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Abstract: The determination of the dynamic load is one of the indispensable technologies for structure design and
health monitoring for aerospace vehicles. However，it is a significant challenge to measure the external excitation
directly. By contrast，the technique of dynamic load identification based on the dynamic model and the response
information is a feasible access to obtain the dynamic load indirectly. Furthermore，there are multi-source uncertainties
which cannot be neglected for complex systems in the load identification process，especially for aerospace vehicles. In
this paper，recent developments in the dynamic load identification field for aerospace vehicles considering multi-source
uncertainties are reviewed， including the deterministic dynamic load identification and uncertain dynamic load
identification. The inversion methods with different principles of concentrated and distributed loads， and the
quantification and propagation analysis for multi-source uncertainties are discussed. Eventually，several possibilities
remaining to be explored are illustrated in brief.
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0 Introduction

It is common knowledge that the development
of aerospace vehicles is closely associated with the
national economy and defense strategy. Aircraft
structures are often burdened with various dynamic
loads in the flight process，for instance，the thrust
load in the launch phase，the pulse pressure in the
transonic phase and the strong aerodynamic load in
the return phase. With the rapid enhancement of
flight speed，flight distance and maneuverability of
aerospace vehicles，the dynamic loads have become
increasingly severe and intricate. The acquirement of
external exciting forces is a prerequisite for the delica⁃
cy management such as flight control and health mon⁃
itoring for aerospace vehicles. In practical engineer⁃
ing，it is difficult to measure external loads straight⁃

forwardly through force sensors，while structural re⁃
sponses under the load effect，such as the displace⁃
ment，acceleration and strain，may be achieved ef⁃
fortlessly［1］. Therefore，it is a feasible approach to
calculate external loads indirectly via measured dy⁃
namic responses and structural characteristics in com⁃
bination with remarkable inversion approaches. The
concept of load identification originated in the avia⁃
tion field in the 1970s. It is proposed to acquire the
actual load to enhance the performance of aircrafts［2］.

In general，multi-source uncertainties are in⁃
eluctable for the dynamic load identification of aero⁃
space vehicles，which signifies the identified load
may also be indeterminate owing to the transitivity
of multi-source uncertainties. On the one hand，the
dynamic load may be stochastic with the speedy
change of service environment［3］. Under this circum⁃
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stance，the random external load and structural re⁃
sponses must be quantified as stochastic processes.
On the other hand，the intrinsic characteristics and
measured responses may also be uncertain，caused
by either static factors（e. g.，material dispersion，
machining tolerance and modeling error） or time-
varying parameters（e. g.，disturbance of boundary
conditions and deviation of instrument measure⁃
ment）. In addition，these aforementioned uncertain⁃
ties may be accumulated during the service pro⁃
cess［4］ of aerospace vehicles，and their cross-cou⁃
pling effects will lead to numerous noise indepen⁃
dent of the real loads，which hinders the precise
identification of the external dynamic load.

The schematic diagram of dynamic load identifi⁃
cation for aerospace vehicles considering multi-
source uncertainties is demonstrated in Fig.1. In
brief，it can be subdivided into two major catego⁃
ries：（1）The establishment of the deterministic load
identification model［5］；（2）The quantification and
propagation analysis of multi-source uncertainties.
How to handle the influence of uncertainties on the
inversion model and how to identify the uncertain dy⁃
namic load efficiently［6］ have become hot-spot issues
for many scholars［7-10］. Herein，the developed identi⁃
fication methods for different dynamic loads and the
uncertainty analysis methods for uncertain load are
reviewed in this paper，which can be seen in Fig. 2.

Fig.1 Schematic diagram of dynamic load identification for aerospace vehicles

Fig.2 Dynamic load identification method
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It is worthwhile mentioning that only the identifica⁃
tion of loading history is summarized，without the
identification of loading position and loading direc⁃
tion［11］.

1 Deterministic Load Identification

Methods

Different from the forward problem of structur⁃
al dynamics，the dynamic load identification，called
as the second inverse problem，is more complicated
than solving the quadratic differential equation. Giv⁃
en the mathematical model，it can be divided into
the frequency-domain-based method and the time-
domain-based method［12］. It is noted that the time-
domain-based method has attracted more attention，
since it can reconstruct the dynamic time history
forthrightly. In general，the dynamic load identifica⁃
tion is implemented under the framework of the fi⁃
nite element method（FEM）. The governing dy⁃
namic equation of aerospace vehicles can be com⁃
monly depicted as

Mü ( t )+ Cu̇ ( t )+ Κu ( t )= F ( t ) （1）
where M，C and K，stand for the mass，the damp⁃
ing and the stiffness matrices，respectively；u ( t )，
u̇ ( t ) and ü ( t ) are the displacement， the velocity
and the acceleration responses，respectively；F ( t )
denotes the external force. Enlightened by the mod⁃
al transformation，Eq.（1）can be rewritten as

M p q̈ ( t )+ C p q̇ ( t )+ Κ pq ( t )= P ( t ) （2）
where q ( t )，q̇ ( t ) and q̈ ( t ) are corresponding modal
responses；M p，C p and Κ p represent the related
modal characteristic matrices；P ( t ) means the mod⁃
al force. Decoupling Eq.（2），we can get some lin⁃
ear differential equations，i.e.

mr q̈r ( t )+ cr q̇r ( t )+ kr qr ( t )= pr ( t )
r= 1，2，⋯，m （3）

where r means the r-th order equation，and m the
number of truncated modes.

Actually，for simple structures，the dynamics
calculation may be analyzed in physical space as
Eq.（1），while for large-scale structures，it should
be performed in modal space to reduce the comput⁃
ing effort. There are two categories to be discussed
in this section：The concentrated load（single-point

or multi-point） and the distributed load， among
which the latter is completed by modifying the iden⁃
tification algorithm of the concentrated load.

1. 1 Concentrated dynamic load identification

There are many excellent methods dealing with
the identification of dynamic load，including the di⁃
rect inverse method，the regularization method，the
Kalman filter method and the machine learning
method［13］.
1. 1. 1 The direct inverse method

The direct inverse method aims to deconvolve
this relationship between external load and system
response，which is the most common approach in
the early stage owing to its intuitionistic advan⁃
tage［14-15］. In frequency domain， carrying out the
Fourier transform on both sides of Eq.（2），yields
-ω2M pQ (ω )+ iωC pQ (ω )+ Κ pQ (ω )= P (ω )（4）
where ω is the frequency，Q (ω ) and P (ω ) are Fou⁃
rier spectrums of the external load and the structur⁃
al response，respectively. Introducing the matrix
H (ω )= (-ω2M p+ iωC p+ Κ p )-1 of frequency re⁃
sponse function（FRF），the load spectrum P (ω )
can be obtained by

P (ω )= H + (ω )Q (ω ) （5）
where the superscript + denotes the pseudo-inver⁃
sion. Bartlett and Flannelly［16］ used measured accel⁃
eration responses to identify vertical and lateral dy⁃
namic loads on the helicopter hub center in frequen⁃
cy domain initially. Hillary et al.［17］ reconstructed
the dynamic load of a cantilever structure using the
FRF of different positions，and proved that strain re⁃
sponses outperform acceleration responses. Hansen
and Starkey［18-19］ revealed the ill condition of the
FRF near the resonance region，and the growing
identification error with the increase of the number
of loads. Doyle［20-22］ investigated considerable re⁃
searches to reconstruct the location and history of
the impact load.

In contrast，the direct inversion method in time
domain emerged relatively late. Refs.［23-25］ pro⁃
posed this method for discrete-time systems based
on modal coordinate transformation with regard to
the flight load of rockets. It is assumed that the load
is regarded as a constant during the period [ tk，tk+ 1]，
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i.e.，pr ( t )= prk，t ∈[ tk，tk+ 1]. Based on the Durham
integral and the vibration equation， the result of
Eq.（3）can be obtained as
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Cr ( t，k )= e-ζrωr ( t- tk ) cosωdr ( t- tk )
Sr ( t，k )= e-ζrωr ( t- tk ) sinωdr ( t- tk )

（6）

where ωr= kr/mr and ωdr = ωr 1- ζ 2r are the
angular frequencies； and ζr= cr/( 2mrωr ) is the
damping ratio. Differentiating Eq.（6），the modal re⁃
sponses of q̇ r ( t ) and q̈ r ( t ) can be got. The sequence
P ( tk )=[ p1 ( tk )，p2 ( tk )，⋯，pm ( tk ) ] of modal loads
can be provided utilizing modal responses. The dy⁃
namic load can be inversed by modal transformation

F ( tk )= [ΦT] + P ( tk ) （7）
where Φ is the truncated modal matrix.

Suppose that the number of measured respons⁃
es is nr，and the number of external concentrated
load is nf. The following relationship should be satis⁃
fied：nr≥ m≥ nf. Ref.［26］ presented five methods to
obtain the transfer function between force and strain
response to reduce noise interference. Sandesh et al.
［27］ identified external excitations and interface forces
with the iterative time-domain identification. Liu et
al.［28］ proposed a time-domain Galerkin method for
dynamic load identification，which can overcome
the influence of noise
1. 1. 2 The regularization method

The direct inverse method can be summarized
as Ax= y，x ∈ X，y∈Y，where A is the operator，
X the solution space，and Y the data space. Unfortu⁃
nately，the inversion of operator A is often ill-condi⁃
tioned leading to unstable results. There is no deny⁃
ing that the regularization method aims to find a sta⁃
ble approximate solution to replace the exact solu⁃
tion of the inverse problem， in which two issues
should be discussed：（1）The construction of regu⁃
larization operator；（2）The selection of regulariza⁃
tion parameters. Tihonov regularization［29］ is an out⁃
standing method for dynamic load identification，
whose basic idea can be described as follows. For a

bounded linear operator A，solve x α ∈ X to mini⁃
mize the Tikhonov functional Jα ( x )，namely

Jα ( x )=  Ax- y
2

Y
+ αΩ ( z )=  Ax- y

2

Y
+

α  x 2

X
（8）

where  × represents the norm，α the regularization
parameter and Ω ( z ) is set as the stabilization func⁃
tional. Minimizing the functional Jα ( x )，the result of
the Tikhonov regularization method can be expressed
as x α= (A∗A+ αI) -1A∗ y. To obtain the numerical
solution， take the singular value decomposition

（SVD）for A，i.e.，A=Um× n Σ n× nV T
n× n= ∑

i=1

n

u i σ ivTi .

The solution x α may be further rewritten as

x α= ∑
i= 1

n

fα ( σ 2i )
uTi y
σi

v i （9）

where A∗ is the adjoint matrix，and fα ( σ 2i ) the Tik⁃
honov filtration factor determined by regularization
parameter α and the singular value σ 2i .

Other regularization methods，like the truncat⁃
ed singular value decomposition（TSVD）［30］ and
the iterative regularization method［31］ ， have also
been extensively employed. Given that improper se⁃
lection of regularization parameters will lead to unac⁃
ceptable results，some methods，including general⁃
ized deviation criterion［32］，generalized cross-valida⁃
tion （GCV） method［33］ and L-curve criterion［34］

have been established to determine the regulariza⁃
tion parameter. Jacquelin et al.［35］ introduced the reg⁃
ularization algorithm to the impact load identifica⁃
tion process，and discussed the influence of different
regularization methods on the identification results.
Wang et al.［36］ studied the load identification on com⁃
posite laminated cylindrical shells through Tikhonov
regularization with a new regularized filter operator.
Numerous researches［37-39］ have confirmed the bene⁃
fits of the regularization method.
1. 1. 3 The Kalman filter（KF）method

Kalman filter is a recursive algorithm originat⁃
ed from the control field［40］，which is modeled on
the basis of the state-space equation. Different from
the traditional Kalman filter，this method for dynam⁃
ic load identification can estimate the system state
and the unknown input simultaneously. The discrete
state-space equation of Eq.（1）can be expressed as
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{X ( k+ 1 )= AX ( k )+ BF ( k )+w ( k )
Z ( k )= CX ( k )+ v ( k ) （10）

where X ( k ) embodies the state vector，and Z ( k )
the observation vector. w ( k ) and v ( k ) are the pro⁃
cess noise vector and measurement noise vector. A，

B and C denote the state transition matrix，the input
matrix and the identity matrix，respectively.

The two-stage and two-step recursion meth⁃
od［41-42］，combining the Kalman filter and the least
square algorithm，is most widespread for dynamic
load identification. The dynamic load may be esti⁃
mated recursively by virtue of the gain matrix，up⁃
date state and covariance matrix generated，which
was described in Ref.［13］. In terms of the weight⁃
ing coefficient of the recursive least-squares algo⁃
rithm，the conventional weighting input estimation
（WIE）［43］，the adaptive WIE［44］ and the intelligent
fuzzy WIE［45］ have been presented successively. In
addition，Gillijns et al.［46-47］ proposed an unbiased
minimum-variance input and state estimation for lin⁃
ear discrete-time systems with acceleration and dis⁃
placement responses. Hsieh et al.［48］ extended the in⁃
put and state estimation from one-step delay to
multi-step delay. As for the nonlinear system，Ma
et al.［49］ contributed the extended Kalman filter
（EKF） for nonlinear estimation，in which the first-
order Taylor expansion is used to linearize the non⁃
linear model，and the standard Kalman filter algo⁃
rithm is used to estimate the state and unknown
load. Ref.［50］ used the unscented Kalman filter
（UKF） to avoid the derivatives，Jacobians calcula⁃
tion and linearization approximations of EKF.

Another feasible approach is to extend the un⁃
known input vector to the state vector，then use the
standard Kalman filter to estimate the extended
state vector. Lourens et al.［51］ proposed an augment⁃
ed Kalman filter（AKF） technique for joint input-
state estimation based on reduced-order models and
vibration data from a limited number of sensors.
Ref.［52］investigated a multi-metric approach to en⁃
hance the stability and accuracy of the force estima⁃
tion by the AKF method.
1. 1. 4 The machine learning method

Substantially， the dynamic load identification

can be regarded as an optimization problem. With
the development of computer technology，some in⁃
telligent optimization algorithms based on machine
learning have been proposed，and been gradually in⁃
tegrated into the field of dynamic load identification.
The characteristics of a specific structure have been
concealed in input-output samples，so the complex
nonlinear relationship between the dynamic re⁃
sponse and load may be reasoned and learned by ma⁃
chine learning models.

As a classical intelligent optimization algo⁃
rithm，the neural network was used for load identifi⁃
cation initially，whose processor can be summarized
as follows：（1）Determine the topological structure
of the neural network；（2）Adjust the network pa⁃
rameters in the training and learning process；（3）
Obtain the load sequence by inputting the measured
response. Cao et al.［53］ simulated the strain-load rela⁃
tionship of aircraft wings by the artificial neural net⁃
work，and analyzed the influence of network struc⁃
ture，training algorithm and learning speed. Trivailo
et al.［54］ predicted both high-frequency buffet and
low-frequency manoeuvre loading through the El⁃
man network to improve the fatigue monitoring ca⁃
pability of F/A-18 Empennage. Zhou et al.［55］ recon⁃
structed the impact load of nonlinear structures us⁃
ing the deep recurrent neural network，whose effec⁃
tiveness was verified through an experiment of a
composite plate. Compared with the traditional
methods， the neural-network-based method may
have a wider prospect owing to the higher identifica⁃
tion accuracy and stronger anti-interference ability.
However， there is no universal method to deter⁃
mine the network structure. Under such circum⁃
stances，the support vector machine has been intro⁃
duced into the load identification，and its validity is
also clarified in Refs.［56-57］Furthermore，the opti⁃
mization algorithms like genetic algorithm have also
been applied to the load identification. Yan et al.［58］

established an objective function for load identifica⁃
tion based on the minimum difference between the
calculated response and the measured response.
Thus，the inverse problem can be transformed into
a forward problem of parameter optimization.

Much work so far has focused on the identifica⁃
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tion of concentrated dynamic load. In addition to the
aforementioned methods， there have also been
many remarkable methods with distinguished advan⁃
tages，which are not be expound them in detail here⁃
in.

1. 2 Distributed dynamic load identification

The distributed dynamic load acting on continu⁃
ous structures is more complicated than the concen⁃
trated load. There are relatively few studies devoted
to distributed dynamic load identification. Time vari⁃
able and space variable are both involved for the dis⁃
tributed dynamic load，which may be independent
or coupled with each other. For the continuous struc⁃
ture，the governing equation can be commonly de⁃
picted as

ρα
∂2u ( x，t )
∂t 2 + c

δu ( x，t )
∂t + Eβ

∂4u ( x，t )
∂x 4 =

f ( x，t ) （11）
where x ( x，y，z ) represents the space variable. ρ，c
and E signify the material density，damping coeffi⁃
cient and elastic modulus；α and β are the structural
parameters；and u ( x，t ) and f ( x，t ) are the dis⁃
placement response the distributed dynamic load. It
is known that u ( x，t ) and f ( x，t ) are both continu⁃
ous functions in time-space dimension. In general，
only discrete responses of limited measuring points
may be obtained，which increases the difficulty to
reconstruct the distributed function. Thus，it is nec⁃
essary to transform the infinite-dimensional function
into a finite-dimensional subspace. Approximating
the distributed load by a set of linearly independent
basis functions is a promising choice. Several identi⁃
fication methods by functional approximation will be
discussed below.
1. 2. 1 The generalized orthogonal polynomials

approximation

The generalized orthogonal polynomial is a
common function approximation method in a specif⁃
ic interval，such as Legendre orthogonal polynomi⁃
als，Chebyshev orthogonal polynomials，Laguerre
orthogonal polynomials and Hermite orthogonal
polynomials. Due to the title of“the most economi⁃
cal expansion”，Chebyshev orthogonal polynomials
are usually used in distributed load identification.

The coordinates of structures need to be projected
to the standard interval [ - 1，1] firstly. The expres⁃
sion of Chebyshev orthogonal polynomial［59］ with
weight function ρ ( x )= 1/ 1- x2 is

Tn ( x )= cos ( n arccos x )
-1≤ x≤ 1，n= 0，1，2，⋯ （12）

By discretizing the dynamic response in time di⁃
mension，the distributed load at time ti can be fitted
by one-dimensional orthogonal polynomials taking
one-dimensional structures for example，namely

f ( x，ti )= ∑
j= 1

J

Tj ( x ) aj ( ti ) （13）

where J is the order of a polynomial，and aj ( ti ) the
coefficient of the j-th polynomial.

By virtue of the FEM，the distributed load will
be considered as a series of discretized loads on each
node of the structure，which can be expanded as

f ( x，t )→ F ( x，ti )= T ( x ) A( ti ) （14）
where T ( x ) denotes the polynomial matrix corre⁃
sponding to the node position，and A( ti ) the coeffi⁃
cient vector. On the basis of the concentrated load
identification method reviewed in Section 1.1，the
coefficients of orthogonal polynomials will be calcu⁃
lated. Dessi［60］ identified the distribution of a wave
load acting on a slender floating body using the prop⁃
er orthogonal decomposition and integral spline ap⁃
proximation technique. Wang et al.［4，61］ proposed
the distributed dynamic load acting on continuous
structures including the cantilever beam and cantile⁃
ver plate，in which the spatial load is approximated
by Chebyshev orthogonal polynomials in time histo⁃
ry under the load assumption of piecewise format.
1. 2. 2 The basis function approximation

For the linear system，the distributed dynamic
load and the structural response can be expanded by
the given basis function［62］，namely

ì

í

î

ïï
ïï

f ( x，ti )= ∑
i= 1

N

Wi ( ti ) χi ( x )

u ( x，ti )= ∑
i= 1

N

Wi ( ti )φi ( x )
（15）

where χi ( x ) denotes the i-th basis function only
spanning in the forcing space，φi ( x ) the structural
responses generated by the load basis function
χi ( x )，and Wi ( ti ) the common weighting coeffi⁃
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cient for dynamic load F ( x，ti ) and structural re⁃
sponse u ( x，ti ). That is， the dynamic response
φi ( x ) is produced by the force χi ( x ) purely. The
dynamic load may be a single harmonic or multi-har⁃
monic cases. Thus，the determination of weighting
coefficient Wi ( ti ) is the key to the reconstruction of
distributed load，which can be numerically obtained
by conventional modal analysis. As the curve-fitting
method

GW = B （16）

where G ij= ∫φi ( x )φj ( x ) dΩ and B ij=

∫φi ( x ) u ( x，ti ) dΩ. The φi ( x ) can be obtained by
either numerical or experimental studies. Thus，the
weighting coefficient Wi ( ti ) may be inversed by
Eq.（16），and the distributed load may be expanded
by Eq.（15）.

Li et al.［63］ assumed that the time history and
the distribution function of the load are independent.
The spatial function of the distributed load and re⁃
sponse are fitted by finite basis functions using poly⁃
nomial the selection technique，and then the time
history can be reconstructed based on the shape
function method of moving least-square-fitting.
Cameron et al.［64-65］ conducted the identification of
the distributed flight load acting along the span and
chord direction of aircraft through a least-squares
minimization of Fourier coefficients with database
Fourier coefficients.
1. 2. 3 The time⁃space double deconvolution

method

For the distributed load f ( x，t ) with time-
space decoupled characteristics，it can be expressed
by the product of the distribution function ψ ( x ) and
the time history function s ( t )，namely f ( x，t )=
ψ ( x ) s ( t ). The displacement responses can be ana⁃
lyzed by

u ( x，t )= ∫0
t

s ( τ ) dτ ∫ς0
ς1
ψ ( x' ) g ( x|x'，t- τ ) dx'

（17）
where g ( x|x'，t- τ ) is the Green’s kernel function.
[ ς0，ς1 ] is the loading area. In general，the arbitrary
response can be regarded as the superposition of the
responses caused by all loads. By discretizing them

in time and space dimension，Eq.（17）can be trans⁃
formed as
u ( x，ti )=

∑
k= 1

i

s ( kΔt ) Δt∑
n= 1

N

ψ ( x n ) Δx'g ( x|x n，( i- k ) Δt )

（18）
In the following，three situations will be dis⁃

cussed for Eq.（18）. For the identification of the
time history function s ( t )，the distribution function
ψ ( x ) is assumed to be known in prior. Eq.（18）can
be transformed as u= Ψ 1S1， in which u=
[ u ( t1 ) u ( t2 ) ⋯ u ( tm ) ]T. Ψ 1 is composed of

Ψ 1 ( ti )= ∑
n= 1

N

ψ ( x n ) Δx'g ( x|x n，( i- k ) Δt )，and S=

[ s ( t1 ) s ( t2 ) ⋯ s ( tm ) ]T is the time sequence to be iden⁃
tified. For the identification of the distribution
function ψ ( x )，the time history function s ( t ) is as⁃
sumed to be known in advance. Eq.（18） can
be transformed as u= S 2Ψ 2， in which S 2 is

composed of S 2 = ∑
k=1

m

s ( kΔt ) Δtg ( x|x n，( i- k ) Δt )，

Ψ 2 =[ ψ ( Δx' ) ψ ( 2Δx' ) ⋯ ψ ( NΔx' ) ]T is the space
sequence to be identified. For the identification of
both ψ ( x ) and s ( t )， an initialization assumption
should be made in advance，then the two aforemen⁃
tioned steps should be repeatedly. This process is
named as double iterative optimization.

Under the guidance of this method， Liu
et al.［66-67］ studied the iterative identification method
of line distributed load on a composite plate using
the displacement response，which assumed that the
time-domain and spatial-domain of the load may be
separated. Jiang et al.［68］ identified the distributed dy⁃
namic load of a vibrating Euler-Bernoulli beam
based on the mode-selection method using the con⁃
sistent spatial expression. Li et al.［69］ proposed a de⁃
coupling strategy based on the Green’s function
method and the orthogonal polynomial approxima⁃
tion to identify the time history and special distribu⁃
tion separately.

To achieve a better understanding of the identi⁃
fication methods of deterministic concentrated/dis⁃
tributed load，their merits and demerits are summa⁃
rized in Table 1.
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2 Uncertain Dynamic Load Identi⁃

fication Methods

The dynamic load identification method de⁃
scribed in Section 2 is carried out under the deter⁃
ministic assumption of structural performance，mea⁃
sured response and dynamic load. However，uncer⁃
tain factors exist widely in all processes of load iden⁃
tification，which leads to the deviation between the
reconstructed results and the actual load. Thus，ex⁃
ploring the influence of multi-source uncertainties on
the identification of dynamic load is of great signifi⁃
cance for guiding the design and analysis of aero⁃
space vehicles. The dynamic equation considering
multi-source uncertainties can be transformed as
M ( α ) ü ( α，t )+ C ( α ) u̇ ( α，t )+ Κ ( α ) u ( α，t )=

F ( α，t ) （19）
where α=[ α1，α2，⋯，αq ] denotes the q-dimensional
uncertain parameters.

2. 1 The identification of the stochastic dynamic

load

The difference between the stochastic dynamic
load and deterministic dynamic load lies in the un⁃
certainties in time history and the correlation be⁃
tween each load. Since the stochastic dynamic load
cannot be expressed by an exact time function，
their power spectrum（PS） characteristics in fre⁃
quency domain based on the theory of probability

statistics are always considered as the variables to
be identified.
2. 1. 1 Coherence analysis for stochastic loads

Multi-point stochastic dynamic load will host
the basis in this section. The coherence can be divid⁃
ed into three categories：Complete coherence，par⁃
tial coherence and complete incoherence，which re⁃
flects the degree of linearity between two loads and
used for the mean value analysis. Complete coher⁃
ence means that the stochastic dynamic loads are ho⁃
mologous，while complete incoherence signifies the
cross-PS between any two loads is zero. The PS
matrix of n-point stochastic excitation is defined as
SF (ω )=[ Sfi fj ] n× n，i，j= 1，2，⋯，n，whose proper⁃
ties vary with their coherence. Through the coher⁃
ence analysis of three kinds of stochastic excita⁃
tion［70］，it can be concluded that the nonnegative def⁃
inite PS has a unified spectral decomposition formu⁃
la，namely

SF (ω )= ∑
i= 1

r

l i l Hi （20）

where r indicates the rank of SF (ω ). When the
multi-point stochastic dynamic loads are completely
coherent，r= 1. When they are completely incoher⁃
ent，r= n. When they are partial coherent，1< r<
n. In addition，the PS matrix SF (ω ) and its spectral
vector l i is one-to-one corresponding due to the
uniqueness of the spectral decomposition formula，
eigenvalues and eigenvectors，namely，the SF (ω )

Table 1 The advantages and disadvantages of deterministic load identification

Classification

Concentrated dy⁃
namic load identifi⁃

cation

Distributed dy⁃
namic load identifi⁃

cation

Method

The direct inverse
method

The regularization
method

The KF method

The machine learning
method

The generalized orthog⁃
onal polynomials
approximation

The basis function ap⁃
proximation

The time⁃space double
deconvolution method

Advantage

Its principle is simple, and it is easy to
apply to practical engineering.

It has good anti⁃noise and robust perfor⁃
mance.

It has little dependence on boundary con⁃
ditions and initial values.

It has high accuracy, strong noise resis⁃
tance

Its principle is simple and more perceiv⁃
able.

This method is simple to understand.

The time dimension and the space di⁃
mension of dynamic distributed load are

separated.

Disadvantage
The numerical calculation is unstable
and the error accumulates in time do⁃

main.
The selection of optimal regularization

parameters is not universal.
It struggles with the issue of low⁃fre⁃
quency⁃drift only using acceleration re⁃

sponses.
It is difficult to determine the super pa⁃
rameters of intelligent algorithms.

It is only applicable to the distributed
loads with a combination of polynomials.

Common weighting coefficient needs to
be determined in advance.

It converges slowly if the spatiotemporal
variables are identified simultaneously.
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can be represented exclusively by l i. This is the the⁃
oretical source of the identification of the stochastic
dynamic load.
2. 1. 2 The inverse pseudo excitation method

（IPEM）

Based on the theory of stationary stochastic vi⁃
bration，the PS SF (ω ) can be got by the PS SU (ω )
of response and the FRF matrix H (ω )，i.e.

SF (ω )= [H + (ω ) ] *SU (ω ) [H + (ω ) ] T （21）
However，direct inverse as Eq.（21） is faced

with the ill-posed problem of FRF matrix. The
IPEM is proposed by Lin［71-72］，which is simple and
efficient for stochastic vibration. It decomposes the
PS SU (ω ) and constructs a virtual response yi as fol⁃
lows

SU (ω )= ∑
i= 1

r

b ibHi y i= b iejwt （22）

where the virtual response yi may be assumed to be
generated by the virtual excitation fi= l iejwt. Com⁃
bining fi= H + (ω ) yi， the PS SF (ω ) can be ob⁃
tained as Eq.（20）.

Guo et al.［73］ identified the power spectral densi⁃
ty matrix of uncorrelated or partially correlated ran⁃
dom excitation experimentally，and confirmed the
efficiency of the IPEM. It is noted that the inverse
operation of the FRF matrix still exists in the tradi⁃
tional IPEM. Thus，some weighted techniques are
introduced to change the condition number of the
FRF matrix. Leclere et al.［74］ reconstructed the inter⁃
nal loads exciting the engine block via weighted
pseudo-inverse of the transfer matrix during opera⁃
tion to alleviate its ill-conditioning. Jia et al.［75-76］pro⁃
posed a Tikhonov regularization approach based on
error analysis and weighted total least squares meth⁃
od，and provided a selection method and a concrete
form of weighting matrix. For the distributed sto⁃
chastic excitation，Granger et al.［77］ adopted the Tik⁃
honov regularization method with Newton iteration
to reconstruct the distributed load on nonlinear struc⁃
tures. Jiang et al.［78］ identified the one-dimension dis⁃
tributed stochastic load by the IPEM combined with
generalized Fourier expansion and projection tech⁃
nique.

2. 2 The load identification under structural

probabilistic uncertainties

This section aims at the identification of con⁃
ventional loads with exact time functions for uncer⁃
tain aerospace vehicles with random fluctuation.
When the uncertainties with sufficient sample infor⁃
mation，the quantification and propagation analysis
based on the probabilistic model has been developed
completely. The Monte Carlo simulation（MCS）［79］

can obtain the statistical properties of uncertain load
by generating enough samples according to the prob⁃
ability density function（PDF）of uncertain parame⁃
ters. However，it is not suitable for engineering ap⁃
plication，and often be treated as a verification meth⁃
od. Subsequently，some methods have been pro⁃
posed as follows.
2. 2. 1 The matrix perturbation method

The probabilistic uncertain parameter α can be
defined as its mean αm plus a small random perturba⁃
tion Δα r，namely α= αm + Δα r. Based on the per⁃
turbation theory［80］，the relationship between exter⁃
nal dynamic load and responses considering probabi⁃
listic uncertainties be written as
U =[ Gm ( α )+ ΔG r ( α ) ] [ Fm ( α )+ ΔF r ( α ) ]（23）

By comparing the coefficients on both sides of
Eq.（23），it can be transformed into two kinds of de⁃
terministic issues on the bases of Taylor series ex⁃
pansion，namely

U = Gm ( α )Fm ( α )-
∂G ( α )
∂αi

Fm ( α )=

Gm ( α )
∂F ( α )
∂αi

i= 1，2，⋯，q （24）

In other words， the dynamic load can be
identified by the calculation of the mean value of
external load and its sensitivity with respect to
each random parameter. The stochastic characteris⁃
tics of identified dynamic load can be further ob⁃
tained as
ì

í

î

ïï
ïï

E [ ]F ( α ) = E [ Fm ( α ) ]+ E [ ΔF r ( α ) ]= Fm ( α )

var [ ]F ( α ) = ∑
i= 1

q é

ë
ê

ù

û
ú

∂F ( α )
∂αi

σ ( αi )
2

（25）
By far the most works have been devoted to

the response analysis for stochastic structures，yet a
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few examples have been applied in the dynamic load
identification. Considering the randomness of geo⁃
metrical， physical and boundary property， Sun
et al.［81］，He et al.［82］ and Wang et al.［83］ combined
the perturbation theory and regularization method to
evaluate the dynamic load of random structures us⁃
ing noisy responses，whose accuracy and efficiency
are explained by several numerical examples com⁃
pared with the MCS. Particularly， the first-order
matrix perturbation method is restricted to the situa⁃
tion where the coefficient of variation of random pa⁃
rameters is quite small. Then，the Neumann expan⁃
sion［84］ is usually used to obtain the higher-order sta⁃
tistics information for the matrix perturbation meth⁃
od.
2. 2. 2 The polynomial⁃chaos⁃expansion method

As mentioned above，the first-order perturba⁃
tion method is not a perfect way for stochastic struc⁃
tures［85］ with large fluctuation. Moreover，it disre⁃
gards the distribution form of random parameters，
so the same results will be obtained no matter what
the PDF is. In view of this，Liu et al.［86-88］ proposed
a novel uncertain load identification method for sto⁃
chastic structures with unimodal and bounded PDF
based on polynomial chaos expansion. Similar to the
matrix perturbation method， it also converts the
complex stochastic analysis to several deterministic
problems. If the uncertain parameter αi is unimodal，
it can be expressed as the function of a stochastic pa⁃
rameter βi with λ-PDF，i.e.
αi≈ b0i+ b1i β i+ b2i β 2i i= 1，2，⋯，q（26）
Then，the transfer matrix G ( α ) can be depict⁃

ed by the function of stochastic parameter βi，as

G ( α )= G ( β )= G 0 + ∑
i= 1

q

(G 'i β i+ G ″i β 2i )（27）

The external load F ( α ) can be expanded as the
sum of a series of polynomial chaos φ

F ( α )= F ( β )= ∑
i1 = 0

N1

⋯∑
iq= 0

Nq

zi1⋯iqφ
λ1
i1 ( βi )⋯φ

λq
iq ( βq )

（28）
Inspired by the orthogonality of polynomials，

the coefficients zi1…iq can be solved by the determinis⁃
tic load identification technology. Eventually， the

statistical properties of uncertain loads can be de⁃
rived from the definitions of mean value and covari⁃
ance. Schoefs et al.［89］ estimated the system charac⁃
teristics of offshore platforms by polynomial chaos
expansion， and then identified the periodic tidal
loads. Wu et al.［90］ reconstructed the responses and
forces of a stochastic system using polynomial chaos
expansion and the Karhunen⁃Loève expansion，and
investigated the influence of different correlation
lengths of random system parameters on identified
results. In addition，several other excellent methods
have been successively used to deal with load identi⁃
fication for stochastic structures. For example，Ba⁃
tou et al.［91］ reconstructed stochastic loads of a non-

linear dynamical system considering model uncer⁃
tainties and data uncertainties，in which the mean
value and dispersion parameter of PS function are
calculated using the computational stochastic model
and experimental responses. Zhang et al.［92］ present⁃
ed a Bayesian approach for force reconstruction con⁃
sidering measurement noise and model uncertainty，
in which uncertain FRFs are settled by Monte Carlo
Markov chain methods.

2. 3 The load identification under structural non⁃

probabilistic uncertainties

Subjected to measurement cost and technolo⁃
gy，it is impossible to gain enough samples of uncer⁃
tain parameters to determine their PDF. Given this，
the non-probabilistic model is introduced to quantize
uncertain parameters. The interval model based on
interval mathematics is a general method，in which
only the upper and lower boundaries are necessary.
The uncertain interval parameter vector［93］ can be
defined as

α∈ α I= [-α，ᾱ] αi ∈ αIi=[ -α i，ᾱ i ] （29）

where-× and-× denote the lower bound and upper
bound，respectively. For the issue of dynamic load
identification，the uncertain load can be expressed
as

F ( α )∈ F I ( α )=[ -F ( α )，F̄ ( α ) ] （30）
where -F ( α )= min [F ( α ) ] and F̄ ( α )=
max[F ( α ) ] are the variables that should be calcu⁃
lated. The vertex combination method is the most
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effortless method for interval uncertainty analysis，
but it is only suitable for monotonic problems. The
uncertainty propagation methods based on the Tay⁃
lor-series-expansion method and surrogate model
will be reviewed in the following.
2. 3. 1 The Taylor⁃series⁃expansion method

To facilitate the analysis and discussion，two
variables are defined firstly，namely the interval me⁃
dian α c= (-α + ᾱ) /2，and the interval radius α r=
( ᾱ- -α) /2. When the uncertain level of all parame⁃
ters αi is small，the uncertain load can be expanded
by the first-order Taylor⁃series at the interval medi⁃
an，namely

F ( α )≈ F ( α c )+ ∑
i= 1

q ∂F ( α c )
∂αi

δαi （31）

Thus，the load boundaries can be approximat⁃
ed by

ì

í

î

ï
ï
ï
ï

-F ( α )= F ( α c )- ∑
i= 1

q |

|
||

|

|
||
∂F ( α c )
∂αi

αir

F̄ ( α )= F ( α c )+ ∑
i= 1

q |

|
||

|

|
||
∂F ( α c )
∂αi

αir

（32）

Similar to the matrix perturbation method in
probabilistic model， the Taylor⁃series⁃expansion
method only need q+ 1 times deterministic invers⁃
ing calculation to determine the load boundary，in⁃
cluding the load identification at the interval median
and the gradient calculation with respect to each pa⁃
rameter.

The dynamic load identification of structures
with interval uncertainties has been intensively in⁃
vestigated. Liu et al.［94-96］ explored a series of re⁃
searches of load identification with regularization
methods considering measurement noises and mod⁃
el uncertainties，to reconstruct the time history of
the load interval. Ahmari et al.［97］ established an in⁃
verse analysis scheme，in which the result of the
impact location is in a rectangle，and the result of
time history is bounding sinusoidal curves with de⁃
viation. However， the Taylor-series-expansion
method has significant advantages only when the
uncertainty problem is linear or the uncertain level
is small. Therefore，Wang et al.［61］ applied the sub⁃
interval technique in dynamic load identification to

avoid interval extension. But it is important to de⁃
termine the subinterval number for each variable to
make a tradeoff between efficiency and conver⁃
gence.
2. 3. 2 The methods based on the surrogate model

The key point of dynamic load identification
under non-probabilistic uncertainties is to get its
maximum and minimum value in the interval do⁃
main of uncertain variables. In order to further re⁃
duce the overestimation or underestimation of load
interval caused by uncertainty propagation analysis，
some surrogate models，such as the Kriging mod⁃
el，polynomial response surface method and artifi⁃
cial neural network，are used to approximate the re⁃
lationship between uncertain loads and uncertain pa⁃
rameters. The detailed construction ways have been
summarized in Ref.［98］. Generally，the construc⁃
tion of the surrogate model is regarded as the uncer⁃
tainty propagation in the inner layer，and the optimi⁃
zation algorithm is needed in the outer layer to find
the extreme point of uncertain load at each sampling
instant.

Compared with the numerical simulation of the
original FEM，the uncertainty propagation analysis
based on surrogate model can effectively reduce the
computational cost and filter out the unwished
noise. But its accuracy and efficiency are highly de⁃
pendent on the selection of the surrogate model and
its hyper-parameter，which do not have a universal
solution for all problems so far. This method is
mainly used in the forward analysis of dynamics，
and is in its initial stage for inverse issues. Ref.［99］
utilized the Chebyshev orthogonal polynomials to fit
the relationship between uncertain load and interval
parameters at zero-cut of fuzzy interval. The maxi⁃
mum and minimum points of uncertain variables are
searched in a dimension-wise manner，and the corre⁃
sponding loads can be identified via calling inverse
methods. However， it ignores the coupling effect
between uncertain variables.

In order to fascinate the understanding of uncer⁃
tainty propagation methods，some prominent fea⁃
tures are listed in Table 2.
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3 Discussion of Development

There are many excellent reviews in the litera⁃
ture dealing with the basic concepts of dynamic load
identification in recent decades. However， further
effort is required to better deal with the uncertain dy⁃
namic load identification of aerospace vehicles.

Firstly， the structural dynamic responses，
which are measured by strain gauges，accelerome⁃
ters or displacement detectors，are the basis of the
load identification. Different types and locations of
response signals correspond to different identified re⁃
sults. The sensor deployment optimization strategy
including their type，number and position should be
involved to improve the load identification accuracy.
Secondly，the intelligent composite with self-diag⁃
nose and self-healing function has been widely ap⁃
plied to aerospace vehicles. The piezoelectric ele⁃
ment is a novel component for monitoring the intelli⁃
gent composite. The future looks bright to investi⁃
gate the relationship between the external load and
piezoelectric response and develop additional identi⁃
fication methods for smart structures. Eventually，
aerospace vehicles are always operated in hyperther⁃
mal environments，and the change of temperature
will cause the fluctuation of the structural dynamic
characteristics. Under the circumstance of the tem⁃
perature effect，the responses caused by the dynam⁃
ic load may be annihilated. Therefore，it is neces⁃
sary to propose an effective method to separate the
temperature effect from the sensor monitoring data，
so as to realize the dynamic load identification of
aerospace vehicles in the thermal-mechanical cou⁃

pling environment.

4 Conclusions

It is an urgent need but still a significant chal⁃
lenge for uncertain dynamic load identification of
aerospace vehicles，which can be considered as an
interdisciplinary subject between the inverse prob⁃
lem of structural dynamics and the uncertainty analy⁃
sis. This paper provides a taxonomy and a review of
alternative identification methods for both determin⁃
istic and indeterministic dynamic load， following
their applicability and specialty. The forthcoming re⁃
search trend is prospected finally，which aims at pro⁃
viding promising applications in the development of
aerospace vehicles.
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多源不确定性下的飞行器动载荷识别研究进展

王 磊 1，2，刘亚儒 1，胥涵颖 2

（1.北京航空航天大学航空科学与工程学院，北京 100083，中国；

2.北京航空航天大学宁波研究院，宁波 315100，中国）

摘要：动态载荷的确定是进行空天飞行器结构设计和健康监测的关键技术之一。然而，空天飞行器所受的外部

激励往往很难直接测得，相反，根据动力学模型和响应信息来间接获取载荷的动态载荷识别是一种可行的手段。

而且，复杂系统的载荷识别过程中普遍存在着不可忽略的多源不确定性，尤其对于空天飞行器来讲。本文对考

虑多源不确定性的空天飞行器动态载荷识别方面的理论和成果进行了综述，主要包括确定性动态载荷的识别和

不确定性动态载荷识别，分别阐述了不同类型的集中、分布载荷的反演方法和多源不确定性的量化、传播分析，

并探讨了各自的优缺点。最后，分析了空天飞行器动态载荷识别今后可能的发展方向。

关键词：动态载荷识别；集中动态载荷；分布动态载荷；随机载荷；概率不确定性；非概率不确定性
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