dimensional intensity factor K (¢) and

Ky (d) versus a,/R,

As a special case, the solutions for the torsion
of a circular shaft containing a center circular hole
and a crack, as shown in Fig.14, are also given. In

the example, we take R,/R,=0.2, and //R,=

Fig.14 Torsion of a circular shaft containing a center circu-

lar hole and a crack
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0.5,0.6,0.7, respectively. The results of D" for dif-
ferent values of a,/R, are given in Fig.15. Tt is
found that with the larger ratio of //R,, the loss of
relative D" changes greater. The non-dimensional
stress intensity factors Ky (¢) and Ky (d) for differ-
ent values of a,/R, are shown in Fig.16, which
shows that when the crack length approaches the
edge of the center hole and boundary of the shaft,
Ky (c) and Ky (d) sharply increase due to the inter-

action.

1.00;

0.98
0.96}
Q0.94}

092} —wIR,=0.5
—e— I/R,=0.6
0.90F . yr,—07

0.88

0.04 0.08 012 0.16 020 024 028
a,/R,

Fig.15 Non-dimensional torsional rigidity D" versus a,/R,

1.5 - K(c), I/R,=0.5 .
—o— Kji(c), /IR, = 0.6
1.2} = Ki(0), IR, = 0.7 y
) ~m Ku(d), IR, = 0.5 y
& | e K@), UR,=06 y
S 09} -+ Ki(d), IR, =07 , a" .
¢ P -
M P .‘(._..,‘,.,..‘.. .
0.6

0.04 008 0.12 0.16 020 024 028
a,/R,

Fig.16  Non-dimensional intensity factor K (¢) and K (d)

versus a,/R,

4 Conclusions

We studied the Saint-Venant’s torsion of a cir-
cular shaft with multiple elliptical inclusions with dif-
ferent material constants from the matrix. Based on
the complex variable method, the complex poten-
tials are expressed in the form of Faber series, and
then their unknown coefficients are solved by the
continuous conditions at the interface between the
matrix and inclusions. Solutions for the cases of mul-
tiple circular inclusions/elliptic holes/cracks can be
easily obtained as special cases of the present work,

and they are compared with previous results ob-

tained based on the integral equation method, the
null-field integral approach or other numerical meth-
ods. It is shown that the present work has advantag-
es such as high accuracy and good convergence. Fur-
thermore, several numerical examples for the inter-
action between multiple elliptical inclusions/holes/
cracks are presented to discuss the effects of the pa-
rameters of these defects on the stress, torsional ri-
gidity and the stress intensity factors, and it is found
that the geometry size, material constants and loca-
tions of the defects play a significant role in these

variables of fields.
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