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Abstract: An adaptive backstepping multi-sliding mode approximation variable structure control scheme is proposed
for a class of uncertain nonlinear systems. An actuator model with compound nonlinear characteristics is established
based on the model decomposition method. The unmodeled dynamic term of the radial basis function neural network
approximation system is presented. The Nussbaum gain design technique 1s utilized to overcome the problem that the
control gain is unknown. The adaptive law estimation is used to estimate the upper boundary of neural network
approximation and uncertain interference. The adaptive approximate variable structure control effectively weakens the
control signal chattering while enhancing the robustness of the controller.Based on the Lyapunov stability theory, the
stability of the entire control system is proved. The main advantage of the designed controller is that the compound
nonlinear characteristics are considered and solved. Finally, simulation results are given to show the validity of the
control scheme.
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0 Introduction

The inherent characteristics of physical devic-
es, mechanical design and manufacturing deviations
make nonlinear characteristics, like saturation and
hysteresis, inevitably exist in the actual control sys-
tems, including mechanical systems, servo sys-
tems, and piezoelectric systems, affecting the over-
all performance. It may even cause instability in the
system, like divergence and shock. With the devel-
opment and application of information technology,
the new material technology and the continuous im-
provement of system control performance require-
ments, it is necessary to adopt certain methods to
eliminate or reduce the influence of nonlinear charac-

teristics during the design and analysis of the control
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system.

In recent years, the problems of uncertain sys-
tem control with nonlinear characteristics of actua-
tors have received considerable attentions and be-

1107 But there are also

come an active research area
some limitations, e.(q., requiring nonlinear model
parameter information to be partially known. The
method of model decomposition requires that the
nonlinear types are clear, and most works study spe-
cific nonlinear input-output constraints in control de-
sign procedure'®. In engineering practice, the non-
linear characteristics of the actuator are often diffi-
cult to accurately judge, and sometimes they are a
mixture of multiple situations''".

The inputs of the actual systems are limited by

uncertain factors, but there are few studies on the
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control problems of uncertain systems considering
the inputs being affected by compound nonlineari-
ties. In this paper, a strict feedback nonlinear sys-
tem with compound nonlinear characteristics and un-
known control gain is considered. Its robust control-
ler is constructed, by utilizing the adaptive backstep-
ping sliding mode control method, dynamic surface
control technology and radial basis function (RBF)

neural network approximation technology.
1 Problem Statement

1.1 Actuator model with saturated nonlinear

characteristics

An actuator model with saturated nonlinear

characteristics is described as

Unmax u > Umax
v(u(r))=sat(u(t))= 4 Unn <U<Vpu (1)
Umin u < Umin

where v,., >0 and wv,;, <0 represent saturation

nonlinearities. Its input-output relationship is shown

in Fig.1.
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Fig.1 Input-output relationship of saturated nonlinear

actuator

A piecewise smoothing function to approxi-

mate the saturation function is described as'"!

Uy X tanh (/00

glu(z))= =

Umin >< tanh ( u/vmm)
eu,f’i‘m e u/v

vl =
"/ ¥ e max

u/v, —u/v (2)

P p— /Vmin

Unmin >< u/v —ulv u < O
e+ e "

The saturation function in Eq.(1) can be ex-
pressed as

sat(u(t))=g(ult))+d, (1) (3)

where d; (¢)1s a bounded function.
|di(0) |=|sat(u())—glu()|< "
max{y,, (1—tanh (1)),— v, (1—tanh (1))}

Fig.2 shows the input-output relationship of the

approximate smooth saturation function g(u(z)).
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Fig.2 Input-output relationship of smooth saturation

function

According to the median theorem, for the con-

stant A, we have

glu)=g(uy)+ g, (u—u) 0<<A<<1l (5)
where
_ dg(u)
g'n_ au ~ (6)
w, = Au—+(1—A)u, (7)
When u, =0
glu)=g,u 0<<A<1 (8)

Considering Egs.(3,5),we have
sat(u)=g,u+d (1) 9)
In control engineering, the control input «(?)
would be increased indefinitely. The following as-
sumption exists.
Assumption 1 Coefficient g, is unknown but
bounded
0<gn<g,<1 (10)
where g, 1s positive.
It should be noted that g, is handled as an un-
known control gain.
1.2 Actuator model with hysteretic nonlinear
characteristics
Currently hysteresis nonlinear models are main-
ly divided into two categories. One is a rate-indepen-

dent hysteresis model, including Dual model, Lu-
Gre model, Backlash-like model, Prandtl-Ishlinskii
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model, Preisach model, etc. The other is the rate-
dependent hysteresis model, which mainly includes
the semi-linear Duhem model, and the modified
Prandtl-Ishlinskii model*"”). The hysteresis nonlin-
earity of this paper is characterized by the Backlash-
like model as follows

dv du |
where A, B, C are constants, C >0 and C > B.

According to the analysis in Ref.[ 18], it leads

du

to
v=Cu-+d(u) (12)
d(u)=(v(0)— Cu(0))e A wOnsentd) 4
e e [ (B Ot g (13)
where d () is bounded.

The input-output relationship is shown in Fig.3.
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Fig.3 Input-output relationship of hysteresis nonlin-

ear actuator

1.3 Actuator model with compound nonlinear

characteristics

According to the model decomposition, a uni-
fied actuator model with nonlinear characteristics of
saturation and hysteresis is established as
Vo (0 (u))=@o(u, t )i (u, ) u(t)t @y (u, t)d, (1)+

dy(t)=@(u, )ult)+d(1) (14)
where v, (u) 1s the hysteresis nonlinearity, v, (v,)
the input saturation nonlinearity, ¢@(u,?)=
@:(u, 1)@, (u, t) the linear coefficient, and d(z)=
@, (u,t)d,(t)+ d,(t)the nonlinear part of the mod-

el.

1.4 A class of uncertain systems with com-

pound nonlinear characteristics

Consider the following class of uncertain sys-

tems with compound nonlinear characteristics.

T =x., T fi(Z)+A(Zx,,t) i=1,---,n—1

2, =f(Z)t g(x)v(u(t))+A,(x,,1) (15)
y— X

2] TER

vector, u(z)&€R control signal to be designed,

where I, =[x\, x5, *** 1s system state
v(u(t))ER control signal which actually acts on
the control input of the system, y=ux, € R output
signal, and f,(x)(i=1,-+,n) and g(x,) are un-
known nonlinear smooth functions, indicating that
the system has uncertainties such as unmodeled dy-
namics or modeling errors. A, (Z,, ¢ )(i=1, -, n)1s
unknown uncertain disturbance.
Considering Eqs.(14,15), we can deduce that
L=z T () +HA(Z,t) i=1,,n—1
o= fi(x)t g(x)o(u,t )u(t)+ A, (Z,,t) (16)
y— T
where A, (Z,,1)=g(x,)d(t)+ A, (x,,t) is com-
pound uncertain disturbance of the subsystem.
Assumption 2  Time-varying perturbation
d(t)is bounded, and there is unknown positive con-
stant D, >0
|d(t)| <D, (17)
Assumption 3  Control gain g(x,) is un-
known but bounded
0<g<|g(z)|<g (18)
Assumption 4 The reference command sig-
nal y,(z) and its derivatives y,(7), 3,(¢) exist and
are bounded.
A(x,,t) 1s bounded, and

there is an unknown constant D, (i=1, ---, n) that

Assumption 5

satisfies the following inequality
|8(Z.0) | <D, i=1,n (19)

According to Egs. (17—19), we have
(AL F00) | = |g(Z)d (1) +8,(F00) | < g Do+

D, <D (20)
where D >> 0 is an unknown positive constant.

This paper uses the Nussbaum gain design
technique to overcome the problem that the control
gain g(x,)¢(u, ) is unknown. Define continuous
functions N (¢ ): R— R, if the following conditions

are satisfied.

tdim sp— [ N(©g=+oo (1)
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kﬁ@minf%J;N(§)d§:—oo (22)

where N (¢ ) is the Nussbaum function
N(¢)= et cos(gzn) (23)

For the Nussbaum function N (¢ ), the follow-
ing lemma exists.

Lemma 1'"" If both V(-) and £(-) are smooth
functions on[ 0, ), V(2)=0,r€[ 0, ), and the fol-

lowing inequality exists.
0<V(<c+e ™[ (ha()N(E)+
1)¢e “"dr (24)
Then V (1), ¢(¢) and [ h(a(x))N(£)éde are

bounded on the interval [ 0, £;). Here ¢, is constant,
¢, >>0,and A(x(7)) is an arbitrary function whose
interval [/ ,/"],

value 1s bounded in the

Ol , 1]

2 Design of Adaptive Backstepping
Control Scheme and Stability

Analysis

2.1 Design of adaptive backstepping control
scheme
Define tracking error
e =x1—
e;=x;— i1

where e, is the system tracking error, and f3,, the

(25)

i:2,"',77

virtual control signal of the 7 — 1 order subsystem.
Step 1 Differentiating e, yields
e=fH(x)+a.+A(Z,,t)— (26)
The adaptive RBF neural network is used to
approximate the unknown nonlinear function f; (x,).
For the compact set 2 C R, there exists an optimal

weight vector Wy

fl(Il): Wf’r?fl(fl)_’_ € (27)
where ¢, is the approach error and ‘ el‘ < ¢}. Define
W1 — Wl* - Wl (28)

where W, is the estimate of the optimal weight of
the neural network and W, the estimation error.
The adaptive law of neural network weight vector is

taken as

W, =T, (e;& (1)~ 01 W,) (29)
where g, = 0 is the parameter to be designed, I') =
I'! is the gain matrix to be designed and elements of
the matrix are all positive.

Define the boundary value D}=D,+ €] and

choose the adaptive law as
D;]:yl‘el‘*anylla] (30)

where ,, = 0 is the parameter to be designed and y,
the adaptive gain coefficient to be designed. The es-
timated erroris D, = D! — D,.

The first error surface is defined as s, =e,.
Then the virtual control law is chosen
a=—ke,— W'E (x)—

pAmew(Cubie) | o (31)

1+ exp(—v,Dey)

where v, >0 and 4, > 0 are parameters to be de-
signed.

To avoid repeatedly differentiating virtual con-
trollers, which will lead to the so-called “explosion
of complexity” , we employ the dynamic surface
control technique to eliminate this problem. We in-
troduce a first-order filter 8, and let a, pass through
it with the time constant 7,

ofitpi=a  Bi(0)=a(0) (32)

By defining the output error of this filter as

w;=pf — a;, we have
. a— B w,
gt B

Define the Lyapunov function
1
11— 56

—_

1 SR
14 TESWITIW, 4 Dl S ol (34)

2}/1 2
Differentiating V', yields
. o R 1 - =
V[Zeléli W11F71W177D1D1+w1a‘)1 (35)
1
According to Egs.(26,27,31), we obtain
él:6’2+w1+a|+f|(-T|)+A|(1_*ml‘)*:)'/r:
_k1€1+€2+w1+ Wlkrfl(l‘l)_’_sl_’_

~ 11— —u,D
Al(‘i.mt)_Dl exp( Ul Alel) (36)
1+ exp(—uviDe))

Differentiating w, yields
W, = ,8.1 —a; =

w A A -
*?1+¢1(€1,€z,w1,Wl,Dl,yd,yd,yd) (37)
1
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where ¢1(€1’ €y, Wi, Wl, Iﬁl,yd,yd,&d) Is a continu-
ous function abbreviated as ¢, ()

Substituting Egs.(36,37) into Eq.(35) yields

. o B 1 - =
Vlzelél_WIIF;1W1_7D1D1+6010')1<
1
7&1(3%+€132+€1C()1+WlTF;l(Flelgl(l‘l)iW)+
5 ~ 1—exp(—uv,D
‘el DlielDl exp( il ,\lel)+
1+exp(—uviDey)

1 o wf
- 1(71’61’*D1)*71+w1¢1(') (38)
Y1 Ty

According to Egs. (29, 30) , and boundary in-

equalities, we obtain

2
V] <7klf)?7 — +€1€2+€1w1 +
1

1
CU1¢ +0‘1()W1 W1+0'11D D1+7 (39)

%5}
Step i The derivative of ¢, (i =2, -, n— 1)
élz‘rlfl+f;(l_‘1)+Ai(‘i‘m[)_ﬂ‘ifl (40)
where (3, is the output of the first-order filter

7 1ﬁ, 1+ﬂ; 1 ﬂf 1(0)=@a; 1(0)

W, (41)
Bl 1= 1

z'l 1
where w, 1 =pf, 1 —a; 1, a, ;1 is the input of the
, the time constant. Substi-

tuting Eq.(41) into Eq.(40) yields

first-order filter and z;

Wi

b =21 T ()T A(Z )+ (42)

Ti—1
The adaptive RBF neural network is used to
approximate the unknown nonlinear function f;(x;)
For the compact set 2. CR’, there exists an opti-
mal weight vector W/
[ilZ)= W (X))t e (43)
<, W, the esti-

mate of the optimal weight of the neural network
and W, = W, — W The adaptive law of neural net-
work weight vector is chosen as
Vf/, =TI (eé (X
where g, > 0 is the parameter to be designed, I', =

oW, (44)

I'! is the gain matrix to be designed and elements of
the matrix are all positive.
Define the boundary value D!=D,+ ¢, and

choose the adaptive law to estimate D).

13, = y,-’ e[‘ — 6,7.D, (45)
where ¢, > 0 is the parameter to be designed, and
y. the adaptive gain coefficient to be designed. The
estimated erroris D,= D' — D..

The virtual control law of the ith order subsys-
tem is chosen
b, 1— exp(*UIDA,ve[) B

a,=—ke,— W'&(2)— D, 3
1+ exp(—wv:D;e;)

(46)

where v, = 0 and %, > 0 are the parameters to be de-
signed.

Using the similar way, we introduce a first-or-
der filter §8;, and let a; pass through it with the time
constant z;

.0+ p=a P.(0)=a,(0) (47)

Define the Lyapunov function

1" 1" 171D?

vV, = E+ZWFW+Z

i=1 i=1 =1 Vi

+

1/11

720 (48)

Similarly, it can be obtained as

n—1

2
Vi< E(— kie; — w? teetew T wd (o)t
i=1 i

o .1
a,»oW,»TW,Jra,ID,D,.JrU) (49)

where ¢;(*)is a continuous function.

Step n The nth order subsystem’ s error of
the system is e, =z, — 3, 1. The derivative of e, is

Wy

e =f(Z) T g(Z)e(u,)u(t)+A(Z,, 1)+

Tu—1

(50)
where w, = f,-1— a,-, and 7, is the time con-
stant.

The adaptive RBF neural network is used to
approximate the unknown nonlinear function term
/. (&,) of the system. For the compact set 2, CR",
there exists an optimal weight vector W,

Su(Z)= WJT§7,(5C”)+ €, (51)

. e;; W, the es-

where ¢, 1s the approach error,

timate of the optimal weight of the neural network
and W, =W, — W,

network weight vector is chosen as

The adaptive law of neural
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W —TI,( SE(T)— auW,) (52) estimated error is D, = D! — D,.
where 6,0 >0 is the parameter to be designed and Define the sliding surface s=e¢,. The control
I',=T, is the gain matrix to be designed and ele- law is designed as
ments of the matrix are all positive.

The boundary value is defined as D, =D + ¢,
and the adaptive law to estimate D, is chosen.

) (63 ploee(zeDe) o

u=[g(z)p(u,t)] | —ke,— W & (F,)—

D,=y.|e.| = oay.D, - (54)
where ¢,; > 0 is the parameter to be designed, and L+ exp(—v,Dye,) o
y. the adaptive gain coefficient to be designed. The Design the control law using Nussbaum
u=N(O) | ker + Wig (2 DL R0 De) | w00y
1+ exp(—uv,D,e,) Ty
R (55)
E=kh,el+ e,,Wff”(i,,)—l- e,D 1= eXP(iU”I?”e") " G
1+ exp(—v,D,e, [
where v, >0 and %, > 0 are parameters to be de- According to the control law (55), we have
signed. e,u(1)=N({)¢ (59)
2.2 Stability analysis Substituting Eq.(59) into Eq.(58) yields
Theorem 1 Consider the uncertain nonlinear enéy=g(E)e(u )N () +E— ks +
systems (16) , the controller (55) , and the corre- e, fui(Z,)— e,,W,,Tf,,(i”)Jr e, 0,(Z,,1)—
sponding adaptive law. If the proposed control sys- D 1— exp(—u,,D:”e,, (60)
tem satisfies Assumptions 1—5, for the system 1+ exp(—uv,D,e,
with any bounded initial state, all signals of the Substituting Egs. (52, 53, 60) into Eq. (57)

closed-loop system are semiglobally uniformly yields

bounded. And, by tuning the designed parameters, V<V,  +g(x)e(u,t )N+ E— kel +
the system tracking error e, converges to a small

neighborhood near the origin. ‘e,, D,—eD 1+ exp(—v D,e.)
Define the Llyapunolv function 1 o WIW.+ 0uD.D. (61)
V=V, + Eeﬁ + EWHTF,T'WN + 2y D; (56) Invoking the boundary inequality yields
The derivative of V is 0| B, — e, pr— D) - 16
. . . A 1 . A 1+ exp(iuwD/zen) U”
V — V7171 + e/lé” 7 WN—I-[‘;]WN - DNDN (57)
. Therefore
According to Eq.(50), we obtain V<V,  +g(x)e(u,t )N+~
o, =e, ., (X T ' 1 . BN (63)
e,6,=e, [, (2,)t e,g(x)e(ut)u(r)+ bet+ L o WIW. 4 6.D.D.
€ AL (E,0) T 6,2 (58) B , .
Ty Substituting Eq.(49) into Eq.(63) yields
v<|— C:; +ee; T ew+ wip (o) +
Z (0-1() WITWI'* - 0‘1’()W1"I-Wi + 0,1 DNIDI’ — Oa DNIZ)_‘_
i=1
n , n 1 B . .
DI (—kel)+ Zufﬁtg(x,,)go(u,t)N(é’)é’Jré’ (64)
i=1 =11
By Assumption 4 and the initial state of the sys- ‘ ¢:(*) ’ <P, i=1,,n—1 (65)

tem bounded, we have According to Young’s inequality
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1
2 2
e e+ —el,

1 (66)
, 1,
ew; < el + T (67)
@12 i
Wi (+)=< w?—l—% >0 (68)

i

i n—1
V(—h+2)d+ >~k
i=2

i=1

g(Z)e(u,t )N(E)E+ ¢

When
n—1 ) n 1 n ) . : .\
r, = 2& +> =+ Z(U’O wow+ 2 D;) (72)
i=1 4 i=1 v; i=1 2 2
Choose
k1>2+% (73)
9 r
k,)z‘f’g 1—2,"',71_1 (74)
=140 (75)
T4 2 )
P
%>#’+i+% i=1,.n—1 (76)
1 ((77;1 1)27’1 i=1,-,n (77)
#ﬁ/rl Z—l, , N (78)
where , > 0.

V<—rV+rtgx)o(u )N+ (79)
Multiply both sides of Eq.(79) by e and inte-

grate

) e T
st

e L [g(Z)g(u,t)N(E)+ 1] dr<

V(z)<r2+{V(O)

st

2+ V(0)+

1
e[ Le(®)e(u )N+ 116 (80)
have

According to Assumption 3, we

|g(Z)p(u 1) | €[ gopor g1 ) Tt can be proved
by Lemma 1 that V (1), £(1), and | g(2)g(u.)-
N(&)&dr are bounded on the interval [ 0, 7;). When

e [ Te(Z)eu,IN(§)+1]é " dr<r, (81)

Eq.(80) can be rewritten as

S R U U Sy R
2( T}.+4+/1,»)w[+24+2’h+2(

O o

e WIW: < 5 W, W, + Z:“ WW:  (69)
6,D.D! < ‘;‘ D? + "2” D? (70)

Substituting Eqs.(66—70) into Eq.(64) yields

O L. 1,
e (A et
L o o N Oa
ZWW,ZD)+2&WCW+2D,+
(71)
Vm<§+vm+m (82)
1

Thus, V(z) 1s bounded. According to Eq.
(56) , the closed-loop system signals e;, w,, w,,
and D, are bounded by a semi-global uniform termi-
nation, and W, and D, are bounded. By Assumption
4, the state of the closed-loop system &, is bounded.

According to Egs.(56,82), we obtain

8t

€1< 2V([)<\/272/71+|:V(O)r2:|e m+r3

(83)

Therefore , the convergence radius

\/2r:/r1 + ry of the steady-state tracking error e,

of the system can be reduced by choosing parame-

ters.

3 Simulation

Consider the following uncertain nonlinear sys-
tem
2, =0.1xi+ 2, + 0.52] sin¢
1,=0.1e “+ a2, +0.5(xf+ 25)sin¢
Iy =x 1203 T (1+sina) [o(u,t)ut+d(1)]+
0.5(x%+ 25+ 2%)cos ¢

y—I

The
function of the RBF neural network Wffl(a?l)
is{—1,—2/3,—1/3,0,1/3,2/3,1}, The width
is 7, =2, WI(O):O. The center of the Gaussian

center of the Gaussian radial basis

radial basis function of the RBF neural network
WS E(Z,) is {—1,—1/2,0,1/2,1} X{—1,—
1/2,0,1/2,1}. The width is n,=2, W,(0)=0.
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The center of the Gaussian radial basis function of
the RBF neural network W3T§3(ig) is{—1,0,1} X
{—1,0,1} X{—1,0, 1}, The width is ;= 2, and

W, (0)=0.
The reference command signal is y, =
0.5sinz + 0.5sin(0.5¢) . The initial values are

[2,(0),2, (0), 25 (0)]" = [ 0.25, 0.25, 0.25 ",
D.(0)=0 (i=1,2,3) and £(0)=1. Time con-
stants are 7, = 7, = 0.04. The parameters to be de-
signed are set to k=2, I'y=diag [ 0.5 ], v, = 10,
o0 =0,—=—0.2, and y,= 0.5.

The simulation results are shown in Figs.4—
6. Adaptive backstepping multi-sliding mode vari-
able control without RBF neural network approxi-
mation is conducted as a comparative simulation
result. The simulation result in Fig.4 shows that
the scheme of this paper has better tracking con-
trol effect. It can be seen that the designed control-
ler can stably track the reference command while
the actuator has nonlinear compound characteris-
tics of hysteresis and input saturation, and the
tracking error remains within a certain range. Ac-
cording to Figs.7—9, variables of the closed-loop

system state are bounded.

1.5

P —Vr =~ Yworer ~-°Y
1.0 s
\ a
0 Al I 3\
0.5y \ /A
~ 0.0 \\//\\ / \
-0.5 \
\u”
-1.0 e
_1.5 1 1 1 1 1
0 5 10 15 20 25 30

t/s

Fig.4 Tracking reference command signal curves

100
75+
50

0 5 10 15 20 25 30
t/s

Fig.5 Control signal curve of the system «

10.0
751
5.0
25

v(u(®)

0.0
25

4 5 10 15 20 25 30

t/s

Fig.6  Actual control signal curve of the system v(u(¢))

S
2
o

e A= AR A

= 0.08}
®

= 0.06F
X

= 004§
2 o0 -

0000510 15 20

t/s

Fig.7 Curves of neural network weight norms

Fig.8 Curves of the adaptive parameters

1.0

0.8 Z,_f—/_f

0.6
S
04

02F

0 5 10 15 20 25 30
t/s

0.0

Fig.9 Curve of the adaptive parameter {

4 Conclusions

A class of uncertain nonlinear systems with
compound nonlinear characteristics has been stud-
ied. Combined with RBF neural network approxima-
tion and adaptive control theory, an adaptive back-

stepping multi-sliding mode variable structure con-
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troller scheme is presented. By utilizing the model
decomposition method, a nonlinear actuator model
of compound nonlinear characteristics is estab-
lished, so that the inverse solution of nonlinear fea-
tures is not needed in the controller design process.
It has been proved that all signals of the closed-
loop system are semi-globally uniformly bounded. A
simulation example has been conducted to show the

validity of the proposed scheme.

References

[1] CHEN X K, OZAKI T. Adaptive control for plants in
the presence of actuator and sensor uncertain hystere-
sis[J]. IEEE Transactions on Automatic Control,
2011, 56(1): 171-177.

[2] LIUZ C, DONG X M, XUE J P, et al. Adaptive
control for a class of nonlinear systems with uncertain
actuator nonlinearity[ J]. Systems Engineering and
Electronics, 2015, 37(1): 163-168.

[3] ZHOU W D, LIAO C Y, ZHENG L, et al. Indirect
adaptive fuzzy control for SISO nonaffine nonlinear
system with unknown dead-zone input[J]. Journal of
Harbin Institute of Technology, 2014, 46 (10) :
110-116.

[4] GUO J, YAO B, WU Y F, et al. Adaptive robust
control for a class of nonlinear uncertain system with
input backlash[J]. Control and Decision, 2010, 25
(10): 1580-1584.

[5] MA Y C, ZHANG Q L. Decentralized control for
nonlinear lager-scale interconnected systems with in-
put saturation[ J]. Control Theory &. Applications,
2007, 24(4): 683-686.

[6] TONG S C, LI'Y M. Adaptive fuzzy output feedback
tracking backstepping control of strict-feedback nonlin-
ear systems with unknown dead zones[J]. IEEE Trans-
actions on Fuzzy Systems, 2012, 20(1): 168-180.

[7] HU QL, MA G F, XIE L. H. Robust and adaptive
variable structure output feedback control of uncertain
systems with input nonlinearity[J]. Automatica,
2008, 44(2): 552-559.

[8] CHEN M, GE S S, HOW B. Robust adaptive neural
network control for a class of uncertain MIMO nonlin-
ear systems with input nonlinearities[J]. IEEE Trans-
action on Neural Networks, 2010, 18(5): 796-812.

[9] CHENM, GE S S, REN B B. Adaptive tracking con-
trol of uncertain MIMO nonlinear systems with input

constraints| J|. Automatica, 2011, 47(3): 452-455.

[10] WENCI, ZHOUJ, LIUZ T,etal. Robust adaptive con-
trol of uncertain nonlinear systems in the presence of in-
put saturation and external disturbance[J]. IEEE Trans-
action on Automatic Control, 2011, 56(7): 1672-1678.

[11] CONRRADINI M, ORLANDO G. Robust stabiliza-
tion of nonlinear uncertain plants with backlash or dead
zone in the actuator[J]. IEEE Transactions on Control
Systems Technology, 2002, 10(1): 158-166.

[12] DAHL P R. Solid friction damping of mechanical vibra-
tions[J]. ATAA Journal, 1976, 14(12): 1675-1682.

[13] YAO J Y, JIAO Z X, YAO B. Robust control for
static loading of electro-hydraulic load simulator with
friction compensation[ J]. Chinese Journal of Aeronau-
tics, 2012, 25(6): 954-962.

[14] VISINTIN A. Differential models of hysteresis [ M ].
New York: Springer-Verlag, 1994.

[15] BROKATE M, SPREKELS J. Hysteresis and phase
transitions[ M ]. New York: Springer-Verlag, 1996.

[16] OH J, BERNSTEIN D S. Semilinear Duhem model
for rate-independent and rate-dependent hysteresis[J].
IEEE Transactions Automatic Control, 2005, 50(5) :
631-645.

[17] ANG W T, KHOSLA P K, RIVIERE C N. Feed-
foward controller with inverse rate-dependent model
for piezoelectric actuators in trajectory-tracking applica-
tions[J]. IEEE/ASME Transactions on Mechatron-
ics, 2007, 12(2): 134-142.

[18] SU C Y, STEPANENKO Y, LEUNG T P. Robust
adaptive control of a class of nonlinear systems with
unknown backlash-like hysteresis[J]. TEEE Transac-
tions on Automatic Control, 2000, 45(12) : 2427-
2432.

[19] WANG J H, HU J B. Robust adaptive neural control
for a class of uncertain non-linear time-delay systems
with unknown dead-zone non-linearity[J]. IET Con-
trol Theory and Applications, 2011, 5(15) : 1782~
1795.

Acknowledgement

tional Social Science Foundation of China (No.17BGL270 ).

This work was supported by the Na-

Author Dr. LI Fei received his B.S. and Ph.D. degrees
from Air Force Engineering University in 2009 and 2015, re-
spectively. His research is focused on sliding mode control

theory and application in cyber-physical systems.

Author contributions Dr. LI Fei designed the study, and
wrote the manuscript. Ms. WANG Shimei contributed to the
algorithm and the data of the models. Prof. HU Jianbo and

Mr. LIU Bingqi contributed to the discussion and



258 Transactions of Nanjing University of Aeronautics and Astronautics Vol. 38

background of the study. All authors commented on the Competing interests The authors declare no competing

manuscript draft and approved the submission. interests.

(Production Editor: WANG Jing)

BEREERIFLUBHEAHERGEW BIE N R HEEH

Z k', T, Walk, X mat!
(1B ETRERFREAEHES AN TR, V% 710051, 1 H ;
2T RFEBILMZR , P§4 710051, )

WE AN —RAALSFEARBFENRHAZTLZA, RBT —HAELRIESHBREMEEMIEH T E, AT
RSB T AELT AALSERBERFIEG AT B ® LR R KRR BT E R KL F R0y R
R, 4 % Nussbaum 3§ 3 % 7 H AR M k32538 2 Ko b9 98 42 A B & AL R A2 T A 2 W& AR £
o9 LA, AESEMEEMIER G A BN BIEAE TR, R AR R S-S HMm ., AT Lyapunov
R ENT EAER RAAGRENR, BEHNFTENERANEET L EAMATRAHZRAAREA LS
FRMAFEGIEF P, R, 5 AERIEN T 5 5 R R A,

KEWR LA LMot e B &R R ;& e R &R 2 W %



