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Abstract: Single gimbal control moment gyroscope (SGCMG) with high precision and fast response is an important
attitude control system for high precision docking, rapid maneuvering navigation and guidance system in the aerospace
field. In this paper, considering the influence of multi-source disturbance, a data-based feedback relearning (FR)
algorithm is designed for the robust control of SGCMG gimbal servo system. Based on adaptive dynamic
programming and least-square principle, the FR algorithm is used to obtain the servo control strategy by collecting the
online operation data of SGCMG system. This is a model-free learning strategy in which no prior knowledge of the
SGCMG model is required. Then, combining the reinforcement learning mechanism, the servo control strategy is
interacted with system dynamic of SGCMG. The adaptive evaluation and improvement of servo control strategy
against the multi-source disturbance are realized. Meanwhile, a data redistribution method based on experience replay
is designed to reduce data correlation to improve algorithm stability and data utilization efficiency. Finally, by
comparing with other methods on the simulation model of SGCMG, the effectiveness of the proposed servo control
strategy is verified.
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0 Introduction

In the field of aerospace, the control moment
gyroscope (CMG) gimbal servo system is often
used as an actuator for attitude control of aerospace
equipment. Fig.1 shows the typical structure of a
single gimbal CMG (SGCMG) system. SGCMG
has one rotor system which supports a constant an-
gular momentum, one gimbal system that changes
the angular momentum, and one structure base'".
SGCMG changes the speed and rotation angle of
the rotor system by controlling the permanent mag-
net synchronous motor (PMSM) in gimbal system,

and then the rotor system is used as the actuator to
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Fig.1 Typical structure of SGCMG

output appropriate torque. Compared with the tradi-
tional direct control of motor drive system, SGC-
MG can stably provide a larger torque, which is
based on the ability given by the law of conservation
of angular momentum.

Under normal working condition, the output
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torque of SGCMG system is proportional to the an-
gular velocity of rotor system. However, in the
complex space environment, the angular velocity of
rotor system will be disturbed by various disturbanc-
es, which will affect the quality of the output
torque. There are multi-sources for disturbance in
SGCMG system, including coupled gyro torque,
unbalance torque of the high speed rotor, friction
torque, precision error of grating sensor, fluctuation
of torque coefficient of driving motor, calculating ac-
curacy of system circuit design'**'. It is worth noting
that these disturbances include multi-source high-fre-
quency, low-frequency and slope torque disturbanc-
es. Therefore, to improve the robustness and anti-
interference ability of SGCMG system, some
works have been conducted based on fuzzy control,
sliding mode control, disturbance observer compen-
sation, repetitive control, etc”".

Many of the existing control strategies are de-
signed based on the determined system models, to
deal with high-frequency or low-frequency torque
disturbances. From this perspective, when SGC-
MG system is faced with model uncertainty, such
as torque coefficient fluctuations, the reliance on an
accurate model will hinder the effectiveness of the
model-based strategy and thus fail to achieve the ex-
pected control effect.

Off-policy algorithm is a kind of reinforcement
learning (RL) algorithm structure that extracts mod-
el information based on system operation data, and
finally obtains the control strategy without using sys-

tem model"'"

. Based on adaptive dynamic pro-
gramming (ADP) method, off-policy algorithm
was developed for the robust control of some linear
and nonlinear systems, and the prior knowledge of
the system dynamic has been relaxed''"'. In Ref.
[12] , the off-policy algorithm was extended the
problem to H” control, where the ideal of integral
RL (IRL) method has been applied. Considering in-
put constraints, a two-player game problem is stud-
ied based on the off-policy algorithm in Ref.[13].
Therefore, developed from off-policy algorithm,
this paper designs a feedback relearning (FR) algo-
rithm to obtain the servo control strategy without re-
lying on the SGCMG system model.

Considering the variability and complexity of
multi-source disturbance in SGCMG system, the
designed servo control strategy should have certain
adaptability. In this regard, the on-policy algorithm
can solve this online learning problem to improve

[15-22]

the algorithm adaptability . In on-policy algo-
rithm, the obtained control strategy is rewarded or
punished by designing an incentive mechanism, and
then the new strategy is used to interact with the
system. Continuously strengthen the control strate-
gy to optimize the objective function, thus realizing
online update and adaptive control. Therefore, the
designed FR algorithm combines the idea of on-poli-
cy algorithm to realize online update of servo control
strategy.

In the off-policy algorithm based on least-
square principle, the collected data episodes need to
satisfy certain rank conditions to ensure the validity
of the matrix inverse operation. However, the corre-
lation problem between adjacent data episodes is
very serious, especially in the continuous-time ro-
bust control problem. Experience replay technology
can be used to achieve faster learning by reusing the
collected data'®’. The application of experience re-
play technology not only reduces the data correla-
tion of the current data set, but also improves data

utilization efficiency'**"

. Meanwhile, when apply-
ing the experience replay technology to actor-critic
RL algorithms, the convergence properties can also
be guaranteed ®’. Therefore, referring to the idea of
experience replay, a data redistribution method is
designed to reduce data correlation to improve algo-
rithm stability and data utilization efficiency.

In this paper, due to the complex mechanical
structure of SGCMG, the influence of gimbal instal-
lation and the flexible support, it is difficult to ob-
tain the accurate mathematical model in practice.
The speed control problem of SGCMG is a complex
servo control problem, which is also a motivation
for the development of data-based RL algorithm in
this paper. The data-based RL algorithm is based on
the collected servo data, and the control strategy of
SGCMG can be realized through iterative learning.
For the convenience of problem formulation and the

description of multi-source disturbance, the PMSM
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model is given in section 1. In practical servo con-
trol, the controlled system is the overall SGCMG
system, which is a complex nonlinear system.

The main contributions are as follows: First,
inspired by on-policy and off-policy algorithms, a
data-based FR algorithm is designed for the robust
control problem of nonlinear system, which has the
adaptability for uncertain problems and high data ef-
ficiency. Second, based on the FR algorithm, the
servo control strategy of SGCMG system can be ob-
tained by collecting servo data episodes of gimbal
system. The prior knowledge of the SGCMG model
is not required. Third, a data redistribution method
based on experience replay is designed to reduce da-
ta correlation to further improve algorithm stability
and data efficiency. Considering the multi-source dis-
turbance, the comparison experiment with PID and
SMC is given to verify the effectiveness of proposed
Strategy.

The main organization of this paper is as fol-
lows: Section 1 investigates the background of
SGCMG gimbal servo system with multi-source dis-
turbance. In section 2, the prior knowledge and
mathematical principle of FR algorithm are de-
scribed in detail. Section 3 introduces the structure
of FR algorithm, the application of FR algorithm in
SGCMG system, and the technology of data redis-
tribution method based on experience replay. In sec-
tion 4, the comparative simulation with other meth-
ods is analyzed. Finally, section 5 contains some

conclusions of this paper.

1 Problem Formulation

SGCMG consists of one rotor system, one
gimbal system and one structural base. The gimbal
system is used to change the angular momentum of
rotor system to output the torque. However, it is
difficult to accurately express the model of SGCMG
system by mathematical principle. In the existing
work, we usually analyze the gimbal system, which
is the driving control system, to reduce the difficulty
of controller design. SGCMG is derived by control-
ling the PMSM, which is studied on d-¢ axes. Fur-

ther, the state space model of PMSM is defined

[27]
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where the physical meaning of the model parameters
are as follows. Stator current of d-¢ axes: I, and I;
d-q axes voltage: u, and u,; stator inductances on
d-q axes: L, and L,; gimbal rotation speed: w;
Stator resistance: R; number of pole pairs: p; flux
linkage: ¢; viscous friction coefficient: f; Moment
of inertia: J; multi-source torque disturbance: T,.
As investigated in Ref.[4], different kinds of torque
disturbances are included in T, including high-fre-
quency, low-frequency and slope torque disturbanc-
es.

The multi-source disturbances can be mathe-
matically expressed as
T/(t)=T¢(0,w,wy,w,)+ T,(0)+ T:(0,w)+

T.(0,w,)+ T,(0)

where T represents the gyroscopic effect on gyro

(2)

torque; T, the disturbance torque caused by static
unbalance which will disappear when SGCMG
works in aerospace; T the low-frequency torque dis-
turbance caused by nonlinear friction of gimbal trans-
mission parts such as bearing and conducting ring;
T, 1s related to the rotor unbalance vibration with
high-frequency torque disturbance; T, the high-fre-
quency torque disturbance related to motor torque
fluctuation; w, the satellite speed; w, the rotor
speed; 0 the gimbal angle position. The detail analy-
sis of multi-source disturbances can be referred to
Refl.[4], which will not be repeated here. It should
be noted that this paper mainly focuses on the multi-
source disturbances that act on the servo torque in
the SGCMG system.
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Remark 1

know that multi-source disturbances exist in SGC-

From the above description, we

MG gimbal servo system, and the influence of these
disturbances on high-precision servo control cannot
be ignored**’. However, it is still a technical bottle-
neck in this field to accurately describe the impact of
these disturbances on the system model, which af-
fects the construction of complete SGCMG gimbal
servo system in mathematical form. Due to the dif-
ferences in installation or mechanical parts, even
two devices of the same type will have different
model parameters. In some scenarios, these nega-
tive effects may lead to the performance degradation
of model-based strategies.

Therefore, considering the difficulty of SGC-
MG system modeling and the influence of multi-
source disturbance, a data-based FR algorithm is de-
signed to circumvent the difficulty of accurate mod-
eling of SGCMG. In section 2, the prior knowledge
and mathematical principle of FR algorithm will be

described in detail.

2 Data-Based Feedback Relearn-
ing Algorithm

2.1 Prior knowledge: On-policy and off-policy

algorithm

In RLL methods, on-policy and off-policy algo-
rithms are two common algorithm structures. The
core of both algorithms includes policy evaluation
and policy improvement. The control strategy is
evaluated based on the target indicators, and then
the current strategy is improved to optimize the tar-
get function. Through continuous interaction and up-
date of the control strategy and the system dynam-
ics, the interactive improvement of overall strategy
will eventually be achieved. Both on-policy and off-
policy algorithm structures can complete the evalua-
tion and improvement of algorithms based on the
collected system data''".

The off-policy algorithm has better data utiliza-
tion efficiency and convergence ability. At first, the
offpolicy algorithm collects system operation data
of finite dimensions and processes it into data epi-

sodes. Then, the evaluation and improvement of

the control strategy can be completed through itera-
tive learning. The collected data episodes are iterat-
ed under off-line conditions, so the off-policy algo-
rithm does bring much burden to the storage sys-
tem. At the same time, finite data episodes of off-
line iteration based on least-square principle which
makes the algorithm converge better and the itera-

10131 However,

tion steps will be relatively small*
due to the characteristics of off-line iteration, the
collected finite data is dynamically generated by orig-
inal system, and the obtained strategy is in line with
the original dynamic. Therefore, when the off-poli-
cy algorithm is used to deal with system uncertain-
ties, the control performance may decrease.

Fortunately, the on-policy algorithm has better
adaptive capabilities to uncertain systems. Based on
the collected data, the control strategies can be ob-
tained through policy evaluation and policy improve-
ment. Different from the off-policy, the control
strategy based on the on-policy algorithm is applied
to the system dynamic in real time and new data will
be generated for the next iteration. As a result, the
collected new data episodes will contain changes in
dynamic information, thereby achieving the dynam-
ic improvement of control strategy''"*"'"/. Since the
algorithm needs to constantly interact with system,
the collected data are used only once in each itera-
tion. Therefore, the on-policy algorithm performs
worse than the off-policy algorithm in term of data
efficiency and convergence speed.

Remark 2

rithms have their advantages and restrictions. On-

On-—policy and off-policy algo-

policy algorithm has advantages in adaptability, and
off-policy algorithm has advantages in convergence
and data utilization. However, on-policy has low da-
ta utilization, and off-policy has insufficient adapt-
ability to system uncertainty. Accordingly, the char-
acteristics of FR algorithm are as follows: For the
problem of multi-source disturbances, the online op-
timization and adaptive update of control strategy
can be realized; the data redistribution method
makes full use of empirical servo data; the correla-
tion between adjacent data is reduced, and the algo-
rithm stability and convergence are improved.

In this paper, a new algorithm structure named
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FR algorithm is proposed, which has the advantag-
es in data efficiency, algorithm convergence, and
adaptability. The specific mathematical principles

will be introduced in detail in section 2.2.

2.2 Mathematical principle of feedback re-

learning algorithm

To facilitate the introduction of mathematical
principles, the unknown uncertain SGCMG system
can be expressed as follows

2(1)=F(x(2))+ G(x(2))(ul)+D(1)) (3)
where x(7)€R" is the state vector which corre-
sponds to the error speed e, (#) and stator current I,
of SGCMG. Define the setting speed of SGCMG as
wo, and e, (1) =w,—w(1), x(1)=[e,(1),1,(1)]".
u(t)ER" represents the servo control strategy,
which is related to the ¢ axis voltage state; D(z) the
of SGCMG system;
F(x(t)) the unknown system dynamic of SGCMG
with F(0)=0; and G(x(¢)) the unknown control

multi-source disturbance

matrix.

Based on the nominal system x(z)=
F(x(t))+ G(x(t))u(t), the cost function can be
defined as

Vie)=[ Ula(ou(x)de @
where U (x(2),u(t))=x" (¢t )Nax(t)y+u"(t)Mu(t)
is the utility function with U (x(0) ) =0; N and M
are the positive define symmetric matrices with
proper dimensions n and m. The optimal cost func-

tion can be expressed as

V'(z(1))= min rmx(r),u(r))dr (5)

u(1)eQ,
where £, 1s the set of admissible control for system
(3). Further, the Hamiltonian function is obtained
H(x(2),u(1),VV(x(1)))=U(x(t),u(t))+

VV(x(2))a(t) (6)
where VV (x(¢))=0dV (x(z))/dx(t)with V(0)=
0. Based on Bellman optimality principle, the fol-
lowing Hamiltonian-Jacobi-Bellman (HJB) equa-
tion can be defined as

0= min H(z(0),u(0),VV(2(1) (1)

where u” (7)€ Q, represents the optimal solution of
HIJB equation. The optimal servo control strategy is

formulated as

1

Then, substituting Eq. (8) into Eq. (7) , the

M lg(x(t))'VV (x(r)) (8)

HIJB equation will be changed as
0=VV(x(2))" F(x(t))+x(t) Nx(t)+
u(t)" Mu(t)—

%VV(JC(I))TG(J?(I))M G (x(1)' VI (x(1))

9)

However, Eq.(9) is a partial differential equa-
tion, and its analytical solution is generally difficult
to directly solve. Based on policy iteration (PI) al-
gorithm, ADP was proposed to solve Eq.(9) and fi-
nally obtain an approximate solution of «"*'. Initial-
ization: V°(x(0))=0, iteration steps { = 0, initial
admissible control u, (7).

Policy evaluation: Substitute V'(x(7)) into
Eq.(10) to get the solution of VV' "' (x(z)) by
0=VV" " (x(t)) (F(x(1))+ G(x(1))u'(1))+

U(x(t),u'(1)) (10)

Policy improvement: Update the control strate-

gy
wm:—%M G (2()VVI (2 (2)) (11)

Repeat these two steps until the algorithm
meets the accuracy requirements, then the corre-
sponding servo control strategy can be obtained.
During the above iteration, the model information is
still needed . Further, the model dynamics F and
G of SGCMG system can be relaxed based on inte-
gral reinforcement learning (IRL) method'"* ' '/,

In the iteration process, the time derivation of
cost function V' 7'(x) can be formulated as
dVTY/ de=vVV " (x)" (F(x)+ G(x)(u (t)+
D(t))), and u,(z) is the admissible control. Under
the influence of multi-source disturbances D(¢), the
system will not diverge during the first data collec-
tion stage. Then, define u’(z)=wu,(¢z)+ D (7).

Based on Egs.(10, 11), we can obtain
VI 2)=VV I @) (F(z)+ G(a)(u, (1)+

D(t))=—2u"" ()M (u"(2)—u'(1))—
U(x(2),u'(1)) (12)

Integral Eq.(12) on the time interval [ ¢, ¢+

At ]
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Vil (x(e)— Vi (x(t+Ar))=

j“HUZui“(r)M(uo(r)* u'(7))de+

j“lU(x(r),u"(mdr (13)

Therefore, PI algorithm based on Egs. (10,
11) has been replaced by Eq.(13), which is mathe-
matically equivalent as the Newton’s method '
Based on the collected data episodes, the cost func-
tion V"' (& w () will
be solved without using system dynamics of SGC-
MG.

) and the control strategy

2.3 Neural network implementation based on

least-square principle

In FR algorithm, the actor-critic structure neu-
ral network is used to approximate the cost function
and servo control strategy of SGCMG system, and
least-square principle is used in the iteration of col-
lected data episodes. The critic network and action
network can be expressed as

VI ()= ) A (o) el !

- (14)

w’ ()= ) A () e
where A, €R" and A, €ER" represent the activation
v, €ER™ and v,ER"™ the ideal

weights of critic and action networks; /. and /, the

functions;

neuron number in hidden layer. The reconstruction

errors €. and €, can be omitted as the number of itera-

tion steps large enough ™. Therefore, define the
estimated form of Eq.(14)
‘}i,j+1 _ Ai,jﬂ ’1‘/1(
()= ) Al(x) (15)

@ (=) A )
where 7 and j represent the iterative steps in the out-
er loop and the inner loop, respectively. For exam-
ple, «*/"'(x ) represents the ( j+ 1)th iteration so-
lution of the inner loop in the ith outer loop. The
structure of algorithm iteration will be introduced in
section 3. Define a large time sequence {¢,, £& (0,
«,q)}, and ¢ is the dimension requirement in data
collection which satisfies ¢ = /. + /,m, to meet the
full rank condition in the matrix inverse operation"".
Based on Eqs.(13, 15), the residual error ¢ is

formulated as

i =V @)= VI ()

2| @ M — ut

ij U(x,u’)dr=

3

(Ac(xp)—

ZJ/H (A (z)w) "M (u’ — (/)" A, (x))}dr —

*

)pdr—

Ac(le))’["&)i'jH -

J {2'Qe 42l (x )0/ M (¥)' A, (x)}dr  (16)

where ¢ is introduced in the process of neural net-
work approximation. The purpose of iteration is to
get the optimal weights of neural networks, so that
the residual error will converge to the minimum val-
ue. Then, Eq.(16) can be expressed as

ij+1 ,,j+1)7 O (17)

ci' N t)=EVvec(w

=, =[(A(x,)— A(xpi0))

2J (A () QA

3

DOYM L )dr —

zf'«wf@MAxfx

3

M®I)dc]  (18)

and

. L+

ij —

V= {
Lk

vec(vy' M (v)")} (19)

where I; 1s the identity matrix with appropriate di-

2TQx + (A YR AL (

mension; vec(A) the column vector representation

of matrix A, where all the column vectors are placed
ij+1

_I:Vec V’l‘l)T VeC 1/\1 :IT

in one column. @
@ the Kronecker Product operation.

In the 7th iteration, the collected data set can

be defined as
EY=[(E) (B, (BT (20)

and
0/=[07.07,,0;T (21)
Based on the 1east*square principle, the weight
parameters can be calculated by
o' == E]

Therefore, based on the neural network imple-

"EN) O (22)
mentation and least-square principle, system model
is not needed in the proposed servo control strate-
gy, which circumvent the difficulty of SGCMG

modeling.



No. 2

ZHANG Yong, et al. Data-Based Feedback Relearning Algorithm for Robust Control of--- 231

3 Algorithm Structure and Data
Redistribution

To solve the problem of multi-source distur-

bance, the servo control strategy obtained in FR al-

gorithm interacts with SGCMG system and realizes
the adaptive adjustment based on RI.. The basic
structure of FR algorithm is shown in Fig.2, includ-

ing the outer loop and the inner loop iterations.

Initialization:

Cost function matrixes: N, M
Initial admissible control: u, Start
Stopping criterion: p,, p,, N,

Dimension of requirement: g, g,

; Data collection:
! Calculate |
i E/ and r-- Data redistribution:
: Eqgs.(18, 19) :

Collect g dimensional data episodes

Randomly remove ¢, dimensional data
episodes and disorder the rest data episodes

Policy evaluation:

T T Policy improvement:

™| Calculate Z(5, ) and OF~, v

=== Tterate @' = [vec(v.”™), vec(¥,™)]"

Eiﬂ

0= 0 A)

| Y
Control strategy: Y lo'-a"11<p N

Fig.2 Typical structure of SGCMG

The first step is algorithm initialization, which
involves the parameter initialization and system op-
eration of SGCMG. Further, the algorithm collects
the servo status of gimbal system in real time, per-
forms calculations according to Eqs.(18, 19) and
stores them in the memory pool until the algorithm
dimension requirement ¢ is satisfied. Then, ¢4 di-
mensional data will be randomly deleted by using
the data redistribution method. Based on the least-
square principle, the inner loop iteration is per-
formed based on Eqs.(20—22). Until the calcula-
tion accuracy p; is satisfied or the maximum number
of iteration N; is reached, then the outer loop criteri-
on is performed. When the accuracy p; is satisfied,
the corresponding servo control strategy can be ob-
tained. Meanwhile, the pseudo code of FR algo-
rithm is given in Algorithm 1.

Algorithm 1 FR Algorithm

1: Start
2: Initialization:

3:  Data collection:
4. If ¢ is satisfied
St Collect speed error states of gimbal sys-

tem;
6 Calculate data episodes;
7: Store data episodes in the memory pool;
8: End if
9 Data redistribution:

10: Randomly remove ¢, dimensional data epi-
sodes in g;

11:  Policy evaluation and improvement:

12: Do least-square iteration based on
Eqs.(20—22);

13: While p; or N; is satisfied

14: If p, 1s satisfied

15: Obtain the servo control strategy;

16: Else

17: Return to data collection step;

18: End if

19: End

It is worth noting that for the data-based RL

method, the uncertain data episodes will affect the
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algorithm convergence. In this paper, D(¢) related
to the multi-source disturbances will directly affect
the accuracy of collected data episodes and the dy-
namic performance. In this scenario, the high corre-
lation of collected data is an important factor, which
may promote the singularity of matrix operation.

Based on experience replay technology, a data
redistribution method is designed to effectively re-
duce the correlation of collected data, and then im-
prove the convergence performance and data utiliza-
tion of FR algorithm. In the iteration of FR algo-
rithm, the collected data episodes will be prepro-
cessed before each inner loop iteration. In order to
reduce the correlation between data episodes, ¢4 di-
mensional data episodes in the data set will be ran-
domly eliminated, and the sequence of the rest epi-
sodes will be disordered.

In the face of uncertain system, this processing
will be beneficial to the convergence of data-based
algorithm, so as to improve the stability of the algo-
rithm. In the next outer loop iteration, the last data
set can still be retained, and only the episodes elimi-
nated in advance need to be supplemented to meet
the iteration requirements ¢. This can greatly im-
prove the efficiency of data utilization, and it is also
the advantage of the proposed data redistribution

method.

4 Simulation Analysis

In this paper, multi-source disturbance is con-
sidered in a simulation model of SGCMG gimbal
servo system. The parameters of SGCGM are given
in Table 1.

In simulation, PID and SMC methods are used

Table1 SGCMG gimbal servo system parameters

Parameter Value
Motor stator resistance/Q R=2.875
Motor stator inductance/mH L,=85,L,=8.5
Flux linkage 0;=0.175
Motor pole pairs p=F6
Moment of inertia/(kg*m®) J=1.1
Viscous friction cciefﬁcient/ =01
(Nmes+(*) 1)
Position sensor resolution/bit 21

to compare with the servo control strategy based on
FR algorithm, which is called FR control. The PID
controllers are listed in Table 2, and the SMC meth-
od can be found in Ref.[4].

Table 2 Parameters of PID controller

Controller Value
Position PD controller 35+ 0.1s/(14 0.001s)
Speed PI controller 5+ 0.01/s
Current PI controller 20+ 0.001/s

For the training process of FR control, the pa-
rameters is set as: N =2 X [***, M =1 (I is the
identity matrix) , p;,=p;=1x10°, N,;=100,
¢=100 and ¢, =40. The activation function of ac-
tion and critic networks are A, (x)=A. (x)=
[el, e ], 1], e, 1,]". Then, the weight training pro-
cesses of two networks are shown in Figs.3, 4. If
the on-policy algorithm is used, the weight parame-
ters after one iteration will be applied to SGCMG.
However, the current parameters have not con-
verged to the optimal solution, and cannot ensure

the stability of SGCMG under multi-source distur-

bance.
5.0

4 A Y A
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B 25F A= Wy
2 P W
a W,
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Based on the definition of state variable x(7)=
[e.(2),1,(2)]", the collected data of SGCMG sys-
tem are given in Fig.5. More importantly, the
weights of neural networks are iterated from O,
where the selection of the initial weights in the itera-
tive algorithm is relaxed, and it is more conducive

to engineering.

Speed error / ((°) * s)

Current / A

0550 02 0.4 0.6 0.8 1.0

t/s
Fig.5 Collected data of SGCMG system

Fig.6 shows the training process of FR control
strategy, including data collection process under ad-
missible control (before 0.5 s) , algorithm iteration
(at 0.5 s), and the control process (after 0.5 s).
The sampling time of SGCMG system is set as
0.005s. Combined with the requirement of
g = 100, the data collection process lasted for 0.5 s.
The algorithm iterates for a short time at 0.5 s, and

then outputs the servo control strategy.

0.4 ;
02k Data collection process i
& i
5 00 '
o
g
8 -0.2+ ; 3 7
~ Algorithm iteration
= (at 0.5 s)
-0.4
%0 02 04 06 08 1.0

t/s

Fig.6 Training process of FR controller

The multi-source disturbance including high-
frequency, low-frequency sinusoidal disturbances

and slope disturbance have been shown in Fig.7,

which are used to simulate precision errors intro-
duced by position sensors, the unbalance torque of

the high-speed rotor, coupled torque by satellite

speed, etc.
E . 03F —— Slope disturbance
8 8
D . 0.2
a
0'00.0 0.2 0.4 0.6 0.8 1.0
- 0.15 - -
g _ 0.10f —‘ngIVVIOW-ﬁequency dlsttu:banfes
88 005 M\\
5z 0.00
é" —0.05
-0.10 1 1
0.4 0.6 0.8 1.0
t/s

Fig.7 Multi-source disturbance

Then, Fig.8 gives the tracking control of the
SGCMG system under the multi-source distur-
bance. The control signal of FR controller is given
in Fig.9. In the simulation, the setting speed 1s set
as w, =0.5°/s. It can be observed that SMC and
PID control are greatly affected to some extent un-
der this complex disturbance. In contrast, the FR
controller shows better control performance in stabil-
ity and rapidity. Based on the proposed FR algo-
rithm, there is still a small fluctuation in the speed
output. However, the robustness of SGCMG sys-
tem is obviously improved, and the speed can con-
verge to the expected value faster. At the same
time, the strategy proposed in this paper is a model-
free method based on data collection, which also im~-
proves the generalization of the control strategy.

The correlation of adjacent data is shown in

Fig.10. Based on Egs.(20, 21), “Data 1”7 repre-

0.6 B ﬁ“ h._
,—’; 0.5
- 0.4 { —— Target speed
L VT — FR control
T ) e A SMC
o
3 0.3H  0.55 - PID control
2
e oaff OV
5 0.45 1Y

0.1 0 40 1 1 1

"770.30 0.350.40 0.45 0.50
09502 0.4 0.6 0.8 1.0

t/s

Fig.8 Servo speed control under multi-source disturbance



234 Transactions of Nanjing University of Aeronautics and Astronautics

Vol. 38
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FR controller u,
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Fig.9 FR control signal under multi-source disturbance

sents the collected data set in the first iteration with
i=1, ie., E" and ®"', where the data redistribu-
tion method has not been used. Accordingly, “Data
2”7 1s the collected data set in the second iteration
with 7= 2. It indicates that the data redistribution
method has been used. Fig.10 shows that the corre-
lation of adjacent data is significantly reduced by da-
ta redistribution. For the data-based RL algorithm,
high correlation of adjacent data may lead to poor
convergence or even divergence of algorithm.
Therefore, the data redistribution method can re-
duce the data correlation and improves the conver-

gence performance of FR algorithm.

1.0 1.0
— Data 1: "' — Data1: @"
3 0.8 — Data2: £ 3 0.8 — Data2: @'
8 8
S 06 S 0.6
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2 2
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Fig.10  Correlation of collected data set

5 Conclusions

A data-based FR algorithm is proposed for the
robust control of SGCMG gimbal servo system,
where a data redistribution method is designed to im~-

prove the data utilization and algorithm conver-

gence. Under the influence of multi-source distur-
bance, the control strategy can be obtained by using
the collected data of SGCMG. This method avoids
the difficulty of mathematical modeling of SGCMG
and has better adaptability for uncertain problems.
Through the comparative analysis on simulation
platform, the proposed method can better suppress
the multi-source disturbance, in terms of rapidity

and stability.
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