
Vol. 38 No. 1Transactions of Nanjing University of Aeronautics and AstronauticsFeb. 2021

Torsion of Circular Shaft with Elliptical Inclusions or Cracks
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Abstract: This paper proposes a straightforward and concise approach to analyze the Saint-Venant’s torsion of a
circular shaft containing multiple elliptical inclusions or cracks based on the complex variable method. The complex
potentials are first derived for the shaft with N elliptical inclusions by introducing Faber series expansion，and then the
shear stresses and torsional rigidity are calculated. When the inclusions degenerate into cracks，the solutions for the
intensity factors of stress are obtained. Finally，several numerical examples are carried out to discuss the effects of
geometry parameters，different shear modulus ratios and array-types of the elliptical inclusions/cracks on the fields of
stresses. The obtained results show that the proposed approach has advantages such as high accuracy and good
convergence.
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0 Introduction

Circular shafts under torsion are widely used in
engineering. To raise the undergoing-load level of
the shafts，they are often holed or made into com⁃
posite shafts reinforced by other materials. Thus，it
is of not only theoretical interest but also practical
importance to study the torsion of circular shafts
containing holes or inclusions.

Ling［1］ investigated the Saint-Venant’s torsion
problem of a circular bar with a ring of uniformly dis⁃
tributed circular holes of equal radii using a special
class of harmonic functions introduced by How⁃
land［2］. Kuo et al.［3-4］ studied the torsion of a circular
tube with circular holes and a cylinder which is rein⁃
forced with circular inclusions by constructing a real
stress function，respectively. Jaswon et al.［5］ pro⁃
posed an integral equation solution for the classical
torsion problem of Saint-Venant through numerical⁃
ly solving a Neumann-type boundary-value equation.

The solution for torsion problem of a circular
shaft can always be solved by using numerical tech⁃

niques［6-11］. Katsikadelis et al.［7］presented the bound⁃
ary element solution for the Saint-Venant torsion
problem of composite cylindrical bars of arbitrary
cross section. Spountzakis et al.［8］ developed the
boundary element method for the nonuniform tor⁃
sion of composite bars of arbitrary constant cross
section by using domain discretization and an effec⁃
tive Gaussian integration over domains of arbitrary
shape. Li et al.［9］ studied the Saint-Venant’s torsion
problem of the arbitrarily shaped bar made of differ⁃
ent materials based on finite element method. Refs.
［10-11］adopted the null-field approach to solve the
Saint-Venant’s problem of a circular bar with circu⁃
lar holes or inclusions，respectively.

Recently，the research on torsion of advanced
materials has attracted extensive attention. Ecsedi
et al.［12］ generalized the known elastic solution of
Saint-Venant’s torsional problem developed by
Prandtl to piezoelectric beams，and later they inves⁃
tigated the Saint-Venant torsion of non-homoge⁃
neous and circular cylinder made of orthotropic
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piezoelectric material［13］. Wang et al.［14］ studied the
effects of surface elasticity in the Saint-Venant tor⁃
sion problem. Hassani et al.［15］ analyzed the Saint-
Venant torsion of an orthotropic bar with multiple
curved cracks. However，it should be noted that the
above work was all made by real variable method.

Muskhelishvili［16］ developed a complex variable
method to address the Saint-Venant’s torsion of
composite circular shafts and solved the problem of
a circular shaft containing an eccentric circular inclu⁃
sion. Based on the Muskhelishvili’s method，Yue
et al.［17］ dealt with the torsion problem of a compos⁃
ite cylinder with cracks and inclusions by introduc⁃
ing the Mellin transforms and solving a set of mixed-

type integral equations. Refs.［18-19］showed that，
based on the complex variable method，the interac⁃
tion between porous/inclusions can be effectively
solved. However，to the author’s knowledge，no
work can be found for the solution to the Saint-Ve⁃
nant’s torsion of a circular shaft containing multiple
elliptical inclusions based on the complex variable
method.

In this paper，we propose a straightforward and
concise approach to analyze the problem of interact⁃
ing elliptical inclusions in a circular shaft of torsion
based on complex variable theory. The key step in
the present work is to express the complex poten⁃
tials in the matrix with elliptical holes（a multiply-

connected region） in the form of Faber series，and
then the continuous conditions between the inclu⁃
sions and the matrix are used to determine the un⁃
known coefficients involved in these complex poten⁃
tials. Thus，the novel feature of this paper is to pres⁃
ent a straightforward and concise method to solve
the problem of the Saint-Venant’s torsion of a circu⁃
lar shaft containing multiple elliptical inclusions or
cracks effectively with high accuracy.

1 Basic Equations

In a rectangular coordinate system x⁃y⁃z，con⁃
sider a circular shaft containing N elliptical inclu⁃
sions which are parallel to each other along the z di⁃
rection. The cross-section of the shaft is shown in

Fig.1，where ap and bp ( p= 1，2，⋯，N ) are the
lengths of the elliptical inclusions’semi-axis，and
zp0 are the center coordinates of inclusions，respec⁃
tively. All the inclusions are assumed to be com⁃
pletely bounded to the matrix. The boundaries of
the inclusions and the outer contour of the shaft are
denoted by Lk ( k= 0，1，2，⋯，N). We now study
Saint-Venant torsion problem of the composite shaft
loaded by the torque T applied at its two ends.

In this case，the components of displacement
（u，v，w）can be expressed as

u=-τzy, v= τzx, w= τφ ( x,y ) (1)
where τ is the angle of twist per unit length along
the z direction and φ ( x，y ) the warping function.
The corresponding stresses are
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σx= 0, σy= 0, σz= 0, σxy= 0

σxz= μkτ ( )∂φ
∂x - y

σyz= μkτ ( )∂φ
∂y + x k= 0,1,2,⋯,N

(2)

where μ0 is the shear modulus of the matrix，and
μk ( k= 1，2，⋯，N) are the shear modulus of the k-th
inclusion. For this problem，the equilibrium equa⁃
tion becomes that［16］

∂σxz
∂x +

∂σyz
∂y = 0 (3)

where the body force is neglected. Substituting
Eq.（2）into Eq.（3）leads to the Laplace equation

∂2φ
∂2 x +

∂2φ
∂2 y = 0 (4)

The solution of Eq.（4）is

Fig.1 Torsion of a circular shaft containing multiple ellipti⁃
cal inclusions
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φ=Re [ F ( z) ] z= x+ iy (5)
where F ( z) is called as the complex potential. Sub⁃
stituting Eq.（5）into Eqs.（1—2），the displacement
and stress can finally be expressed as［16］

w= 1
2 τ [ F ( z) +

- -- ---
F ( )z ] (6)

σxz- iσyz= μkτ ( F′( z) - iz̄ ) (7)
Once F ( z) is obtained，the torsional rigidity D

can be calculated by［16］

D= T
τ
= ∑

k= 0

N

μk∬( )x2 + y 2 + x
∂φ
∂y - y

∂φ
∂x dxdy

(8)
To solve F ( z)，we introduce the resultant trac⁃

tion p on any boundary as

p= ∫s σzxdy- σzydx (9)

Inserting Eq.（7）into Eq.（9）leads to

p= μkτ
2i [ F ( z) -

- -- ---
F ( )z - izz̄+ C 0 ] (10)

where C 0 is a constant and it can be assumed to be
zero without affecting the stresses. Since there is no
external traction on the cylindrical surface，p= 0
and the boundary condition on L 0 can be derived
from Eq.（10）that

F 0 ( z) -
- -- -----
F 0 ( )z - izz̄= 0 (11)

where the subscripts“0”denote the matrix. At the
interface between the matrix and inclusions Lk ( k=
0，1，2，⋯，N)，the continuity conditions require that

w 0 = wk (12)
p0 = pk (13)

where wk and pk stand for the displacement and re⁃
sultant traction along the kth inclusion’s boundary，
respectively. Substituting Eqs.（6，10）into Eqs.（12，
13），we have

F 0 ( z) +
- -- -----
F 0 ( )z = Fk ( z) +

- -- -----
Fk ( )z (14)

( F 0 ( z) -
- -- -----
F 0 ( )z )- gk ( Fk ( z) -

- -- -----
Fk ( )z )-

i( 1- gk ) zz̄+ Ck= 0 (15)
where gk= μk μ0 ( k= 1，2，⋯，N ) denotes the

shear modulus ratios，and Ck ( k= 1，2，⋯，N) the
constants to be determined.

2 Theoretical Analyses

In this case，the matrix is a multiple-connected
region containing N elliptic holes and enclosed by
the circle，so the complex potential in the matrix
has the form that

F 0 ( z) = f0 ( z) + ∑
k= 1

N

fk ( )z (16)

where f0 ( z) is an analytical function inside L 0，and
fk ( z) is another analytical function outside the ellipti⁃
cal hole Lk. Thus f0 ( z) can be expanded into the
Taylor series as

f0 ( z) = ∑
j= 0

∞

Aj ( )zR 0

j

(17)

where Aj are unknown coefficients. Introduce the
following conformal mapping function

z- zk0 = ω ( ξk )- zk0 = Rk (ξk+ mk

ξk ) (18)

Rk=
ak+ bk
2 ,mk=

ak- bk
ak+ bk

(19)

which conformably maps the region outside the ellip⁃
tical hole Lk onto the external region of a unit circle
of ξk= eiθ in the ξk-plane，and thus fk ( z) can be ex⁃
panded into the Laurent series as

fk ( z) = ∑
j= 0

∞

B( )kj ξ- jk ( )z (20)

where B( )kj are unknown coefficients. Inserting
Eqs.（17，20）into Eq.（16）yields that

F 0 ( z) = ∑
j= 0

∞

Aj ( )zR 0

j

+ ∑
k= 1

N

∑
j= 0

∞

B( )ij ξ- jk ( )z (21)

On the surface of the shaft L 0，z= R 0 eiθ= R 0σ

and thus Eq.（21）has the form that

F 0 ( σ) = ∑
j= 0

∞

Aj σ j+ ∑
k= 1

N

∑
j= 0

∞

B( )kj ξ- jk ( σ) (22)

On the other hand，ξ- jk ( σ) can be expanded in⁃
to the complex Fourier series on the unit circle as

ξ- jk ( σ) = ∑
n=-∞

∞

β ( )0kjn σ n (23)

β ( )0kjn =
1
2π ∫-π

π
ξ- jk σ-ndθ (24)

where the unknown function ξ-1k ( )| ξ-1k | < 1 can be

determined from Eq.（18）as
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ξ-1k = z- zk0
2Rkmk

- ( )z- zk0
2Rkmk

2

- 1
mk

(25)

which can be used to determine the coefficients by
Eq.（24）. Substituting Eq.（22）into Eq.（11），after
some rearrangement，we can get that

∑
j= 0

∞

Aj σ j+ ∑
k= 1

N

∑
j= 0

∞

∑
n=-∞

∞

B( )kj β ( )0kjn σ n -

(∑
j= 0

∞ -Aj σ- j+ ∑
k= 1

N

∑
j= 0

∞

∑
n=-∞

∞ - ---
B( )kj

- ---
β ( )0kjn σ-n) = iR 2

0 (26)

On the other hand，for any inclusion Lp ( p=
1，2，⋯，N )，moving the origin of the global system
x-y in to the point zp，that is，making the follow⁃
ing coordinate translation：z- zp= z*，one can ex⁃
press the complex potential in the matrix and inside
the inclusions， in the local coordinate system
xp- yp，as

F 0 ( z*) = ∑
j= 0

∞

Aj ( z* + zp
R 0 )

j

+

∑
j= 0

∞

B( )p
j ξ- jp ( )z* + ∑

k= 1
k≠ p

N

∑
j= 0

∞

B( )kj ξ- jk ( )z* (27)

Fp ( z*) = ∑
j= 0

∞

c( )p
j ( ξ jp ( )z* + m j

p ξ- jp ( )z* ) (28)

where c( )p
j are unknown coefficients. In Eq.（27），we

define ξ j0 ( z*) = ( ( z*+ zp ) R 0 ) j，and it can be ex⁃
panded into the complex Fourier series as

ξ0 ( z*) =
Rp ( σ+ mpσ-1 )+ zp0

R 0
(29)

ξ j0 ( z*) = ∑
n=-∞

∞

β ( )p
0jn σ n (30)

β ( )p
0jn=

1
2π ∫-π

π
ξ j0 ( z*) σ-ndθ (31)

From Eqs.（29—31），we can obtain the coeffi⁃
cients β ( )p

0jn. In Eq.（27），the term ξ- jk ( z*) is a given
function that is analytic inside the inclusion
Lp ( p≠ k )，and thus it can be expanded into the
Faber series as［20-21］

ξ- jk ( z*) = ∑
n= 0

∞

A( )p
kjn P ( )p

n ( )z* (32)

P ( )p
n ( z*) = ξ nk + m n

p ξ-nk (33)

A( )p
k1n=

1
2π ∫0

2π
ξ-1k ( z*) e-inθdθ (34)

where the known function ξ-1k ( )| ξ-1k | < 1 can be de⁃
termined as

ξ-1k ( z*) = d 1 + d 2 - ( d 1 + d 2 ) 2 -
1
mk

(35)

d 1 =
zp0 - zk0
2Rkmk

，d 2 =
Rp ( )σ+ mp

σ
2Rkmk

(36)

After the coefficients A( )p
k1n are obtained from

Eqs.（34，35），the coefficients A( )p
kjn in Eq.（32）can

be easily calculated by using the following recur⁃
rence relations［22］

A( )p
k,( )j+ 1 ,n= ∑

s= 0

n

A( )p
k,j,n- s A( )p

k,1,s+

∑
s= 1

n

m s
p ( A( )p

k,j,s A( )p
k,1,n+ s+ A( )p

k,j,n+ s A( )p
k,1,s )

(37)

Inserting Eqs.（27，28）into Eqs.（14，15）yields
that

∑
j= 0

∞

Aj ∑
n=-∞

∞

β ( )p
0jn σ n + ∑

j= 0

∞

B( )p
j σ- j +

∑
k= 1
k≠ p

N

∑
j= 0

∞

B( )kj ∑
n= 0

∞

A( )p
kjn P ( )p

n ( )σ + (∑
j= 0

∞ -Aj ∑
n=-∞

∞ - ---
β ( )p
0jn σ-n +

∑
j= 0

∞ - ---
B( )p
j σ j + ∑

k= 1
k≠ p

N

∑
j= 0

∞ - ---
B( )kj )∑

n= 0

∞ - ---
A( )p

kjn

- -- ----- --
P ( )p
n ( )σ =

∑
j= 0

∞

C ( )p
j ( σ j+ m j

p σ- j ) + ∑
j= 0

∞ - ---
C ( )p
j ( σ- j+ m j

p σ j ) (38)

∑
j= 0

∞

Aj ∑
n=-∞

∞

β ( )p
0jn σ n + ∑

j= 0

∞

B( )p
j σ- j +

∑
k= 1
k≠ p

N

∑
j= 0

∞

B( )kj ∑
n= 0

∞

A( )p
kjn P ( )p

n ( )σ -
æ

è

ç

ç
çç∑
j= 0

∞ -Aj ∑
n=-∞

∞ - ---
β ( )p
0jn σ-n +

∑
j= 0

∞ - ---
B( )p
j σ j + ∑

k= 1
k≠ p

N

∑
j= 0

∞ - ---
B( )ij ∑

n= 0

∞ - ---
A( )p

kjn

- -- ----- --
P ( )p
n ( )σ

ö

ø

÷

÷
÷÷-

gp
é

ë
êê∑
j= 0

∞

C ( )p
j ( σ j+ m j

p σ- j ) -

∑
j= 0

∞ - ---
C ( )p
j ( σ- j+ m j

p σ j )
ù

û
úú =

i(1- gp )
é

ë
êRp (σ+ mp

σ )+ zp0
ù

û
ú ⋅

é

ë
êRp ( 1σ + σmp)+ --zp0

ù

û
ú- Cp

(39)
where P ( )p

n = σ n+ m n
p σ-n. Comparison of the coeffi⁃

cients of σ±m (m≥ 1) at the two sides of Eqs.（26，
37，38）yields that
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Am+ ∑
k= 1

N

∑
j= 1

∞

B( )kj β ( )0kjm - ∑
k= 1

N

∑
j= 1

∞ - ---
B( )kj

- -- -----
β ( )0kj ( )-m = 0 (40)

----Am + ∑
k= 1

N

∑
j= 1

∞ - ---
B( )kj

- ---
β ( )0kjm - ∑

k= 1

N

∑
j= 1

∞

B( )kj β ( )0kj ( )-m = 0 (41)

∑
j= 1

∞

Aj β ( )p
0jm+ ∑

k= 1
k≠ p

N

∑
j= 1

∞

B( )kj A( )p
kjm + ∑

j= 1

∞ -Aj

- -- -----
β ( )p
oj ( )-m +

- ---
B( )p
m + ∑

k= 1
k≠ p

N

∑
j= 1

∞ - ---
B( )kj

- -----
A( )p

kjm m m
p = C ( )p

m +
- ---
C ( )p
m m m

p (42)

∑
j= 1

∞ -Aj

- ---
β ( )p
0jm + ∑

k= 1
k≠ p

N

∑
j= 1

∞ - ---
B( )kj

- -----
A( )p

kjm + ∑
j= 1

∞

Aj β ( )p
oj ( )-m +

B( )p
m + ∑

k= 1
k≠ p

N

∑
j= 1

∞

B( )kj A( )p
kjmm m

p =
- ---
C ( )p
m + mm

p C ( )p
m (43)

∑
j= 1

∞

Aj β ( )p
0jm+ ∑

k= 1
k≠ p

N

∑
j= 1

∞

B( )kj A( )p
kjm -∑

j= 1

∞ -Aj

- -- -----
β ( )p
oj ( )-m -

- ---
B( )p
m -

∑
k= 1
k≠ p

N

∑
j= 1

∞ - ---
B( )kj

- -----
A( )p

kjm m m
p - gp (C ( )p

m -
- ---
C ( )p
m m m

p )= δ

(44)

∑
j= 1

∞ -Aj

- ---
β ( )p
0jm + ∑

k= 1
k≠ p

N

∑
j= 1

∞ - ---
B( )kj

- -----
A( )p

kjm - ∑
j= 1

∞

Aj β ( )p
oj ( )-m - B( )p

m -

∑
k= 1
k≠ p

N

∑
j= 1

∞

B( )kj A( )p
kjmm m

p - gp (
- ---
C ( )p
m - mm

p C ( )p
m ) =

-δ

(45)
where m= 1，2，…，M and

δ=
ì

í

î

ïï
ïï

i ( 1- gp ) ( Rp z̄p0 + Rp zp0mp ) m= 1
i( 1- gp ) ( R 2

pmp ) m= 2
0 m≥ 3

(46)

In detail，a system of linear equations with re⁃
spect to the unknown coefficients Aj，Ā j，B( )kj ，B̄( )kj ，

C ( )kj ，C̄ ( )kj ( k= 1，2，⋯，N；j= 1，2，⋯，M ) can be
obtained by equating the corresponding coefficients
on the two sides of Eqs.（40—45）. In addition，
Cm (m≠ 0) can be determined by equaling the con⁃
stant terms on the two sides of Eq.（39），but they
have no influence on stresses，and thus are ignored.

Once all the complex coefficients are deter⁃
mined from these linear equations，the stresses both
in the matrix and the inclusions can be obtained by［16］

σρ- iσθ=
μ0τξ

|| ω′( ξ )
[ ( F 0 ( ξ ) )′- i

- -- -----
ω ( ξ )ω′( ξ ) ] (47)

At the same time，the torsional rigidity can be

easily determined by

D= D 0 + ∑
k= 1

N

Dk (48)

where

D 0 =
μ0
4i ∑j= 0

N ∫Lj- -- -----
ω2 ( ξ )ω ( ξ ) dω ( ξ ) -

μ0
2 ∑j= 0

N ∫LjRe [ F ( ξ ) ] d [ - -- -----
ω ( ξ )ω ( ξ ) ] (49)

Dk=
μk
4i ∫Lj- -- -----

ω2 ( ξ )ω ( ξ ) dω ( ξ )-

μk
2 ∫LjRe [ F ( ξ ) ] d [ - -- -----

ω ( ξ )ω ( ξ ) ] (50)

If one assumes μk= 0，and the short-axis radi⁃
us of the ellipse bk= 0，thus the inclusion Lk degen⁃
erates into a crack parallel to the x-axis. In this case
one can calculate the stress intensity factor for the
shaft with the crack by［16］

K III = lim
ξ→ ξ0

| 2 [ ω ( ξ )- ω ( ξ0 ) ] | ⋅ τ (51)

where ξ0 is the point at the unit circle of ξ plane，and
it is corresponding to the tip of the crack in the z-
plane. Substituting Eq.（18）into Eq.（51），we final⁃
ly have

K III =
1

|| ω″( ξ0 )
{- Im [ μ0τξ0F′( ξ0 ) ] } (52)

3 Numerical Results and Discussion

3. 1 Torsion of a circular shaft containing a cir⁃

cular inclusion

In order to show validity of the present meth⁃
od，we make some comparisons with the related
work in Ref.［11］，which considered a circular shaft
of radius containing a circular inclusion，as shown in
Fig.2. In the example we take the ratio of R 1/R 2 =
0.3，l/R 0 = 0.6 and the shear modulus ratio g1 =
μ1/μ0 = 0.6. The numerical results for the non-di⁃
mensional torsional rigidity D*= 2D/( μ0 πR 4

0 ) ver⁃
sus the number of power series terms are shown in
Fig. 3. It is shown that the results are accurate
enough when the numbers of power series terms are
above five. Furthermore， the variations of D* as
functions of the shear modulus ratio g1 are shown in
Table 1，where results in Refs.［16，17］using the in⁃
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tegral formulation and in Ref.［11］based on the null-
field integral approach are also listed. It can be seen
that the results obtained in the present work are well
consistent with those in the previous works.

3. 2 Torsion of a circular shaft containing mul⁃

tiple circular inclusions

Consider the case of four circular inclusions lo⁃
cated in a rhombic array，as shown in Fig. 4. For
comparison with previous work，we take the same
parameters as those in Refs.［3，4，11］as follows：

l/R 0 = 0.6， gk= 29.4 and Rk/R 0 = 0.25 ( k=
1，2，3，4). The results of the non-dimensional tor⁃
sional rigidity D* are shown in Table 2，and it is
shown that the present solutions are in very agree⁃
ment with the work in Ref.［11］，and more accurate
than the results in Refs.［3，4］.

As special cases，the torsion of a circular shaft
containing three circular holes of equal radii is also
given，as shown in Fig.5，where l/R 0 = 0.6，gk=
0 and Rk/R 0 = 0.2( k= 1，2，3). When taking the
series expansion as M = 20， the shear stresses
along the boundaries are shown in Table 3，and it
can be found that the present solutions are well con⁃
sistent with the results in Ref.［1］.

Fig.5 Torsion of a circular shaft containing three circular
holes of equal radii

Fig.4 Torsion of a circular shaft containing four circular in⁃
clusions of equal radii

Table 2 Torsional rigidity of a circular shaft containing

four circular inclusions

Parameter
D*

Refs.[3,4]
1.570 6

Ref.[11]
1.774 0

Present result
1.774 045

Fig.2 Torsion of a circular shaft containing a circular inclu⁃
sion

Fig.3 Torsional rigidity versus the number of power series
terms

Table 1 Torsional rigidity of a circular shaft containing

a circular inclusion

g1

0
0.6
1
20
1 000

1 000 000

D*

Ref.[16]

0.823 70
0.962 46
1.000 00
1.252 24
9.198 66

8 101.100 12

Ref.[17]

0.823 77
0.962 46
1.000 00
1.251 81
N A
N A

Ref.[11]

0.823 70
0.962 46
1.000 00
1.252 24
9.198 66

8 101.098 83

Present
method
0.823 70
0.962 46
1.000 00
1.252 24
9.198 65

8 101.093 44
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3. 3 Torsion of a circular shaft containing mul⁃

tiple elliptical inclusions

Consider the case of the circular shaft with two

elliptical inclusions，as shown in Fig.6，where a1 =

a2 = 0.2R 0，b1 = b2 as variables，l/R 0 = 0.6，and

μk= μ ( k= 1，2). When g= μ/μ0 > 1， the inclu⁃

sions are called as hard inclusions，and when g< 1，

they are called as soft inclusions. Specially，when
g= 0，the inclusion becomes an elliptic hole. The

non-dimensional torsional rigidity D* for different
values of b1/a1 is shown in Fig.7，which shows that

for the soft inclusions，the torsional rigidity greatly
decreases as the inclusions become softer，and for
the hard inclusions，the torsional rigidity greatly in⁃
creases as the inclusions become harder. On the oth⁃
er hand，the stresses at the interface between the
matrix and the inclusions are shown in Figs. 8—10
for three different cases. It is found from Fig.8 that
when g= 0，the greatest stress occurs at the points
on the hole’s boundary nearest to the exterior sur⁃
face of the shaft. Fig. 9 is the case of the shaft with
two soft elliptic inclusions ( g= 0.5 )，and it is found
that the maximum stress σθ along the surface be⁃

Fig.8 Shaft with two elliptic holes: Stress along the bound⁃
aries of the shaft and holes

Table 3 Shear stresses σθ/μτR 0 along the boundaries (M=20)

θ

0
π 6
π 3
π 2
2 π 3
5π 6
π

L 0 (Exterior boundary)
Ref.[1]
1.308
0.967
0.928
0.932
0.928
0.967
1.308

Present result
1.307 8
0.966 4
0.928 2
0.932 4
0.928 2
0.966 4
1.307 8

L 1 (Central hole)
Ref.[1]
0.459
0.277
0.081
0.026
0.081
0.277
0.459

Present result
0.458 9
0.277 0
0.080 7
0.025 8
0.080 7
0.277 0
0.458 9

L2 (Eccentric holes)
Ref.[1]
1.547
1.327
0.793
0.145
-0.451
-0.871
-1.033

Present result
1.546 7
1.327 3
0.792 5
0.145 1
-0.450 8
-0.870 8
-1.033 3

Fig.7 Non-dimensional torsional rigidity D* versus b1/a1

Fig.6 Torsion of a circular shaft containing two elliptical in⁃
clusions

Fig.9 Shaft with two soft elliptic inclusions: Stress along
the boundaries of the shaft and inclusions
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tween the matrix and inclusions decreases compared
with that in the case of g= 0. However，for the
case of two hard inclusions，the maximum value of
the stress occurs on the exterior surface of the shaft
rather than at the boundary of the inclusions，as
shown in Fig.10.

3. 4 Torsion of a circular shaft containing mul⁃

tiple elliptical inclusions and cracks

Consider the case of the circular shaft with two
elliptical inclusions and two cracks shown in
Fig.11， where a1 = a2 as variables， a3 = a4 =
0.1R 0，b1 = b2 = 0，b3 = b4 = 0.2R 0，l/R 0 = 0.6，
μ1 = μ2 = 0，μ3 = μ4 = μ. The non-dimensional tor⁃
sional rigidity D* for different values of a1/R 0 are
shown in Fig.12，which shows that with the larger
ratio of a1/R 0，the loss of relative D* changes great⁃
er. Owing to its geometrical symmetry，we just dis⁃
cuss the stress intensity factors of the crack on the
right of the circular. Therefore，the non-dimensional
stress intensity factors K *

Ⅲ ( c) =

| KⅢ ( )c ( μ0τR 0 a1 D* ) | and K *
Ⅲ (d) =

| KⅢ ( )d ( μ0τR 0 a1 D* ) | for different values of
a1 R 0 are shown in Fig.13. It is shown that with the

increase of the g，the variation of the stress intensity
factor K *

Ⅲ ( c) is larger than that of K *
Ⅲ (d)，and as

the crack length becomes large，the K *
Ⅲ (d) sharply

increases while the K *
Ⅲ ( c) decreases slowly.

As a special case，the solutions for the torsion
of a circular shaft containing a center circular hole
and a crack，as shown in Fig.14，are also given. In
the example，we take R 1/R 0 = 0.2，and l/R 0 =

Fig.10 Shaft with two hard elliptic inclusions: Stress along
the boundaries of the shaft and inclusions

Fig.11 Torsion of a circular shaft containing two elliptical
inclusions and cracks

Fig.12 Non-dimensional torsional rigidity D* versus a1/R 0

Fig.14 Torsion of a circular shaft containing a center circu⁃
lar hole and a crack

Fig.13 Non-dimensional intensity factor K *
Ⅲ ( c) and

K *
Ⅲ (d) versus a1/R 0
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0.5，0.6，0.7，respectively. The results of D* for dif⁃
ferent values of a2/R 0 are given in Fig.15. It is
found that with the larger ratio of l/R 0，the loss of
relative D* changes greater. The non-dimensional
stress intensity factors K *

Ⅲ ( c) and K *
Ⅲ (d) for differ⁃

ent values of a2/R 0 are shown in Fig.16，which
shows that when the crack length approaches the
edge of the center hole and boundary of the shaft，
K *

Ⅲ ( c) and K *
Ⅲ (d) sharply increase due to the inter⁃

action.

4 Conclusions

We studied the Saint-Venant’s torsion of a cir⁃
cular shaft with multiple elliptical inclusions with dif⁃
ferent material constants from the matrix. Based on
the complex variable method，the complex poten⁃
tials are expressed in the form of Faber series，and
then their unknown coefficients are solved by the
continuous conditions at the interface between the
matrix and inclusions. Solutions for the cases of mul⁃
tiple circular inclusions/elliptic holes/cracks can be
easily obtained as special cases of the present work，
and they are compared with previous results ob⁃

tained based on the integral equation method，the
null-field integral approach or other numerical meth⁃
ods. It is shown that the present work has advantag⁃
es such as high accuracy and good convergence. Fur⁃
thermore，several numerical examples for the inter⁃
action between multiple elliptical inclusions/holes/
cracks are presented to discuss the effects of the pa⁃
rameters of these defects on the stress，torsional ri⁃
gidity and the stress intensity factors，and it is found
that the geometry size，material constants and loca⁃
tions of the defects play a significant role in these
variables of fields.
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含椭圆夹杂或裂纹的圆柱扭转问题研究

黄 成 1，殷茂淑 2，祁 霄 1，郭 魂 1

（1.常州工学院航空与机械工程学院，常州 213032，中国；

2.上海空间电源研究所物理电源事业部，上海 200240，中国）

摘要：基于复势函数理论，提出了一种简明的方法来研究含多个椭圆夹杂或裂纹圆柱体的 Saint⁃Venant扭转问

题。首先，应用 Faber级数展开，导出了具有 N个椭圆夹杂圆柱体的复势函数表达，然后计算圆柱体内部的切应

力和扭转刚度。当椭圆夹杂退化为裂纹时，获得裂纹尖端应力强度因子解。最后，通过数值算例与已有文献结

果对比验证了本文方法的正确性，并进一步讨论了几何参数、不同软硬夹杂相对基体的剪切模量比和椭圆夹杂

或裂纹的阵列形式对局部应力场的影响。通过数值分析表明本文方法具有精度高、收敛性好等优点。

关键词：Saint⁃Venant扭转；复势函数方法；Faber级数
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