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Abstract: Mei symmetry on time scales is investigated for Lagrangian system, Hamiltonian system, and Birkhoffian

system. The main results are divided into three sections. In each section, the definition and the criterion of Mei

symmetry are first presented. Then the conserved quantity deduced from Mei symmetry is obtained, and perturbation

to Mei symmetry and adiabatic invariant are studied. Finally, an example is given to illustrate the methods and results

in each section. The conserve quantity achieved here is a special case of adiabatic invariant. And the results obtained in

this paper are more general because of the definition and property of time scale.
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0 Introduction

Mei symmetry was first introduced by Mei''' in
2000. Mei symmetry is a kind of invariance that the
dynamical functions of system, under infinitesimal
transformations of time and coordinates, still satisfy
the original differential equations of motion. Con-
served quantity, which helps find the solution to the
differential equation, can be deduced from Mei sym-
metry. Therefore, Mei symmetry and conserved
quantity are important aspects deserved to be stud-
ied in analytical mechanics. And lots of research on
Mei symmetry can be found in Refs.[2-5].

Time scale was first introduced by Stefan Hilg-
er in 1988'°". Time scale means an arbitrary nonemp-
ty closed subset of the real numbers. Generally, re-
search can be done on time scales first, then differ-
ent results will be obtained from specific time scale.
The real numbers R, the integers Z, the natural
numbers N, the nonnegative integers N, the Can-

tor set, etc. are all specific time scales.
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Constrained mechanical system on time scales
has been studied recently. For example, calculus of
variations on time scales'”®, Noether symmetry and

9-13]

conserved quantity on time scales'”", Lie symme-

try and conserved quantity on time scales' "

, and
so on. In this paper, Mei symmetry and conserved
quantity on time scales will be presented. The defini-
tions and basic properties of time scale calculus used

here can be read in Ref.[ 17] for details.

1 Mei Symmetry for Lagrangian

System on Time Scales

1.1 Meisymmetry and conserved quantity

Lagrange equation on time scales has the

form'"

A 9L aL
At dg; 9q7

(1)

where L=1L(z,q¢/(1),q;(1)); 4,j=1,2,--,n Iis

the Lagrangian on time scales, ¢; the coordinate,
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o a A JL 0 0
¢/ (1) = q;(a(2) ), 47 () = T 0,(2)- I,,o:@-&ﬁ G = const (7)
7

Taking account of the Lagrangian L after the

following infinitesimal transformations

=1, ([7:(11+‘9L581 (2)
we obtain
L' =1L(t,q/°(2),q; () )=L(t,q] + 0, £17.q7 +
0. IOJA):
dL dL ,
L(t,q7,q7) + —— - 0.7+ 0,600+ 0(07)(3)

dg; T dg)
where ¢, is an infinitesimal parameter and &/, =
&l (1, q;) is the infinitesimal generator.

Definition 1 If the form of Eq.(1) keeps in-
variant when the original Lagrangian L is replaced
by L", that is

AJL  dL
At 9g? aq;

4)

holds, then this invariance is called the Mei symme-
try of LLagrangian system on time scales.
Substituting Eqgs.(1,3) into Eq.(4), and omit-
ting the higher order of 4, , we obtain
A a 314 (3 al’ oAl —
5 agt\ag S0 gy T
d [dL aL
ag:

aq; . [Oja—i_ aq}g SCIOJA) (5)

Criterion 1 If the infinitesimal generator £/,
satisfies Eq.(5), the corresponding invariance is the
Mei symmetry of the lLagrangian system on time
scales.

Eq. (5) is called the criterion equation of the
Mei symmetry for the Lagrangian system (Eq.(1))
on time scales.

Generally speaking, additional conditions are
necessary when conserved quantity is wanted to be
deduced from the Mei symmetry.

Theorem 1 For the Lagrangian system (Eq.
(1)), if the infinitesimal generator £,;, which meets
the requirement of the Mei symmetry (Eq.(5) ),
and a gauge function G| = G[ (¢, ¢7, ¢}') satisfies

aL aL

0g 0A S8 — (6)

ag 7 ag tY

then the Mei symmetry can deduce the following

conserved quantity

Proof Using Eqs.(1,6), we have

A aL . A JL 00 s OL
VAL Pt A ) Tere g}
aL
O AT
J

This proof is completed.

1.2 Perturbation to Mei symmetry and adiabat-

ic invariant

When the Lagrangian system (Eq.(1)) is dis-
turbed, the conserved quantity may also change.
Assuming the Lagrangian system on time

scales 1s disturbed as

A 9L aL
At dgr dg?

—e.Qu(t,q],q7) (8)

If the disturbed infinitesimal generator &, and
the disturbed gauge function G, are
Eu=§lLtefltelfl+ =&l telbl
G.=G.teG teG + =G +eGr
m=1,2,--- (9)
then the infinitesimal transformations can be ex-
pressed as
U=t q;=q 1 0.5 (10)
From the Mei symmetry of the disturbed La-
grangian system (Eq.(8)), that is

A dL” aL’ .

E 8(/? - 3(15’ e Qi (11)
we obtain
A a aL §mu aL mA | a aL gmu
aragi\agr *7 agp CT | agi\ag) *

314 m aQ i mo aQ i m!
ag; ”A)_SL( o g ”A) )

Eq.(12) is called the criterion equation of the
Mei symmetry for the disturbed Lagrangian system
(Eq.(8)) on time scales.

Definition 2 If a quantity I., with € one of its
elements, satisfies that the highest power of € is 2

and AL /At is in direct proportion to €', then I is
called the zth order adiabatic invariant on time

scales. And we have the following theorem.

Theorem 2 For the disturbed Lagrangian sys-
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m

tem (Eq.(8) ), if the infinitesimal generator &/},
which meets the requirement of the Mei symmetry

(Eq (12)), and the gauge function G/ satisfies
aL

mzx § mA mA

—QuElr =0 (13)

where §’” V7 =0 when m = 0, then there exists an
adiabatic invariant

: aL
I N — m .
= el

m=10

i+ (J’“) (14)

Proof Using Eqs.(8,13), we have

A
=1 =
At
L aL
Zsm( 5/11.} AZL ) gms mA —
m aI mA 814 mo J)IA _
NZ)S (aqf 5 a P sIQu) 5 -

2 m(_lelj §m+ le Im 1))

m=0

—e& 1Q1,§f}7

This proof is completed.
Remark 1

ant obtained from Theorem 2 has a special name,

When =0, the adiabatic invari-

i.e., exact invariant. Besides, Theorem 2 reduces
to Theorem 1 when 2= 0. Therefore, a conserved
quantity is actually an exact invariant.
1.3 An example
The Lagrangian is
L= (g + () ]qs 15)

We try to find out its conserved quantity and adiabat-
ic invariant deduced from the Mei symmetry on the
time scale T'=hZ = {hk: kEZ}, h>>0.

From Eq.(5) and Eq.(6), we have

A D
Q?'ff?+q?- 1) (16)
A D
N ags (EE AT e g — 5 (e
(Z1 51 TLC]?’ ) (17)
5()0+QI‘§1,1+([§'§£§+G;?A: (18)
It is easy to verify that
Eh=1,§,=0,Gl= (19)

satisfy Egs. (16—18).
conserved quantity can be obtained, namely
const (20)

Then from Theorem 1, a

I, = ([? -

When the system is disturbed by Q. =0
Q=" — 2t, from Eq.(12) and Eq.(13), we have

A D | )
anf(_ 112+Qf +Qz' lz) a(ji(_ 113+
Q?' 11?+61§ Ilﬁ) (21)
A 4 , A , : p
Ea A (*§zli+qf§zll +Q§ 115): 511‘2
qr-&i+ g &) (22)

=&t Ent R ST GE=0 (23)
Taking calculation, we obtain
& =0,¢,=1, G =1t (24)
Then
In=qi +e (g2 +1) (25)
can be achieved as the first order adiabatic invariant
from Theorem 2. Higher order adiabatic invariants

can certainly be deduced.

2 Mei Symmetry for Hamiltonian

System

2.1 Meisymmetry and conserved quantity

Hamilton equation on time scales has the

form[ 12-13]

dH IH
P= = 26
q . D o (26)

where H=H (¢, qj, p;) is the Hamiltonian on time

scales and p; the generalized momentum,
1,2, -, n
Taking account of the Hamiltonian H after the

ij=

following infinitesimal transformations

U=t q=q 1 0ul, pi =p:+ Ouni (27)
we obtain
H =H(¢,q°(¢),p; () )=H(t,q] + Ouri, p; +
JH JdH
511?7?1;):H(l,q}7,pj)+ a(] 611511, Tﬁ, .
Ouni 1 0(05) (28)

where @, is an infinitesimal parameter, &, =
(L, q;, py) and i = 9 (4, q;, p;) are called the in-
finitesimal generators.

Definition 3 If the form of Eq.(26) keeps in-
variant when the original Hamiltonian H is replaced
by H', that is

JoH" JdH"

P= L pi=— 2
q; . b o0 (29)
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olds, this invariance is called the Mei symmetry of
Hamiltonian system on time scales.
Substituting Egs. (26, 28) into Eq.(29) , and

omitting the higher order of d,;, we obtain

J (aH. i aH-n?,v)O
ap[ a(]}’ lj apj_ i
0 (oH oH
o o] =o0 30
3q?(aq}-’ I, 77HJ) oY

Criterion 2 If the infinitesimal generators
Ein i satisfy Eq. (30)

ance is the Mei symmetry of the Hamiltonian sys-

the corresponding invari-

tem on time scales.

Eq. (30) is called the criterion equation of
the Mei symmetry for the Hamiltonian system
(Eq. (26)) on time scales. Therefore, we have

Theorem 3
(Eq. (26)),
which meet the requirement of the Mei symmetry
(Eq. (30)),

satisfies

For the Hamiltonian system

if the infinitesimal generators &7, 7y,

and a gauge function Gy=G} (¢, ¢, p;)

3H
Dit HJ - + G = (31)

ag]
the Mei symmetry can deduce the following con-
served quantity
w = p; - &y 1+ G = const (32)
Proof Using Eqgs. (26,31), we have

A , :
EIHOZP;" St G =

oH
dq;

: 1013* IOIA‘FP;A 1013+ Gt =0
This proof is completed.

2.2 Perturbation to Mei symmetry and adiabat-

ic invariant

When the Hamiltonian system (Eq. (26) ) is
disturbed, the conserved quantity may also change.
Assuming the Hamiltonian system on time

scales 1s disturbed as
JH |

A — i
qi api’pl

If the disturbed infinitesimal generators &g,y 9

oH
dq?

_SHQHI(tyqjvpj) (33)

and the disturbed gauge function Gy, are
gm — gf()lz + 5115111{ + 51121512” + - §1011 + enéin
N = N+ e+ eqmiy £ oo

:77211'+€H77H,
GH:G;)[—Q—SHG}{—Fei,GIZ{—}—. =G4+ G

m=1,2,- (34)
the infinitesimal transformations can be expressed as
g+ Ounui, p; =p. T Ounu  (35)
From the Mei symmetry of the disturbed Ham-

=t q =

iltonian system (Eq. (33)), that is
oH" ~0H”

([}A - ap ) plA - a . —uQun (36)
we obtain
a [0H dH IQu Qs
1]1(7+ R m B . 111‘f7+ R m :O
aq" (a o S Hj ap, 7IH_/) eH( A Hj ap, 7IH_/)
a mo‘ 87H m |
9, ( )O
m=0,1,2, - (37)

Eq. (37) is called the criterion equation of the
Mei symmetry for the disturbed Hamiltonian system
(Eq. (33)) on time scales. Then we have

Theorem 4 For the disturbed Hamiltonian
system (Eq.(33)),

m m

1> ni; meet the requirement of the Mei symmetry

if the infinitesimal generators

(Eq. (37)), and the gauge function G}; satisfies

, aH
D& — o0 Gt — Quélii V=0 (38)
where £ V=0 when m =0, then there exists an

adiabatic invariant
L. =en(p;- &+ Gii) (39)
Proof Using Egs. (33,38), we have

Eem p §HIA +p gmu mA
J J

m=0
m mo__
28 G
m=

mo_ mA
p] 11/ 7

71&

/7IA+ Qng(m l)a+

Ze’” —enQueEitQuéli = e Queti

This proof is completed.
Remark 2 Theorem 4 reduces to Theo-

rem 3 when 2= 0.
2.3 Anexample
The Hamiltonian is
H= 2 (pi+ )+ g (40)

We try to find out its conserved quantity and adiabat-
ic invariant deduced from the Mei symmetry on the
time scale 7= {2":n€ N U {0}}.
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From Egs. (30,31), we have

d
a( 21+P1'0211+P2‘770Hz):07 3,03( 05+p1
WOHlJFPz'ﬂgn): (41)
T(schrﬁl'???nTLpz"hUlz): (5111+P1’
1
77(;41 +P2‘77219):O (42)
p ng +p g(u § *OA J— (43)
It is easy to verify that
I(—)Il - 1(-)12 =1, 77H1 77H’) 0, G (44)

satisfy Eqs. (41—43). Then from Theorem 3, a
conserved quantity can be obtained
Lo =p, + p. + t= const (45)
When the system is disturbed by Q. = 3¢
Q= 0, from Eqs.(37,38), we have

i lo 1 1
apl (§H1+p1 77H1+p2 771—12) 0

a
v (5611161+f71‘7]}11+P2'771]12):O (46)

(5 +p1 77H1+Pz 771—19):0
d 1o 1 1y
8q7 (§111+p1'77111+p2'77112)—0 (47)
D& T Pl — &GP —3t=0  (48)
Taking calculation, we obtain
56111 1, 56117 0, 7]111 7]112 0, (111 =0+t (4 )

Then

In=p +tp.t+ite(p++e) (50
can be obtained as the first order adiabatic invariant
from Theorem 4. Higher order adiabatic invariants

can certainly be deduced.

3 Mei Symmetry for Birkhoffian
System

3.1 Meisymmetry and conserved quantity

The Birkhoff equation on time scales has the
form"'"
drR, , 0B
a, —
da; da;

where B=B(t,a;) is the Birkhoffian on time

—R:=0 (51)

scales, R,=R,(t, a;) is the Birkhoff’ s function on
. A
time scales, a;(?) =(a,°0) (1), a, (1) = Ea,(f),

sV, 0=1,2,++,2n.

Taking account of the Birkhoffian B and the
Birkhoff’ s function R, after the following infinitesi-

mal transformations

P =1 =a, 0,8, (52)
we have
R, =R, (¢, a*"): (f,a,Z"f’ﬁzsf;;Z):
p
B*:B(l‘ a*g) ([ a, +6B§t’/t

B(t,a; )+ 0P§E; 0(07) (53)

where @, is an infinitesimal parameter, &g, =
&5, (¢, a,) called the infinitesimal generator.

If the form of Eq.(51) keeps in-
variant when the original Birkhoffian B and the Birk-

Definition 4

hoff’s function R, are replaced by B" and R;, that is,
R, . B
Rl

da; da;

o

—RF=0 (54)

olds, this invariance is called the Mei symmetry of
Birkhoffian system on time scales.
Substituting Egs. (51, 53) into Eq.(54) , and

omitting the higher order of 0, we obtain

a (or, .\ . a[aB _,
v gs — -
daz\ da; daz\ da; ™"
IR
= aa:. EZ)ZO (55)

Criterion 3  If the infinitesimal generator &},
satisfies Eq. (55) ,

the Mei symmetry of the Birkhoffian system on time

the corresponding invariance 1is

scales.

Eq.(55) is called the criterion equation of Mei
symmetry for the Birkhoffian system (Eq. (51)) on
time scales. Therefore, we have

Theorem 5  For the Birkhoffian system

(Eq. (51) ) , if the infinitesimal generator &5,
which meets the requirement of the Mei symmetry
(Eq. (55) ), and a gauge function Gy = G (1, a})
satisfies

Zf: woar tRGE — %B i Gt = 0(56)

’
the Mei symmetry can deduce the following con-
served quantity
Iy =R, &), + G = const (57)
Proof Using Eqgs. (51,56), we have
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A Proof Using Egs. (58,63), we have
Elbo R sézs# _‘_RA Brl_‘_(f aaﬂ 1sp a, s+ A i g4
o C m m mao lfl
B = SRR R )=
a . 1;p OA + RA 1;# + GOA — m=10

This proof is completed.

3.2 Perturbation to Mei symmetry and adiabat-

ic invariant

When the Birkhoffian system (Eq. (51)) is dis-
turbed, the conserved quantity may also change.
Assuming the Birkhoffian system on time
scales is disturbed as
IR, , 9B

a
da; " da]

If the disturbed infinitesimal generator &5, and

RA "'313Q1)p(Z a ) (58)

the disturbed gauge function G are

513# — 51(;# + 51;§113,u + 5?;51;;# - 51?1 €y 1];L
Gy=GytTeGyt+ et G+ =Gyt e GYf
m=1,2,--- (59)
the infinitesimal transformations can be expressed as
t'=t, a,=a,+ 0, (60)

From the Mei symmetry of the disturbed Birk-
hoffian system (Eq. (58)), that is
JrR;, , 9B
s —
da’ da’

0 0

_R;AZEBQZP (61)
we obtain

a aRV mao A a aB mo
‘Spu| Ay T SBu| T
da’\ da; °" daz\ da; "

IR 0 mo | __ aQ Bo ma
. — €p

Bu " S By
da;, da;,

=0,1,2,--

(62)

Eq.(62) is called the criterion equation of the

Mei symmetry for the disturbed Birkhoffian system

(Eq. (58)) on time scales. Then we have the fol-
lowing theorem.

Theorem 6 For the disturbed Birkhoffian sys-

tem (Eq. (58)),

which meets the requirement of the Mei symmetry

m

if the infinitesimal generator £z,

(Eq. (62)), and the gauge func‘uon G} satisfies
3RL

mo‘ . A + R mA mao mA .
aa;', s
QBpgm 1) aio (63)
where &7/ V=0 when m = 0, there exists an adia-
batic invariant
Zemueﬂ &+ G (64)

Esm . aR” .g/zzd'ai + aB mo __ (JmA
B aa; Bo v aaa Bp

m=0 14

(m—1)o A gmo al 1/7A I
QH(, Bo "+ R PRES —

— _ 1
2 en ( sszz;p . 51,;}” + Q15psc1m )* & stp .
m—

glio
This proof is completed.
Remark 3 Theorem 6 reduces to Theorem 5

when 2 = 0.
3.3 An example

The Birkhoffian and Birkhoff’s functions are

1
B=[(a)" + 2003+ ()]
lea?+a3,R)iO Rq a4, R4fo (65)
try to find out its conserved quantity and adiabatic in-

variant deduced from the Mei symmetry on the time
1
scale T = {n: nEN; U {0}.

From Egs. (55,56), we have

agOa a B}
ar SR TSRt @i -~ gy [lait
()5 Ozr . A ()0 ()5
a5) (6% €)1 (§5+ E5) (66)
oo o
A o
a +§m aa; 8a§ [ (a2+
a;;)(fm—'—fgg)]:o (67)
a 851;4 a
s — 7
ay 9a] ( p Em 8a3 9a; |: (az +
ag) (5()6_'_50}?)]_ A Oa:O (68)
3 B2 B3 IR
d 35134 d
S— (&% e — 5
a 9a] ( 3z+§35)+ a a; da’ |:(6127L
a3) (& + &) 1=0 (69)
Eirat + Ear + §xlas + (a3 + af) £ + @it —
(a5+ a3) (&5 + E8)+ G = (70)

It is easy to verify that
m=1,&h=Ek=EL=0,Gy=0 (71)
satisfy Egs. (66,70). Then from Theorem 5, a con-
served quantity can be obtained
Iy = a% + a% = const (72)
When the system is disturbed by Q. = *+ 1,
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Qu = Qus = Qu =0, from Eqgs. (62,63), we have

d g ad
o (§h+ )T ot ai’; o Lai
A
@) G+ g)1- T g+ ED=0 (73
d gk d
at o (6l )t at ai”; s Lt
a9) (£l 4 gl)]=0 (74)
d gk d
@t o (6l )t ad ai”g o lat
@) (L e - gl = (75)
3 B2 B3 At B4
d gk d
@t (g gl @t o — L [ (it
a0) (£l + £12)]=0 (76)
Sad + et + EhaS + (a5t ad) £ + asel —
(ag+a;)( Ilg+§llig)+ GJI:A:O (77)

Taking calculation, we get

531:‘;:11;2:17 §ps=——1, 51134:()7 Gy=20 (78)
Then

Iy = a5+ a+ ex] (a5 + a3) — af) (79)

can be obtained as the first order adiabatic invariant
from Theorem 6. Higher order adiabatic invariants
can certainly be deduced.

Remark 4 When the time scale is the real
numbers R, all the results obtained in this paper are

consistent with those in Ref.[ 18].

4 Conclusions

The Mei symmetry and perturbation to Mei
symmetry are studied under special infinitesimal
transformations in this paper. Theorems 1—6 are
new work. However, further research on Mei sym-
metry on time scales, for example, Mei symmetry
under general infinitesimal transformations on time

scales are to be further investigated.
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